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Abstract
The BabyExp project is collecting very dense audio and video recordings of the first 3 years of life of a baby. The corpus constructed in
this way will be transcribed with automated techniques and made available to the research community. Moreover, techniques to extract
commonsense conceptual knowledge incrementally from these multimodal data are also being explored within the project. The current
paper describes BabyExp in general, and presents pilot studies on the feasability of the automated audio and video transcriptions.

1. Introduction

There is by now widespread agreement that the most real-
istic way to construct the large-scale commonsense knowl-
edge repositories required by natural language and artifi-
cial intelligence applications is by letting machines learn
such knowledge from large quantities of data, like humans
do — see, e.g., Buitelaar and Cimiano (2008). A lot of at-
tention has consequently been paid to the development of
increasingly sophisticated machine learning algorithms for
knowledge extraction. However, the nature of the input
that humans are exposed to while learning commonsense
knowledge has received much less attention. Thus, current
knowledge extraction methods are mostly trained on huge
amounts of raw text (e.g., from the Web or the Wikipedia),
although this sort of input is hopelessly impoverished com-
pared to the rich environmental stimuli available to humans
when they learn about the world. For a variety of reasons
— chief among which is the lack of appropriate resources
— the majority of current work in this area must ignore the
obvious consideration that a key part of human common-
sense knowledge is acquired during childhood. Acquisition
during childhood has three key aspects (Mandler, 2004):

1. multimodal integration — in human learning, non-
verbal perceptual experience, and in particular visual
experience, crucially complements — in fact, predates
— verbal information, and has a dominant role in the
acquisition of particular categories and aspects of our
knowledge;

2. incrementality — human children are exposed to in-
creasingly more varied stimuli as time and their learn-
ing capacities increase;

3. full immersion in a “noisy” environment — children
learn how to carve knowledge not living in a controlled
laboratory, in which stimuli are presented to them in
a piecemeal and regular way. Instead, they are con-
stantly immersed in an environment full of “noise”,
from which they learn how to distill the relevant pieces
of information.

In this paper, we introduce BabyExp, a radically new kind
of corpus that promises to be the first publicly available re-
source for training algorithms on input that is truly com-
parable to the one humans receive. The main aspect of
originality of BabyExp consists in the fact that it will be
the largest available resource of “ecological” data about
the communicative and physical environment in which the
baby is immersed during its first steps in concept and lan-
guage learning. This will make BabyExp a unique resource
among other existing datasets commonly used to model
language and knowledge extraction. The latter, including
also child-based corpora such as those in the CHILDES
database (MacWhinney, 2000), are scarcely representative
of the actual data used by the baby for concept learning for
one or both of the following reasons:

1. they do not record the actual objects, events, etc., daily
experienced by a baby;

2. they only provide a recording of a small sample of in-
teractions (often recorded in controlled labs), actually
a tiny fraction of the whole experiencing life of the
baby.

The BabyExp corpus is based on continuous audio and
video recordings of the full indoor waking hours of a sin-
gle child in an English-speaking environment. Data col-
lection started in September 2008 and it will end in Au-
gust 2011, covering the first 3 years of life of the child
under study. The audio and video streams will be auto-
matically transcribed using state-of-the-art speech recogni-
tion and person and object recognition and attention track-
ing techniques. The resulting textually encoded corpus will
capture not only the utterances heard by the child, but the
trajectories and various visual properties of persons and ob-
jects surrounding the child, and that the child is paying at-
tention to. The BabyExp corpus will be, as far as we know,
the first resource of its sort that is open to the research com-
munity.

The BabyExp project is structured into the following main
components:
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1. Data collection in the child house;

2. Audio stream transcription;

3. Video stream transcription;

4. Corpus construction form the transcriptions;

5. Commonsense knowledge extraction from the corpus.

In this paper, after mentioning some related projects (sec-
tion 2.), we describe the ongoing data collection initiative
(section 3.), we report pilot studies in audio (section 4.)
and video processing (section 5.), and we briefly discuss
the motivation and general approach we intend to take to
commonsense knowledge extraction (section 6.).

2. Related projects

Relevant literature that pertains to various aspects of the
project is mentioned in the relevant sections of this paper.
Here, we shortly review some related child data collection
projects.

The seminal CHILDES project (http://childes.
psy.cmu.edu/) has collected and transcribed naturalis-
tic child-directed and child-produced speech since the mid
eighties, and it also features video recordings of children.
However, the fundamental goal of CHILDES is to collect
data for the study of child language acquisition, and as such
it does not provide (nor purports to provide) dense and con-
tinuous recordings of the child environment, of the sort we
aim for. The densest corpora in the CHILDES database
sample 2% of what a child hears, and just for short spans
(Tomasello and Stahl, 2004).

Closer to BabyExp is the Human Speechome Project
(HSP, www.media.mit.edu/cogmac/projects/
hsp.html), that has recently concluded its first phase.
BabyExp differs from HSP in several respects. HSP fo-
cused on data gathering, while the emphasis of BabyExp
will be on the development of algorithms for learning from
incrementally structured, multimodal input. We will take
crucial advantage of important technical innovations in data
collection, that will allow us to zero in on the relevant as-
pects of a scene while discarding the inessential, making
the resource both more compact and of higher quality. The
HSP data are not publicly available, whereas the full tran-
scriptions of BabyExp data will be made available in stan-
dardized formats to the research community.

Another large scale child data collection initiative has
been conducted by Infoture through the LenaPro wearable
speech recording devices (http://www.infoture.
org/ProSystem/Overview.aspx). This work -
which has resulted in a large and growing collection of
speech data from multiple children, controlled by parents,
and only partially transcribed - again focuses on data col-
lection only. We will go beyond Infoture by acquiring vi-
sual data as well as speech, and by adopting a strictly lon-
gitudinal, ultra-dense data collection methodology, instead
of occasional recordings at times determined by parents.
Finally, several recent and ongoing projects in cognitive
systems and robotics focus on robots that learn from their
environment like children do. However, such projects (e.g.,

the ongoing CogX project: http://cogx.eu/) focus
on self-learning robots that move in a relatively controlled
environment, whereas we will use the BabyExp corpus to
boost existing algorithms and methods for knowledge rep-
resentation and extraction in NLP by feeding them with
ecological multimodal data similar to those that lead a baby
to acquire knowledge from the surrounding non-linguistic
and linguistic input.

3. The BabyExp setup

The BabyExp corpus under construction is based on contin-
uous audio and video recordings of the full indoor waking
hours of a single child. Data collection started in Septem-
ber 2008 and it will end in August 2011, covering the first
3 years of life of the child of one of the researchers in the
project (the child was born in August 2008, and data have
been collected since his second month of life).

Data collection takes place in the researcher’s apartment,
with the collaboration of the researcher’s wife (the mother
of the child). Although the recording takes place in Italy,
the baby is growing in an essentially monolingual English
environment, in the English-speaking community of fami-
lies and child-support structures of the University of Trento
Center for Mind/Brian Sciences. The two rooms in which
the child spends most of his time (child room and liv-
ing room and kitchen area) are equipped with non-invasive
cameras (LJD LJIDNV15-101 FMC, 420 TVL resolution,
infrared, CCD Sony SuperHAD), mounted at the 4 corners
of the ceiling and with generic environmental microphones
attached to one of the cameras. The recording equipment is
turned on by a parent in the morning when the child wakes
up, and turned off when the child goes to sleep and when
the family goes out. Recording is also interrupted when it
would pose privacy problems and in the presence of vis-
itors that do not agree to take part in the study by signing
the informed consent and privacy release forms (the parents
can also, at any time, stop, rewind and watch previously
recorded parts, and cut them). The recording equipment
is controlled by an Apollo DVS server located in the living
room of the apartment. The server stores the data temporar-
ily in DAV (AVI-convertible) format. The recorded data
are periodically transferred from the local server to a Uni-
versity of Trento server cluster, after the parents monitored
them at high speed to filter out sensible data. Materials are
transferred using a Portable Hard Disk approximately on a
weekly basis.

As of March 2010, about 1.2 terabytes of raw data have
been collected. Data collection and re-distribution after
anonymization have been approved by the Ethical Commit-
tee of the University of Trento. Under the conditions of
approval, we are allowed to share the full video and audio
transcriptions with other researchers, as long as personal
identifiers (proper nouns, locations) have been obfuscated
to preserve anonymity.

4. Pilot study 1: Automated speech
transcription

Recordings from a home environment contain a large va-
riety of (often overlapping) signals that can be categorized
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into: child speech, child-directed speech, adult-adult con-
versations, TV/Radio, noise or other sources. As a first
step towards processing the audio data, we segment the au-
dio and classify each segment into the aforementioned cat-
egories. Similar problems have been addressed in Xu et
al. (2008) and Roy and Roy (2009). In Xu et al. (2008),
home recordings from devices wearable by the child (ages
0-4 years) were segmented to categories similar to the ones
proposed above. For this audio-only segmentation task,
Gaussian Mixture Models with explicit duration modeling
achieve 75% correct segmentation (at the frame level). In
Roy and Roy (2009), the audio signal recorded via fixed
microphones in a home environment was analyzed.

The most important cues for separating the audio data in
the predetermined categories is short-time energy, followed
by short-time spectral envelope and fundamental frequency.
This is verified by the analysis in the following section.
Given that, in our case, the position of the microphone is
fixed, the distance between the speaker(s) and the micro-
phone is variable and this significantly affects the short-
time energy. Fortunately, the position of the speakers can be
determined (with relative accuracy) from the multi-camera
data.! However, for this preliminary analysis only the (uni-
modal) audio data were used to segment the audio stream.

4.1. Speech Analysis

As a first step we perform short-term analysis of the data
to better understand the composition of the audio stream.
In Fig. 1(a), the histogram of the short-term log energy
is shown for a typical session (a full day of interaction).
Analysis of short-time energy shows the following trends.
High energy frames typically contain almost exclusively
infant cries/crying (100-110 in the figure), high- to mid-
energy frames (between 90-100) correspond mostly to in-
fant vocalizations and child-directed adult speech (includ-
ing motherese), mid-energy frames (70-90) contain mostly
adult speech and low-energy frames (60-70) contain mostly
noise/silence. Of course this distribution depends also on
the distance between the speakers and the microphone.

Next, we choose to only analyze segments that have signif-
icant levels of energy. In order to obtain (relatively long)
segments that have significant levels of energy we choose
an energy threshold and then perform morphological clos-
ing and opening on the binary energy indicator function.
The selected threshold based on the analysis above is 70,
i.e., all frames with log energy higher than 70 are se-
lected. This roughly corresponds to adult-adult speech,
child-directed speech and infant phonations (including cry-
ing) frames. The three-phase operation (in sequence) for
obtaining large continuous high-energy segments is as fol-
lows: 1) do away with high-energy segments that are shorter
than 50 ms (closing on the energy indicator function), ii)
join together resulting high-energy segments that are at
most 200 ms apart (opening), and iii) do away with result-
ing high-energy segments that are less than 1 second long
(closing). The resulting segments contain 20-30% of the
total number of frames for a typical session. The majority

'Our goal is also to determine head/body pose in later stages
in the analysis making it easier to determine the energy loss due
to the distance between the speaker and the microphone.

of the selected segments are a few seconds long (over 80%)
and contain input from a single source (adult or child).

Next we perform pitch and formant tracking in the selected
subset of the data. Our goal is to investigate the robust-
ness of the existing speech analysis tools (for infant speech,
especially) in this challenging acoustic environment. We
have evaluated two pitch tracking algorithms: RAPT and
the MDA pitch tracker. Next we report results for the
MDA pitch tracker (Potamianos and Maragos, 1999) that
performed better in this environment. The histogram of
the estimated fundamental frequency for the selected seg-
ments is shown in Fig. 1(b). The distribution shows four
peaks around 80 Hz, 125 Hz, 250 Hz, 350 Hz roughly
corresponding to (two) male speakers, a female speaker
(mother), and the infant, respectively. A careful analysis
of the session shows a number of issues and processing dif-
ficulties that arise in this challenging environment. First,
the infant distribution shows a long tail going all the way
up to 475 Hz. This high-pitched sounds correspond to the
baby crying. However, due to vocal fry, subharmonics are
often present in infant’s cry and the pitch tracking algo-
rithm is often fooled into a pitch halving error (pitch halv-
ings partially explain the asymmetry in the female voice
distribution around 230-240 Hz). Another issue is the high-
pitched sounds of the mother that often have a fundamen-
tal frequency of over 300 Hz. This is due to ‘motherese’,
i.e., over-articulated speech with large peak-to-peak funda-
mental frequency variations and higher than average funda-
mental frequency. An example of such a sentence is shown
in Fig. 1(c) where the mother utters: “Oh. Look at you”.
Note the jump in fundamental frequency in the beginning
(“oh”) and end (“you”) of the utterance. Also the final word
“you” is drawn out and over-articulated. Last but not least,
the voiced-unvoiced decision is seriously impaired in this
highly reverberant environment. The reverberated voiced
speech is often of high-energy and masks unvoiced speech
or silence leading to the labeling of a large percentage of
frames as voiced. Overall, the speech analysis algorithms
often fail due to the low signal to noise ratio (SNR) and, es-
pecially, due to the highly reverberant environment. Thus,
existing pitch tracking algorithms have to be modified to
cope with this challenging recording environment.

Next, we perform formant tracking on the high energy seg-
ments. Our goal is to investigate the robustness of for-
mant estimation in the presence of noise, especially, for
infant vocalizations. For this purpose we use the multi-
band demodulation formant tracking algorithm (Potami-
anos and Maragos, 1995). Overall, despite the noise and
reverberation formant tracking works adequately well for
adult speech, provided that the formants are above the noise
floor. The MDA formant tracker had to be modified though
for infant’s speech (specifically the bandwidth of the Gabor
filters were doubled) to avoid tracking harmonics as for-
mant peaks. For both crying and infant vocalizations, the
formant tracker was able to adequately track the first (F1)
and second (F2) formant, with average values of 1500 Hz
and 3200 Hz for F1 and F2 respectively. Higher formants
were typically buried in the noise floor. In Fig. 1(d), the raw
formant estimates are shown roughly corresponding to the
first two formant tracks of an instance of the infant crying.

3044



300 T T T

2500,

-

1500

Number of Frames

Lo

S0k

50 [ n a0

a0
Normalized log10 energy

()

Fundamental Frequency (Hz)

Time (sec)

# of frames

=, 2500

Frequency (Hz)

00

600

500

a0 i s)

150

am 250 i 350
Fundamental Frequency (in Hz)

400 450 500

(b)

oB

B
o 0

4000 -

o af :
0 & 3 g &gm Sy
Mg{%%% " 8o g 0B,
a

P’p vl
ko 6 X5
"%

350 o
ElE ]

=1

2000} g
RO ST, e T oo

1500 [T e s = © v
%955’-0535"

=2

1000

. L L L
04 0s 0.6 a7 a9 1

Time (sec)

08

(d)

Figure 1: (a) Short-term energy histogram and (b) fundamental frequency histogram for a typical session. (c) Fundamental
frequency contour (raw estimates) for the sentences “Oh. Look at you” (in motherese). (d) Formant frequency raw estimates

for an example of the infant crying.

Note the discontinuities in the formant estimates that are
due to the spectral estimate locking on harmonic frequen-
cies. Overall, although there are issues in formant tracking
for infant vocalization, the MDA formant tracker works ad-
equately well.

4.2. Speech segmentation and speech recognition

Next we attempt to label the selected high-energy segments
as infant speech, child-directed adult speech, and adult-
adult conversations.? In order to classify segments we used
the following features: energy (max, min, mean) and av-
erage fundamental frequency of a segment. Preliminary
experiments on a single session of the audio data have
shown that these two features alone can achieve accuracy
of over 75%. This is to be expected from the speech analy-
sis results above: infant speech is usually both high-energy
and high-pitched, child-directed (motherese) speech is also

“Note that some segments (especially longer ones) contain
multiple turns. However, for the purposes of this simple analy-
sis we only determine a single label per segment. In future work,
a Bayesian Information Criterion (BIC) may be used to further
separate longer segments into turns see, e.g., Zhou and Hansen
(2005).

high-pitched and high-energy (but less so that infant vo-
calizations), while adult-adult conversations are in the nor-
mal frequency register and have lower energy. We expect
these results to improve when smooth spectral envelope
features are incorporated (e.g., mel-frequency cepstrum co-
efficients). Further improvements are expected when the
multimodal information (people detection from the video)
is incorporated.

In this preliminary study, we perform pilot speech recogni-
tion experiments on child-directed speech and infant vocal-
izations. Speech recognition of adult-adult conversations
is beyond the capabilities of today’s ASR technology, due
to the very low SNR and highly reverberant environment.
Most of the adult-adult speech information is hidden in
noise; in fact, transcription of these conversations is chal-
lenging even for human listeners.

Preliminary experiments of automatic speech recognition
(ASR) of child-directed speech have shown a number of is-
sues. First of all, the recording conditions are challenging.
ASR using far-field microphones in low SNR reverberant
environment is still an open-research problem.? In addition,

3Fortunately, the SNR is adequately high to perform ASR ex-
periments (significantly higher than adult-adult conversations).
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child-directed speech (motherese) is over-articulated and
contains large pitch variations that acoustic models trained
on generic data cannot handle. Finally, the vocabulary and
language used is different from that in adult-adult conver-
sations or read speech. All these factors lead to poor word
recognition performance (word accuracy well below 40%).
Due to the large amount of data available, there is the pos-
sibility of retraining (or adaptation) of the acoustic and lan-
guage models that can lead to large improvements in per-
formance. Overall, a significant research effort has to be
invested for the accurate automatic transcription of moth-
erese. Note that child-directed speech is the most important
verbal data source in constructing the BabyExp corpus.
Finally, as far as infant speech is concerned, it can be
roughly grouped into four categories (roughly correspond-
ing to the four speech development phases): 1) initially
crying and cries are the main way of communication, ii)
next come quasi-vowels, squeals, growls and protophones,
iii) then come babbles and syllables, and finally iv) words,
phrases and sentences (Xu et al., 2008). Although the first
words (typically consisting of two syllables, e.g., “baba”,
“dada”) might appear around 12 months of age, the ability
to form consistently phrases and sentences emerges around
24 months. In order to obtain robust and usable results,
speech recognition of infant’s speech will initially focus on
vowel recognition, in order to automatic transcribe the pho-
netic F1-F2 vowel space as a function of age. We will also
investigate the accuracy of word-spotting speech recogni-
tion technology for babbles and common words. Based on
the preliminary results from formant tracking (see previous
section) this mapping should be feasible.

5. Pilot study 2: Automated video
transcription

A continuous transcription of the visual information the
child has access to will be acquired from video recordings
by means of i) tracking the spatial position and head ori-
entation of the baby, ii) the position of the adults the baby
interacts with, and iii) detection and localization of objects
of interest to common sense acquisition. The visual fo-
cus of attention of the baby can then be logged in a post-
processing step, by intersecting the viewing cone of the
baby (rooted at the head position and oriented according
to the estimated head pan and tilt) with the trajectories of
the adults/objects collected in its surrounding environment.
Extracting such information from far-field recordings in a
home environment (BabyExp uses cameras mounted at the
four corners of the ceiling of the apartment rooms) poses
challenges in terms of low resolution (facial or object fea-
tures may not be visible in the images), uneven lighting
conditions (the same color may appear brighter near a win-
dow), and high ambiguity in the visual characterization of
the baby (no hairs, non yet developed facial features, com-
plex shapes and poses).

We adopt a particle filter based approach for head pose
(Lanz and Brunelli, 2006) and multiple people tracking
(Lanz, 2006). Such approaches have proven to work well
in complex, but controlled settings with adults, where they
achieve state-of-the-art results with less than 15cm and
25deg average tracking error even under significant oc-

clusions (CLEAR evaluation 2006, 2007). By integrating
work-in-progress on estimating color distortions due to un-
even lighting, we expect that they scale to a home environ-
ment. Object detection and localization is instead addressed
with a memory-based approach, i.e., using a set of visual
exemplars for each object or object class to be detected.
Given the overall complexity of the task, in this paper
we report first results on a properly designed experimen-
tal setup that matches the constraints of the adopted tech-
nologies at their current state but at the same time pro-
vides a proof-of-concept of the video transcription pipeline.
We have acquired a multi-camera video sequence of about
10min in a laboratory equipped with four firewire cameras
installed in the corners of the room at a height of about
2.7m. The cameras deliver jpeg-compressed RGB images
at 15 frames per second with a resolution of 512 x 384
pixel. The sequence shows two children and an adult en-
tering a room where a ball is placed on the floor. After a
few seconds the younger child discovers the ball and in-
vites the others to play with her. After two minutes the
adult puts the ball on a chair and the children start to look
around in the room. A minute later they start again play-
ing, then the adult pictures a face on the ball. The older
child looses his interest and goes to the PC desktop while
the others start playing again after a while and he gets back
to them to play again. Aim of the pilot study was to auto-
matically transcribe the behaviour of the younger child (6
years age) and, in particular, its visual focus of attention,
from the low resolution video footage. Fig. 5. shows the
results on the sequence obtained with the SmarTrack sys-
tem (http://tev.fbk.eu/smartrack) implement-
ing Lanz (2006) and Lanz and Brunelli (2006).

The system tracks the 3D position of the ball as an atten-
tion object, as well as the movements of the adult and the
older child (for each such target a color model has been ex-
tracted manually from the sequence which was then used
for tracking). For the study subject, i.e. the younger child,
it estimates the location and head and torso orientations.
This information is then used to log i) the proximity of the
study subject to the attention object (using the spatial dis-
tance between subject and target), and ii) an indicator for its
visual attention towards the target (using the angular offset
between the sight direction and the subject-to-target line).
From the plot in Fig 5. it is easy to conclude when the child
is paying attention to the ball. In the BabyExp setting, these
two indicators will be exploited to infer when linguistic in-
put about a target object is accompanied by appropriate vi-
sual experience of the baby, and thus is expected to be most
effective, e.g., to fix the reference of a word or to extract
properties that will enter into the baby’s semantic represen-
tation for that word.

6. Commonsense knowledge extraction

The main goal of the BabyExp consortium is the develop-
ment of algorithms that exploit the innovative properties of
the BabyExp corpus. The BabyExp approach rests on two
main assumptions, strongly supported by developmental
psychology. One is that adult commonsense knowledge de-
rives (in different degrees) from both perceptual input, i.e.,
our sensory-motor experiences with entities in the world,
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Figure 2: Automated video transcription of the pilot study sequence: visual focus of attention and proximity of the study
subject towards the attention object over time (520 frames ~ 35sec), and raw output of SmarTrack on frames 1085, 1160,
1230, 1370, 1535, 1785, 1860, 2240. The real time location and head orientation estimates of the study target are overlaid
in green, and the locations of the attention object (the pink ball) and the actors are shown in red, yellow and blue.

and linguistic input, i.e., the information that we can extract
from the linguistic structures used to talk about the world.
These two knowledge sources play differential roles dur-
ing conceptual development: Perceptual input dominates
in the early stages of commonsense acquisition, but it is
then rapidly integrated with other learning strategies that in-
creasingly rely on information extracted from the linguistic
input (Bloom, 2000). The second assumption is that chil-
dren develop in time their ability to extract relevant infor-
mation from the perceptual and linguistic environment and
to use it for commonsense learning. As their cognitive mat-
uration proceeds, they acquire more and more sophisticated
abilities to exploit the input they receive. For instance, their
still immature visual and attention systems limit and con-
dition the types of conceptual categories they build in early
stages (Mandler, 2004). When such limits are progressively
overcome, deeper analyses of visual scenes take place al-
lowing children to get at more fine-grained conceptual dis-
tinctions.

A multi-stage approach to commonsense learning will be
adopted, to exploit incremental aspects of the information
extracted from the BabyExp corpus. In each stage, we will
learn increasingly complex pieces of commonsense knowl-
edge. The computational models for more advanced learn-
ing stages will use the previously acquired knowledge as
prior for new concept extraction. BabyExp intends to de-
velop computational models able to learn commonsense

knowledge by integrating experiential data extracted from
visual recordings according to the methods that we exem-
plified in section 5., and data coming from shallow dis-
tributional analysis of the linguistic input, transcribed ac-
cording to the methods presented in section 4., and then
annotated at the morphosyntactic and syntactic level. The
key factor here is the integration of distributional and vi-
sual information, under the assumption that distributional
learning does not substitute experiential learning but com-
plements it. With this goal in mind, we will expand various
current algorithms for distributional semantics in computa-
tional psychology and linguistics, such as Semantic Vector
Spaces (Landauer and Dumais, 1997; Lin, 1998; Pad6 and
Lapata, 2007) and Bayesian models (Griffiths et al., 2007;
Andrews et al., 2009).

7. Conclusion

The feasibility studies we have reported in this paper are a
first, concrete step towards the possibility to transcribe the
audio stream and significant parts of the video stream sur-
rounding the baby by automated means. While automated
multimodal transcription is at the present stage the main
challenge faced by the project, we are also tackling the is-
sue of the transcription target format, that should be such as
to encourage and facilitate computational work that will use
the corpus to incrementally mine commonsense knowledge
from integrated linguistic and visual cues. Algorithms to
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extract knowledge from developmental data are also being
explored.

While the BabyExp project is clearly at a very preliminary
stage, and some of the difficulties we face require bringing
forward the state of the art in various fields (see for exam-
ple the problems with identifying and transcribing child-
directed speech), if the project succeeds, we hope that it
will contribute a groundbreaking resource both for knowl-
edge extraction for intelligent applications, as well as to
understand the process of knowledge acquisition in human
beings.
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