
An Integrated Digital Tool for Accessing Language Resources

Anil Kumar Singh, Bharat Ram Ambati

Langauge Technologies Research Centre, International Institute of Information Technology

Hyderabad, India

{anil, ambati}@research.iiit.ac.in

Abstract

Language resources can be classified under several categories. To be able to query and operate on all (or most of) these categories using

a single digital tool would be very helpful for a large number of researchers working on languages. We describe such a tool in this

paper. It is different from other such tools in that it allows querying and transformation on different kinds of resources (such as corpora,

lexicon and language models) with the same framework. Search options can be given based on the kind of resource being queried. It

is possible to select a matched resource and open it for editing in the specialized interfaces with which that resource is associated. The

tool also allows the extracted or modified data to be saved separately, apart from having the usual facilities like displaying the results in

KeyWord-In-Context (KWIC) format. We also present the notation used for querying and transformation, which is comparable to but

different from the Corpus Query Language (CQL).

1. Introduction

Language resources form the backbone of Natural Lan-

guage Processing (NLP) and many other disciplines. As

the number of types, size and complexity of these resources

increases, it becomes harder to keep track of all these re-

sources and to access them. Researchers might also be in-

terested in finding similar documents or linguistic units in

all the resources available. This scenario brings out the ur-

gent requirement for an integrated tool for accessing lan-

guage resources (Singh, 2006). Such a tool should not only

allow search and browsing, it should also allow them to be

transformed in various ways, either in place or via a copy.

If this tool could be connected to other tools and interfaces,

then its usefulness will be further enhanced. We describe

such a tool in this paper.

There have been previous attempts at building a general tool

for accessing language resources, but the focus usually was

on certain kinds of resources, say either corpora (Cunning-

ham et al., 2000; Cunningham et al., 2003; Novák, 2007;

Mirovsk, 2006) or lexicon (Havasi et al., 2005; Lenci et

al., 2000). The variety of resources handled by the tool de-

scribed in this paper is more than most of the other tools.

To give one example, language models, though very useful

language resources, have not been included in the list of

resources handled by the other resource access tools. There

are tools for compiling language models (Stolcke, 2002),

but not for browsing or querying them.

One of the tools that is perhaps the most similar to the tool

being described here is Sketch Engine1. It provides a wide

variety of functionalities to access corpora. Some of these

are:

• Searching word, lemma, root, POS tag of current word

• Left and right context upto a window size of 15

• A GUI to specify these options

• One can also directly give a CQL query.

1http://www.sketchengine.co.uk/

This is similar to Jaxe2, where one can provide provide

XPath directly or use a GUI for providing attributes and

values which get converted to an XPath based query inter-

nally.

Apart from CQL based querying, another usual practice

is to have a query tool for syntactically annotated cor-

pora such that the data is converted internally to relational

database and the query is written using SQL (Kallmeyer,

2000). Yet another tool TigerSearch3 is also meant for lin-

guistically annotated corpora.

The tool that we describe here is meant to be an inte-

grated digital tool for accessing various kinds of language

resources such as corpora, lexicon and language models. It

allows resources to be searched in batch mode with many

useful options and conditions. The resources currently han-

dled include raw text, syntactically annotated corpora, cor-

pora in XML format, bilingual dictionaries and n-gram

models of various kinds. The matched documents can be

saved at some other location. It is also possible to extract

the matching portions and save them separately. A transfor-

mation option allows the retrieved documents to be modi-

fied. Also, certain kinds of documents (like syntactically

annotated corpora) can be opened in their own annotation

interfaces and can be edited directly. In the case of cor-

pora, the matched sentences can be alternatively shown in

the KWIC format. The tool also provides more general and

user friendly facilities for searching syntactically annotated

corpora and the corpora in XML format. Some basic statis-

tics about the documents can also be displayed. Matched

documents can be converted to some other supported for-

mat.

Another facility is to select one document and find all

the similar documents based on contextual-distributional

similarity. Many more extensions are being implemented

and the tool has the potential to become a single inter-

face through which a large variety of resources can be eas-

ily searched, accessed, analyzed and edited. Even in the

2http://jaxe.sourceforge.net/
3http://www.ims.uni-stuttgart.de/

projekte/TIGER/TIGERSearch

190

Figure 1: Representation: Different views of the same annotated Hindi sentence stored using the same tree-with-attributes

representation. The first view shows the chunk tree while the third shows the dependency tree. The second is a dependency

structure visualization of the same data so that it can also be edited easily.

present form, the tool can be highly useful to linguists as

well as computational linguists.

2. Types of Resources

In general, most of the language resources can be classi-

fied in the following broad categories: corpora, lexicon,

language models, grammars, evaluation data (Nilsson and

Nivre, 2008) and learnt models. Each of them has a wide

variety in terms of structure, format, etc. The importance of

this is demonstrated by the fact that there are regular spe-

cial conferences and workshops on ways of merging differ-

ent kinds of annotation and of integrating different kinds

of lexicon. However, not so much attention has been paid

to the last three categories, which are also very important,

as any researcher who has to conduct frequent experiments

can testify.

Our tool can be currently used to access and modify cor-

pora, lexicon and language models, but since it is part of a

larger system called Sanchay4, it can be extended for other

kinds of resources too as it already has APIs for some such

resources like evaluation data and learnt models.

The tools mentioned in the previous section are geared to-

wards efficiency as they are potentially meant to be used

for very large corpora. In contrast, our tool is meant more

for languages which are resource scarce, i.e., the size of the

targeted resources is not likely to be very large. The focus

in our case is more on allowing easy access to a wide vari-

ety of resources rather than efficient searching of very large

corpora.

For syntactically annotated corpora, Sanchay accepts input

in as raw text (to start annotation), as POS tagged data with

one sentence on one line and with word and tag separated

by a slash, as tagged and chunked data in a nested bracket

form similar to the one used by linguists, as annotated data

in Shakti Standard Format (SSF)5 and as text in XML for-

mat. Sanchay can output the results in all these formats too.

For language models, the standard ARPA format is used, in

4http://sanchay.co.in
5A human readable text format to represent trees with at-

tributes. It is so named because it was initially used for a Machine

Translation system called Shakti.

addition to an internal binary format. For dictionaries, the

format used is Dictionary Standard Format (DSF) that is

used for dictionaries like Shabdaanjali6. However, for all

the resources, we are planning to shift to XML as the de-

fault format.

3. Resource Access Scenarios

The first requirement of resource access, especially from

the point of view of building an integrated digital tool is

to develop well designed exhaustive Application Develop-

ment Interfaces (APIs) for parsing and manipulating these

resources. The second task is to connect these APIs with

each other. Then there have to be graphical user interfaces

for different kinds of resources, which in turn have to be

connected to the APIs and to each other. The design of

Sanchay in general, and this tool in particular, is based on

these ideas.

However, evaluation data and learnt models (excluding lan-

guage models) are yet to be supported by this tool. Still, it

would not be very difficult to provide support for them be-

cause most of the required components already exist either

as modules of Sanchay or as external libraries.

We have already discussed the general utility of this tool,

but some of the specific scenarios in which this tool can be

useful are listed below:

• A linguist is trying to find patterns and to extract and

save them somewhere

• An annotator made some mistake and has to correct

that mistake in all the annotated files

• A computational linguist needs data for training a clas-

sifier such that the data consists of certain patterns

• Someone wants to browse, search and edit a bilingual

dictionary

• Someone wants to analyze n-gram language models

and get some insights

6http://ltrc.iiit.ac.in/onlineServices/

Dictionaries/Dict_Frame.html

191

Figure 2: Search and edit syntactically annotated corpus

Figure 3: Search an n-gram language model

• Someone wants to browse, search and edit XML doc-

uments

• After searching for some pattern, someone wants to

view the results in KWIC format

• An annotator wants to browse, search and edit syntac-

tically annotated documents

• After manual annotation, an annotation adjudicator

wants to perform a ‘sanity check’ on the data

• After finding some document as a result of a search,

someone wants to find contextually-distributionally

similar documents

The demos for these scenarios can be seen at

http://ltrc.iiit.ac.in/anil/sanchay/

integrated-resource-access-tool/. Figures

2-4 illustrate three of these.

192

Figure 4: Search and edit a bilingual dictionary

Figure 5: The result of a transforming query: The matched sentence is shown on the left, while the modified sentence is

shown on the right.

4. Generalized Query and Transformation

The resource access method can be specified in terms of the

following parameters:

• The type of resource being accessed

• The input and output formats

• The input and output locations

• The language and encoding: Important for languages

which are not well supported on computers. Uses

the Sanchay language and encoding support mecha-

nism (Singh, 2008)

• The query (for searching as well as transformation),

which depends on the type of the resource

• Additional options such as specifying whether the re-

source is to be displayed in an editor or not, whether

193

the results have to be displayed in KWIC format or

not, whether the matching data is to be saved sepa-

rately or not

To use the tool, the user has to go through the following

steps, even though the exact sequence of the step would, of

course, vary depending on the requirements and the kind of

resources being accessed:

• Enter the text or regular expression or query to be

searched and transformed

• Enter the replacement text or (if applicable)

• Click on the Find button to get a list of matching doc-

uments

• Double click on one of them to open it in the interface

associated with that kind of resource

• Perform operations within that document

• So on for other documents

• Save the results after replacement or extraction, if ap-

plicable

The query for a resource like an n-gram language model

would specify the text or regular expression to be searched,

the size of the n-gram (unigram, bigram etc.) and fre-

quency or probability range. For lexicon, the query would

include the lexical item (possibly a regular experession) and

attributes like the part-of-speech category.

For syntactically annotated corpora, the query can be rela-

tively more complex. The annotated data is stored in a tree

like structure where every node can have a feature structure

consisting of attribute-value pairs. This simple structure

allows many different kinds of syntactically annotated re-

sources to be stored in the same format. The tree structure

can be used to represent one particular kind of information

such as chunks, phrase structure or dependency structure.

Other kinds of information can be represented through at-

tributes of the nodes. For example, the base tree can rep-

resent chunks whereas phrase structure and dependency

structure can be represented implicitly via attributes. The

APIs in Sanchay allow, for example, the dependency tree to

be generated using the information stored in the attributes,

i.e., a chunk tree can be easily converted to a dependency

tree and vice-versa (see Figure 1), without losing any infor-

mation.

Irrespective of the kind of information, the resources stored

using this representation can be queried in terms of the tree

nodes and their attributes. For queries we use a ‘dot nota-

tion’ for tree nodes and attributes that is somewhat similar

to CQL. The notation is extended to express transformation

rules and return values (on the right hand side) as shown in

the examples below:

1. C.l = ‘n�’ AND C.t = ‘PSP’

2. C.l = ‘n�’ AND C.t = ‘PSP’ –>

C.A[1].a[‘drel’] = ‘k1’

3. C.l = ‘кA | к� | кF’ AND C.t = ‘PSP’ –>

C.A[1].a[‘drel’] = ‘r6:’C.A[1].N[1].a[‘name’]

4. C.l = ‘n�’ AND C.t = ‘PSP’ –>

C.A{1}.a[‘drel’] and C.l

In the above examples, C is the current node (i.e., the node

being searched), A[1] is the ancestor at the distance of 1
(i.e., the parent node), N [1] is the following sibling at a

distance of one (i.e., the next node), l is the lexical data

(i.e., the word or text, depending on the depth of the node),

t is the parf-of-speech (POS) tag and a[‘drel′] is the value

of the attribute ‘drel’ (dependency relation).

Thus, the first query above searches for the word n� (ne)

with the POS tag PSP (post-position). The second query

searches for the same word, but it also specifies a trans-

formation such that the ‘drel’ attribute of the parent node is

assigned the value ‘k1’ (kartA, or roughly, agent). The third

query searches for the words кA , к� and кF (kA, ke and kI)

having the tag PSP. It also specifies a transformation such

that the ‘drel’ attribute of the parent node is assigned the

value ‘r6’ (genitive) and this relation is pointed to the node

next to the parent node by using ‘:’ as the separator between

the relation label and the relation reference or pointer. Fig-

ure 5 show a sentence before and after the application of

these two transformations.

In the last query above, the variables on the right hand side

represent return values.

This notation (for data as well as for queries) allows a wide

variety of annotated corpora (including those with some se-

mantic annotation) to be searched and transformed easily.

The notation is much simpler than XPath queries, making

it easier to use for those not familiar with XML.

5. Some Other Details

The tool, like other parts of Sanchay, is implemented com-

pletely in Java and is platform independent. A clear sep-

aration has been maintained between the underlying API

and the front end. As mentioned earlier, resources searched

can be directly opened in the annotation interfaces or in a

text editor and edited. There is also a facility to search for

similar documents and to compare two similar documents.

For similarity, a two step algorithm is used. First, the con-

text models of words in the documents are created. Then,

one of the several distributional similarity measures (e.g.,

relative entropy) is used to calculate the similarity of two

documents.

The language-encoding facility provided by San-

chay (Singh, 2008) is used for languages which may

not be supported on some operating systems.

6. Conclusion and Future Work

We described a single tool to allow access to different kinds

of language resources. The tool works for annotated cor-

pora, language models and dictionaries. It accepts data in

several formats and can be used to save data in these for-

mats. Resources can be queried using a query language

that allows transformations using a simple intuitive syntax.

It is possible to open the matched documents in the asso-

ciated editing or annotation interfaces and work on them.

Matched data can be extracted and saved in a different lo-

cation.

194

Many extensions are planned to make it more general. The

most important ongoing extension is the online version of

this tool, so that the resources can be accessed through a

browser. Support for a lot of other formats and kinds of re-

sources (especially ontologies like WordNet and Concept-

Net) will also be added. Other facilities in Sanchay, like au-

tomatic annotation, n-gram compilation, word list compila-

tion, dictionary FST (Finite State Transducer), approximate

string search, different kinds of similarities etc. will also be

connected with this tool. Another extension which is par-

tially implemented is to allow access to resources from a

BASH like shell in Sanchay. This would be useful for more

experienced users.

7. References

Hamish Cunningham, Kalina Bontcheva, Valentin Tablan,

and Yorick Wilks. 2000. Software infrastructure for lan-

guage resources: a taxonomy of previous work and a re-

quirements analysis. In Proceedings of the 2nd Interna-

tional Conference on Language Resources and Evalua-

tion (LREC-2), page http://gate.ac.uk/.

H. Cunningham, V. Tablan, K. Bontcheva, M. Dimitrov,

and Ontotext Lab. 2003. Language engineering tools for

collaborative corpus annotation. In Proceedings of Cor-

pus Linguistics 2003, pages 80–87. Wiley.

Catherine Havasi, James Pustejovsky, and Marc Verhagen.

2005. Bulb: A unified lexical browser. In Proceedings

Language Resources and Evaluation Conference.

Laura Kallmeyer. 2000. A query tool for syntactically an-

notated corpora. In Proceedings of the 2000 Joint SIG-

DAT conference on Empirical methods in natural lan-

guage processing and very large corpora, pages 190–

198.

A Lenci, N Bel, F Busa, N Calzolari, E Gola, M Monachini,

A Ogonowski, I Peters, W Peters, N Ruimy, M Villegas,

and A Zampolli. 2000. Simple: A general framework

for the development of multilingual lexicons. Interna-

tional Journal of Lexicography.

J Mirovsk. 2006. Netgraph: A tool for searching in prague

dependency treebank 2.0. In Proceedings of The Fifth

International Treebanks and Linguistic Theories Confer-

ence.

Jens Nilsson and Joakim Nivre. 2008. Malteval: an eval-

uation and visualization tool for dependency parsing.

In Proceedings of the Sixth International Language Re-

sources and Evaluation (LREC’08), Marrakech, Mo-

rocco.

Václav Novák. 2007. Cedit – semantic networks manual

annotation tool. In Proceedings of NAACL-HLT, pages

11–12, New York, USA.

Anil Kumar Singh. 2006. Anil kumar singh. building an

integrated digital tool for language resources. issue state-

ment for the digital tools summit. east lansing, michigan.

2006.

Anil Kumar Singh. 2008. A mechanism to provide

language-encoding support and an nlp friendly editor. In

Proceedings of the Third International Joint Conference

on Natural Language Processing (IJCNLP), Hyderabad,

India.

A. Stolcke. 2002. Srilm – an extensible language model-

ing toolkit. In Proc. of Intl. Conf. on Spoken Language

Processing, Denver, Colorado.

195

