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Abstract 

We introduce a method for automatically labelling edges of word co-occurrence graphs with semantic relations. 
Therefore we only make use of training data already contained within the graph. Starting point of this work is a graph 
based on word co-occurrence of the German language, which is created by applying iterated co-occurrence analysis. The 
edges of the graph have been partially annotated by hand with semantic relationships. In our approach we make use of the 
commonly appearing network motif of three words forming a triangular pattern. We assume that the fully annotated 
occurrences of these structures contain information useful for our purpose. Based on these patterns rules for reasoning are 
learned. The obtained rules are then combined using Dempster-Shafer theory to infer new semantic relations between 
words. Iteration of the annotation process is possible to increase the number of obtained relations. By applying the 
described process the graph can be enriched with semantic information at a high precision. 

 

1. Introduction 

In this paper we introduce ways to automatically label 

edges of word co-occurrence graphs with semantic 

relations. To achieve this a training set of semantically 

annotated relations is used. Based on the patterns of these 

relationships in the training set, rules for reasoning are 

learned. The rules are then used to annotate new edges. 

Basis of this work is a co-occurrence graph of the German 

language consisting of more than 9 million words. It was 

created in the project Deutscher Wortschatz (German 

vocabulary), www.wortschatz.uni-leipzig.de. The nodes 

of this graph are words which are connected if they occur 

significantly often together within sentences. The graph 

used here is created by applying the co-occurrence 

analysis again, this time to the above co-occurrence graph. 

In this iterated co-occurrence graph two words are 

connected if they have a lot of common neighbors, i.e. if 

there are a lot of words having both words as ordinary 

co-occurrences (Heyer, 2006). The iteration increases the 

portion of paradigmatic relations. This way more pairs 

with similar contexts can be found and this gives rise to a 

higher percentage of pairs of words with a classical 

semantic relationship (Biemann, 2004). 

On this basis a process of computer aided manual 

annotation was executed (Biemann, 2005). Some edges of 

the graph were labeled with semantic relations (like: 

synonym, cohyponym, hypernym, typical-feature as a 

relation between adjectives and nouns, typical-object-of 

as relation between nouns and verbs, part-of as relation 

between nouns). The relations used were inspired by 

classical semantics and the data in the graph. 

 

All in all about 400.000 edges have been annotated. The 

most prominent relations are shown in table 1. 

Table 1: The most prominent annotated relations and the 

number of occurrences in the graph. Column two and 

three represent the part of speech of the involved words.   

 

Relation POS word 1 POS word 2 Quantity 

cohyponymy noun noun 98953 

hypernymy noun noun 35902 

hyponymy noun noun 35890 

synonymy noun noun 31130 

typical feature of adjective noun 17459 

has typical feature noun adjective 17458 

has typical object verb noun 15199 

typical object  of noun verb 15180 

cohyponymy adjective adjective 12808 

synonymy verb verb 9334 

part/material of noun noun 8260 

has part/material noun noun 8240 

hypernymy verb verb 8226 

hyponymy verb verb 8224 

synonymy adjective adjective 7652 

has typical location noun noun 7028 

typical location for noun noun 7004 

cohyponymy verb verb 5889 

typical activity of verb noun 5726 

typical subject of noun verb 5723 

proper  name of noun noun 3659 

antonymy adjective adjective 3138 
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2. Automatic Annotation 

In this paper we introduce The construction of this graph 

by hand was very costly and time consuming. But still it 

suffers from sparse coverage. Making it denser this way 

would only be possible with great effort. Another option 

to obtain more semantic information is to automate the 

annotation process. In the following we will present a 

feasible approach to extend the graph automatically. 

Because of the high costs when doing it manually, there 

have already been several projects which have dealt with 

the automatic creation or extension of semantic networks. 

Most of these approaches use lexico-syntactic patterns 

extracted from large corpora to infer relations between 

words. The patterns are either created by hand or inferred 

automatically. Work in this area includes the inference of 

hyponymy and other relations (Hearst, 1992), building a 

noun hierarchy from text (Caraballo, 1999) and reasoning 

meronymy (Girju, 2003), synonymy (Lin, 2003) and verb 

relations (Chklovski, 2004). Others infer relations like 

hyponymy while incorporating sense disambiguation and 

globally optimizing the entire structure of the taxonomy 

(Snow, 2005, 2006). 

In this approach we utilize only information contained 

within the graph when reasoning new relations. The idea 

is to use a training set of annotated edges to create rules 

which can be applied later to infer further edges of the 

graph. The simplest rule can be found as follows: Assume 

we have three words A, B and C in the training set which 

form a triangle in the graph and all edges of the triangle 

are labeled with synonymy. If only two of the edges were 

marked with synonymy and no mark at the third edge, we 

could infer synonymy for the third edge by transitivity. 

This rule generation can be generalized as follows: 

Having a triangle of three words A, B and C with edges 

annotated with relations R1, R2 and R3, we produce a rule 

which implies relation R3 for a non-annotated edge if the 

other edges are labeled with R1 and R2. Such a rule can be 

sound and effective as the synonymy rule above or very 

poor. But the correctness of such a rule can be estimated 

by testing it on the fully annotated training set. Only rules 

with a correctness above some threshold will be used 

later.  

3. Properties of the Graph 

The triangular structures used for the creation of rules to 

infer new edges were chosen depending on the structure 

of the graph. 

Semantic networks like the underlying co-occurrence 

graph commonly have scale-free and small world 

properties (Newman, 2003; Steyvers, 2005). In the 

following we will show that the selected method for 

manual annotation leads to an annotated graph whose 

analysis also reveals the necessary properties (Clauset, 

2009) of small worlds and scale-freeness. 

Scale-freeness can easily be shown by looking at the 

distribution of the node degrees of the graph. In scale-free 

networks this distribution follows roughly a power-law. In 

figure 1 the node degrees of the annotated graph are 

plotted with logarithmically scaled axes. As expected the 

data points are nearly forming a straight line in this 

scaling, indicating the power law. 

 

Figure 1: Node degree distribution of the annotated 

co-occurrence graph. The axes are logarithmically scaled 

and labeled with node degree k and probability P(k). 

 

Important features of the small world phenomenon are a 

high local clustering coefficient and short average path 

length even in sparse graphs. The annotated 

co-occurrence graph only has an average node degree of 

9.72. But still 75% of all nodes can be reached within 5 

steps from a central node of the network, which indicates 

a short average path length. A high local clustering 

coefficient can also be shown for this graph. This property 

means that two neighbors of a node are often connected 

among themselves. Although the annotated co-occurrence 

graph is sparse, it has a high local clustering coefficient of 

about 0.21. So the graph forms many triangular structures 

of three nodes (for an example see figure 2). 

 

 

Figure 2: Example of a subgraph of the annotated 

co-occurrence graph consisting of three nodes with fully 

annotated edges. 

 

Because of the high number of these small informative 

motifs they are selected for the creation of rules to infer 

new edges. So the local semantic information of the edges 

of all triangular network motifs with three annotated 

edges is used to create rules for the reasoning of relations. 

Figure 3 shows some examples of these rules. 
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Figure 3: Examples of rules. The edges are labeled with 

the required part of speech of the nodes and with a relation. 

The two upper edges are known and the third edge is 

annotated with its most likely relation. 

4. Combination of Rules – 
Dempster-Shafer Theory 

Because of the sparse annotation of the graph most rules 

are very “weak”. This means that there is a high amount of 

uncertainty in them because of the high number of edges 

without annotation. To raise the plausibility of inferred 

relations a method for the combination of rules is needed 

that also takes into account the mentioned uncertainty. 

This way supporting rules as in table 2 can boost the 

annotation probability of edges that are part of several 

triangular structures as shown in figure 4. 

 

First Relation Second Relation Likeliest Third Relation 

typical feature of opposite typical feature of 

typical feature of cohyponym typical feature of 

Table 2: Two rules fitting the triangles of figure 4. 

 

Figure 4: Example of a not yet labeled edge which is part 

of two otherwise fully annotated triangles. 

 

In this work Dempster-Shafer theory, also known as 

evidence theory, is used to achieve this (Shafer, 1976; 

Barnett, 1981). 

This theory is a generalization of the Bayesian probability 

theory and is used in fields like pattern recognition to 

combine propositions from different sources. In this 

framework the classical probability axioms do not hold, 

especially: 

is not always fulfilled. 

Instead of a normal probability a two-dimensional 

measure is used. It consists of degree of belief and 

plausibility, which form a probability range. Degree of 

belief Bel(A) is a measure expressing the certainty that a 

proposition A will happen. Plausibility Pl(A) of a 

proposition A on the other hand is the certainty with which 

one cannot rule out the possibility that A will happen. This 

way uncertainty of statements or rules is expressible. 

Figure 5 illustrates the basic assumptions of 

Dempster-Shafer theory compared to classical theory of 

probability. 

 

Figure 5: Comparison of key features of classical 

probability theory and Dempster-Shafer theory. 

 

The basis for the computation of the mentioned measures 

is a basic probability number m also referred to as believe 

mass. The theory of evidence assigns a belief mass to each 

element of the power set of the propositions. The basic 

probability number m(A) represents the exact belief in 

proposition A. All belief masses of a set of mass 

assignments add up to a total of 1. 

The degree of belief Bel(A) of a proposition A is then 

calculated from these basic probability numbers. Bel(A) 

equals the sum of the basic probability numbers of all 

propositions B that are a subset of A, 

The plausibility of a proposition A is the sum of the basic 

probability numbers of all propositions B whose 

intersection with A is not empty, 

Degree of belief and plausibility of a proposition A and its 

complementary proposition are connected as follows: 

Now all that is needed to apply this theory is a means for 

combining independent sets of mass assignments m1 and 

m2. This would allow us to combine evidence from 

difference sources. In evidence theory Dempster's rule is 

used to achieve this. This rule combines the belief masses 

in the following way: 
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This process can be repeated several times if more than 

two sources have to be integrated. The combined belief 

masses can then be used to calculate the degree of belief 

and plausibility of certain propositions. 

5. The process of annotation 

The mechanisms that have been introduced in the 
previous sections will now be used on the annotated 
co-occurrence graph to infer semantic relations. 
In a first step the rules, as described in section 2 and 3, are 
created. All fully annotated triangles are used for their 
generation. For every possible combination of two 
relations A and B that also appears in the graph the 
occurrences of different relations C on the third edge of 
the triangle are counted. Third edges that have not yet 
been annotated are also taken into account to have a 
measure of uncertainty for each rule. Having counted all 
these numbers it is possible to assign belief masses to all 
potential relations of the third edge. This way 814 rules 
are created. 
Next edges without a relation are labeled. This can only 
be done if the edge is part of a triangle with two annotated 
relations. In this step we only investigate edges that are 
part of at least two of such structures since single rules 
normally do not have enough validity. Dempster-Shafer 
theory is then utilized to combine the respective rules and 
to calculate degree of belief and plausibility of the 
likeliest relation. 
This way nearly 300.000 edges can be annotated with new 
relations. By introducing a threshold for annotation based 
on degree of belief and plausibility it is possible to accept 
only those semantic relations that are very likely to be 
annotated correctly. By iterating the process of annotation 
more edges can be generated and the graph can be 
densified even more. Figure 6 illustrates the numbers of 
new relations that can be achieved. In this case only the 
relations above a threshold of about 0.5 were accepted 
after each step. It is salient that the number of edges that 
can be annotated increases with each iteration. 
 

Figure 6: Iteration of the annotation. The chart shows the 

number of relations the algorithm is able to annotate in 

each iteration. Only new relations above a certain 

threshold  (~0.5 in this example) are accepted and are 

involved in the reasoning of new relations in the next 

steps of the iteration. The threshold is based on degree of 

belief and plausibility of the annotated relation. 
 

6. Evaluation of the algorithm 

To validate the results of this approach about 10% of the 
relations are removed from the graph as a testing set 
before rule creation and annotation are started. Again only 
edges that are part of at least two partially labeled 
triangles are annotated with semantic relations. The 
results are then validated against the relations the 
respective edges were manually annotated with before the 
testing set was removed from the graph. Precision and 
recall are measured dependent on a threshold composed 
of degree of belief and plausibility of the annotation of 
each edge. The results are visualized in figure 7. 
Obviously a high precision can be reached but there is a 
tradeoff for recall. When the process is iterated the 
precision at a fixed recall decreases with each step of the 
iteration. 

 

Figure 7: Precision and recall of the re-annotation of 

edges (subject to a threshold for annotation) after 

removing about 10% of the original graph as a testing set. 
 
In addition to the 370.000 edges that have been annotated 
manually with relations, about 56.000 nodes of the graph 
have been labeled with semantic primitives, such as 
natural, artificial, alive, proper name, place or condition. 
An example can be seen in figure 8. 
 

Figure 8: The subgraph already depicted in figure 2. 

Semantic primitives are added to the nodes. 
 
These primitives can be incorporated into the process of 
automatic annotation. Therefore the process of rule 
creation is modified to include the information present in 
the semantic primitives of many nodes of the graph. The 
results of this approach are shown in figure 9. It is clearly 
visible that the incorporation of the semantic properties of 
the words improves the correctness of the annotation. 
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Figure 9: Changes in precision and recall when 

incorporating semantic primitives into the algorithm. 
 
It is important to mention that the algorithm presented 
here is in one way limited in its capabilities. The method 
is able to label new edges in areas of the graph where 
many annotated edges already exist. So especially the 
density of annotations in clusters of the network will be 
increased by our method. But a node that is not connected 
to other nodes by semantic relations will never receive an 
annotation for any of its edges. 

7. Conclusion 

We have presented an algorithm for automatically 
annotating a graph with sparse semantic information with 
further semantic relations. By learning rules that utilize 
the distribution of patterns of semantic relations already 
present in the graph this can be achieved at a high 
precision. 
In the future this approach could be enhanced by taking 
into account other features [see e.g. Biemann 2005] than 
the local semantic motifs for rule learning and reasoning. 
Since the mechanism is of statistical nature, it could be 
applied to other semantic networks and other languages 
without problems. The algorithm also needs to be more 
thoroughly evaluated, especially a comparison to other 
methods for the combination of probability distributions 
(Turney, 2003) would be useful. Last but not least an 
application to semantic networks with disambiguated 
senses would be possible since it does not matter if the 
nodes of the graph are words or senses. 
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