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Abstract
The task of parse disambiguation has gained in importance over the last decade as the complexity of grammars used in deep linguis-
tic processing has been increasing. In this paper we proposeto employ the fine-grained HPSG formalism in order to investigate the
contribution of deeper linguistic knowledge to the task of ranking the different trees the parser outputs. In particular, we focus on the
incorporation of semantic features in the disambiguation component and the stability of our model cross domains. Our work is carried out
within DELPH-IN (http://www.delph-in.net), using the LinGo Redwoods and the WeScience corpora, parsed with the English Resource
Grammar and the PET parser.

1. Introduction & Previous Work

Deep parsing of natural language is a difficult task. In or-
der to gain wide meaningful coverage of a given language
complex grammars are employed. Grammars such as the
English Resource Grammar (henceforward ERG; (Copes-
take and Flickinger, 2000)) offer a broad coverage analy-
sis of English, but are at the same time faced with chal-
lenges, as the number of correct structures that are licensed
by the grammar is often vast. Parsers, such as the PET
parser (Callmeier, 2000) which are mostly used in combi-
nation with the ERG for the processing of large-scale data,
often return thousands of different readings for one single
sentence. Those readings may differ from one another in
significant ways. The task of automatically ranking the dif-
ferent readings and returning the correct one is hence an
important one.
Different methods have been suggested in the literature
for the task of parse selection, both for more traditional
treebanks, such as the Penn Treebank ((Charniak, 1997),
(Collins, 1997)), and for so-called dynamic treebanks,
like the Redwoods treebank ((Toutanova et al., 2002),
(Toutanova et al., 2005), and (Zhang et al., 2007)).
Both generative and discriminative models were employed
for the task. In generative models the classifier derives the
probability of a certain observation to belong to a certain
class (P (Y |X), whereY is the class andX is the obser-
vation) using the prior and the joint probability ofX and
Y . Discriminative models are generally considered a more
direct approach, since the conditional probabilityP (Y |X)
is being calculated directly using log-linear models.
As a result of estimating the posterior probability, discrim-
inative models do not assume independence of features.
This characteristic makes log-linear models more appealing
to our task since linguistics features are often dependent on
each other.
The most extensive work using HPSG treebanks was done
by (Toutanova et al., 2005). In their work both discrimina-
tive and generative models for parse disambiguation are in-
vestigated and up to 14% error reduction is achieved when

using discriminative models over generative ones with the
same features. This supports our choice of using a discrim-
inative model.

In our work we are trying to extend this previous attempt
to include more explicit semantic features directly from the
full Minimal Recursion Semantics (MRS; (Copestake et al.,
2005)) representation. (Toutanova et al., 2005) uses a sim-
plified semantic graph that is extracted from the complete
MRS feature structure.

In addition, we put a focus on investigating domain adapt-
ability of our discriminative model. To the best of our
knowledge, former approaches that made use of the HPSG
formalism were carried out on the Redwoods treebank
(Oepen et al., 2002) which is very well adjusted to the
grammar and hence might not provide a clear insight to the
difficulties of the task. Therefore testing our models on new
independent corpora is valuable for the performance evalu-
ation of the method.

The disambiguation of the different results typically takes
place offline, on the output of the parser. This approach has
the advantage that all the information from the parser was
already collected and it is possible to achieve exact ranking
of the different parses even with non-local features that are
not available during parsing. A considerable disadvantage
of this method is that the output of the parser can be partial.
It is often the case that due to the complexity of the parsing
task, most systems keep only the n-best hypotheses during
parsing and potentially discard parses that might be signifi-
cant to the training process, in particular a correct parse can
be lost.

A related concern is the efficiency of the parse selection
task. When the parser yields many results, re-ranking can
be very complex, especially when taking into account more
context and the set of features grows. To overcome this
drawback, selective forest unpacking methods have been
proposed. Using compact representations it is possible
to encode many different derivations in an efficient way.
Those forest representations then need to be unpacked for
disambiguation to apply (cf., the selective unpacking meth-
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ods proposed in ((Carroll and Oepen, 2005) and (Zhang et
al., 2007), as well as the discriminative model of (Huang,
2008)).
This paper aims at improving the performance of re-ranking
the output of the PET parser. We are using a maximum en-
tropy model that incorporates different properties of each
reading to learn a disambiguation model that will allow us
to discard unlikely structures. We are mainly interested in
the contribution of the semantic components of the sentence
to this task. We investigate the performance and robust-
ness of our models on different domains using two different
corpora. We show that features extracted from the seman-
tic component increase classification performance and that
models which make extensive use of the semantics proper-
ties of a sentence are more robust and less domain specific.

2. Semantic Features for Disambiguation in
Deep Linguistic Processing

2.1. General Setup

In the work we are reporting here we use a maximum en-
tropy approach to create a model to classify our data. Max-
imum Entropy aims at creating a stochastic model that re-
flects the probability of a label given a certain event. It op-
erates under the philosophy that a probability distribution
should be as unified as possible given some constraints –
if we have no reason to assume otherwise all observation
should have the same probability.
We interpret the observed probability distribution of the dif-
ferent features as a set of constraints on the expected value
of the model. Maximum entropy can be hence translated
to a problem of constrained optimization; maximizing the
entropy taking into account the features.
The events are described as a set of features and during
training the model calculates weights for those features.
After the model has been trained, the prediction of the label
for a given event is a simple matter of taking the log of the
sum of all the different features times their weights (see 1).

p(y|x) =
1

Zλ(x)
exp(

∑

i

λifi(x, y)) (1)

The process of training is used to estimate the parameters
of the model and in particular the weights vectorλ. For
training we use two different corpora, LOGON and We-
Science, both analyzed with the same underlying grammar
(July 2009 ERG) to test our models.
The first corpus is part of the Redwoods treebank which in-
cludes three data-sets that are substantially different. The
first data-set is Ecom, which includes commercial-related
sentences that were collected from users asking questions
or giving comments about a product. Naturally, the sen-
tences in this data-set are quite repetitive. The second data-
set is the Verbmobil data-set, which includes spoken sen-
tences from the Verbmobil project. Those are typically
short sentences that contain fewer ambiguities. Finally,
the third data-set is the LOGON data-set, which contains
tourism-related sentences that were collected as part of , the
Norwegian-English machine translation project. The July
2009 LOGON treebank has 8,927 sentences with an aver-
age of 228.65 different readings per sentence and median

of 106 reading per sentence. Note that, Redwoods has been
a part of the DELPH-IN collaboration for many years and
as such it is often used both for development and evaluation
of tasks within this framework. This creates a certain bias
of the corpus towards the grammar that is used to create the
treebank that is reflected in higher much higher results.
The second treebank corpus we are using is the We-
Science1. This corpus contains articles that were collected
from Wikipedia. As such they are diverse in length and
number of ambiguities while still mostly keep structured
grammatical form. Therefore this corpus is more useful
than data randomly collected from the Internet that lacks
structure consistency and may be ungrammatical.
WeScience treebank contains 10,146 sentences with an av-
erage sentence length of 16.05 words per sentence (about
two words longer than the average sentence in ) and con-
tains more ambiguities with an average of 270.49 and me-
dian of 330 readings per sentence.
Those figures are influenced by the maximum readings that
are allowed by the parser. In our setting the upper limit of
readings has been set to 1000 after which the parser does
not continue to process any more derivations. A gold stan-
dard tree is chosen for all sentences, meaning that in some
cases a better tree was discarded and the tree that is anno-
tated as the correct one might not be the optimal one that
the parser outputs.
The grammar that we use to parse those sentences is the lat-
est ERG release (July 2009). Since the ERG is an on-going
developing project, it is necessary to decide and conduct all
experiments with the same version of the grammar. of the
model across different domains. The ERG contains unary
operations that implement morphological changes on the
lexicon and binary rules (or schemata) that encode the syn-
tactic structure of the sentence.
One of the greatest advantages of HPSG is the ability to eas-
ily integrate different components to the grammar without
the need to create a real different layer of analysis. Dif-
ferent levels of language processing can become part of
the parse of the sentence simply by translating them into
a feature-value matrix and adding the relevant constraints
to the grammar. This allows for the same parser (in our
case the PET parser) to collect the additional information
without any further modification to the parsing method.
For the purpose of this paper we are specially interested in
the semantics component of the grammar. The ERG pro-
vides, in addition to the typical syntactic layer, detailedse-
mantic information for the sentence using MRS representa-
tions.
MRS is a flat semantic representations that can describe
sets of semantic interpretations for a syntactic structurein
an underspecified way. The framework is fully composi-
tional and MRS structures can be represented as feature
structures which can be integrated within the HPSG frame-
work. These two aspects make it easy to describe a syntax-
semantic interface for HPSG parsing with MRS.
The MRS language consists of an object language and a
meta-language describing how fragments of the object lan-

1The corpus is available at http://wiki.delph-
in.net/moin/WeScience
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guage can be combined. The object language is a spe-
cific first order language with generalized quantifiers. The
basic units of an MRS representation are called elemen-
tary predictions. An elementary predication has the form
label : relation(var1, ..., varn, hole1, ..., holen), where
label andhole1n are called handles and constitute part of
the meta language. In addition, an MRS structure contains
a set of constraints between handles, called qeq-constraints
and a unique top-handle. In a configuration of an MRS,
handles are identified pairwise such that elementary pre-
dictions can be substituted into the hole-handles identified
with their labels. This way quantifier scoping is explicitly
resolved. However such a structure is only called a config-
uration of the MRS if it satisfies all qeq-constraints. The
qeq-constraintf =q g is satisfied if eitherf is identified
with g or f outscopesg. The set of configurations for the
MRS corresponds to the set of its readings.
Using these treebanks and the grammar we conduct exper-
iments to investigate the influence of adding semantics to
the disambiguation model. We conduct each experiment on
two random splits and averaged the results. We designed
the experiments such that in addition to the question of the
influence of adding the semantics to the model, we will also
examine the cross-domain stability.

2.2. Baseline

For the analysis of the mentioned data, we have thus created
a reliable baseline that allows us to evaluate the contribution
of different properties to the task of disambiguation. Fol-
lowing previous work, it is common practice to choose a set
of features that includes the derivation trees rules that are
being used. Adding a certain level of parenting improves
results depending on the data-set. Since the ERG underly-
ing the Redwoods corpus has a maximally binary structure,
the result trees are not as flat as in other corpora such the
Penn Treebank (Marcus et al., 1994) and do not contain
much context within the span of a single rule. This charac-
teristic makes it important to include non-local information
such as parenting.
Since no previous baseline exists for the specific data-set,
we approach the task by choosing a simple set of features
consists of rules up to the third level of parenting. As can
be observed in table 1, there is a clear improvement when
using 2nd level grandparenting (up to 5% in the same do-
main). When raising the tree depth to 3-grandparenting
level, we can no longer observe an obvious improvement
of results. In some cases there is even a drop in the result
of the best pick (up to 2% in the LOGON-LOGON experi-
ment).

2.3. Deep semantic features

Deeper properties of the derivations must be extracted from
the Redwoods treebank using the grammar as a reference.
The treebank contains a basic derivation tree, where the
nodes are annotated with the rules that have been used to
derive its structure. From this schemata information we
can reproduce the full feature structure that describes the
sentence. The HPSG-based ERG provides MRS semantic
representations. In order to have access to those features,
we first extract this information from the basic derivation

tree that is available in the treebank. Since the derivation
tree is labeled with a unique rule that was used to create the
node, we can use the grammar to trace back bottom-up all
the feature-value pairs and create a full description of the
parse including the MRS. This can be achieved using the
[incr itsdb()] toolkit2 which is also part of the DELPH-IN
collaboration open source repository.
Looking at the semantics of sentences helps us disam-
biguate structure where the syntax cannot provide any hints,
since more than one reading is syntactically correct. This is
often the case with PP attachments or complex noun com-
pounding.
Consider, for instance, the sentence in (1) below. This is
an example from the Redwoods treebank. The phraseNor-
wegian Mountain Museumhas 29 different derivation trees
in the treebank. Here we look at two of them in order to
exemplify the difference:
(1)

There is a clear difference of meaning between those two
readings. In (2a) the modifierNorwegianmodifies the
noun phraseMountain Museum, while in (b) the adjective
modifies only the wordMountain. On the syntactic level
both those solutions are possible, but looking at the MRS
of those two parses we can see a clear difference.

(2) (a)

{e2:
e2:unknown[ARG x4:_museum_n_of]
e9:_norwegian_a_1[ARG1 x4:_museum_n_of]
e11:compound[ARG1 x4:_museum_n_of,

ARG2 x10:_mountain_n_1]
}

(b)

{e2:
e2:unknown[ARG x4:_museum_n_of]
e10:compound[ARG1 x4:_museum_n_of,

ARG2 x9:_mountain_n_1]
e15:_norwegian_a_1[ARG1 x9:_mountain_n_1]
}

Notice that the MRS representation here is a simplified one
that can be viewed as a semantic dependency structure.
From those structures we can extract features that model
the dependencies. Although the dependency structures tend
to be flatter than the syntax trees, one can still often observe
some nesting in the structure. Taking this into account al-
lows us to consider wider context for the semantics, in a
similar way to the one we use for the syntactic structure,
i.e., using various parenting levels. That allows a better

2http://wiki.delph-in.net/moin/ItsdbTop
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LO-LO WS-WS LO-WS WS-LO
1-best 10-best 1-best 10-best 1-best 10-best 1-best 10-best

p0 56.3480 76.6048 42.9618 67.5953 31.0850 58.0645 38.5164 65.6205
p1 57.0641 80.4564 43.9882 73.3137 32.2580 61.1432 36.8045 67.1897
p2 62.1968 82.5962 46.7741 74.0469 32.2580 61.1432 36.3766 68.3300
p3 60.0570 83.8801 45.8944 74.1935 33.5777 62.3167 35.9486 69.9001

Table 1: Results of using different levels of parenting and grandparenting on different data-sets. In this tableLO stands for
LOGON andWSstands for WeScience.LO-WSfor example means the model was trained on and tested WeScience.

comparison between the contribution of the syntax and the
contribution of the semantics.
In addition to this simplified structure we also have access
to the full MRS of the sentence. The full structure allows
us to extract explicitly information such as the scope of the
quantifiers in the sentence. This information is important
specially since in the MRS formalism many ambiguities
are created due to the fact that every NP is viewed as
a scope baring element that can hence overscope, or be
overscopped, by other elements. This creates many of
possible configurations for a given sentence.

(3)

<h1,e2,
{h3:unknown_rel<0:24>(e2, x4),
h5:udef_q_rel<0:24>(x4, h6, h7),
h8:compound_rel<0:24>(e10, x4, x9),
h11:udef_q_rel<0:24>(x9, h12, h13),
h14:_norwegian_a_1_rel<0:8>(e15, x9),
h14:_mountain_n_1_rel<10:17>(x9),
h8:_museum_n_of_rel<19:24>(x4, i16)},
{h6 qeq h8,
h12 qeq h14}>

Example (3) is the full MRS of the same sentence (1). The
structure includes the top-handle (h1), the set of predi-
cates and lastly the set of qeq constraints. In addition,
the quantifiers are explicitly mentioned. The quantifier
undef q rel appears twice and takes scope overmoun-
tain (x9) andmuseum(x4), we use this information as well
in our semantics model.
In order to build a less sparse model that reflects more gen-
eral observations, we would like to abstract away from the
specific semantic relations and use the categories of words
which we extract from the lexicon. We are experimenting
with different models both with lexical categories and with
the word specific semantic relations.

2.4. Evaluation and Error Analysis

We conducted four experiments, two where training and
testing is being done on the same domain, and two cross-
domain experiments. We evaluated each experiment in
terms of best pick, where only if the highest ranked read-
ing is the optimal one it is considered a correct choice by
the disambiguator. In addition we also evaluate how often
the correct reading is in the top ten ranked parses. Top-10
evaluation is significant since the differences between the
readings can be very small (due to the fine-grained analyzes
that an HPSG-oriented grammar like the ERG provides),

and often human annotators are not fully consistent with
minor details. Furthermore one can benefit greatly from a
tool that will narrow down the number of possible results
from a maximum of 1000 to 10.
(Toutanova et al., 2005) report little improvement when
combining semantic properties into the learner. One of the
reasons for this is the fact that the results in this work were
evaluated on the syntactic structure solely. The manually
annotated gold standard was created with the correct syn-
tactic structure as a guideline, mostly ignoring the semantic
part. Evaluating the disambiguator on a test set that was
annotated with the correct MRS structure in mind might be
necessary in order to truly understand the contribution of
the semantics.
Part of the goal of our work has also been to conduct a de-
tailed error analysis in order to investigate the contribution
of the semantics component to the disambiguation model.
We show that using the semantic features we are able to
disambiguate a range of phenomena that is beyond the syn-
tactic level. (Toutanova et al., 2005) indicate that a signifi-
cant portion of real errors, i.e., errors that are not causedby
human wrong annotations, or by the grammar licensing im-
possible derivations, are errors where semantic knowledge
is needed. PP-attachment, modifier attachment and even
the correct choice of lexical item often require knowledge
about the meaning of the sentence.
The semantic model is more stable when applying it to dif-
ferent domains and shows less drop of results when testing
the model on a new corpus. The syntax-only model shows
a drop of almost 10% between the WeScience-WeScience
in domain experiment and the WeScience-LOGON exper-
iment where the learner is being tested on more unseen
structures from new corpus. In the model that uses the se-
mantics, however, we see only 7.5% drop.
The semantics of a sentence is in a sense where the essence
of sentence is being captured. When we utter a phrase we
are really interested in the its meaning. The syntax, or the
structure of the sentences, is being employed to serve this
purpose of conveying the meaning. In that sense the se-
mantic representation is more domain independent as it is
not influenced by a specific structure that might be common
in a certain corpus.

2.5. Results and Discussion

In table 2 we can observe the results of the experiments
with the semantic models on both the corpora. We can see
that introducing the semantic features results with some im-
provement in almost all of the experiments. From those
experiments we can conclude that the semantic features do
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LO-LO WS-WS LO-WS WS-LO
1-best 10-best 1-best 10-best 1-best 10-best 1-best 10-best

p3 (baseline) 60.0570 83.8801 45.8944 74.1935 33.5777 62.3167 35.9486 69.9001
sem-d2 40.7988 73.7517 26.0997 61.4369 20.5278 51.7595 23.9657 58.0599

syn+sem 61.7689 83.8801 46.0410 74.9266 35.7771 62.9032 38.5164 69.3295

Table 2: Results of the experiments with semantics-only model and a model that incorporate both the semantics and the
syntactic features.

add new information to the model. This additional informa-
tion is especially helpful where the syntactic features reach
their limits.
In order to check the contribution of the semantics to the
task of disambiguation, we have trained a model consist-
ing of semantic features only. It is interesting to note that
this model preforms much better on the LOGON corpus,
with 40% precision in best pick (much higher then a ran-
dom pick which is 27%). However it does not perform well
in the other experiments. We suspect that this is due to the
work that was done on LOGON. was used as a develop-
ment set for building the ERG grammar and in particular
the MRS part of the grammar. For that reason we expect
higher results when training and testing on this treebank.
The syntax alone with level-three grandparenting gives us
precision of about 43% on average. This is better than the
semantic-only model, but one should note that the syntax
model is able to take into account more of the context using
the granparenting. Here too we can observe that the results
on the data-set are much higher and exhibit a clear bias.
From table 2 one can draw some general observations about
the different data-sets we have used. As mentioned above,
the WeSicence corpus is much more diverse and represents
data that was collected from the Internet. In addition, no
fine tuning of the grammar was done on this corpus, and
hence it is a more realistic scenario of using the disam-
biguator.
It is not surprising that in all the different configurationsof
the model cross domain testing yields lower results. Fur-
thermore, we can see that training on and testing on We-
Science gives the lowest results. Since LOGON is more
specific and less diverse the trainer simply does not en-
counter enough examples to be able to cope with the more
complex input of the Wikipedia articles. When we reverse
the experiment and train the model on WeScience, we ob-
tain better results (e.g. 38.5% instead of 35.7% in the syn-
tax and semantics model).
The more significant improvement when adding the seman-
tics is apparent in the best pick, where we see more than
1.5% better precision on average. On the other hand the
top-10 is not influenced as much. It seems that the ad-
ditional semantic information helps to disambiguate fine
grained information that allows us to re-rank the top can-
didates in a more precise way.
Examining different domains by using different corpora
gives us a much better understanding of the contribution of
the various features to the models. The contribution of the
semantic features can be observed most clearly in the cross
domain experiments where adding the semantics gives up
a visible improvement of 2.2% when training on LOGON

and 2.6% when training on the WeScience in the best pick
evaluation.
In some of the experiments, we have observed that adding
more syntactic features (by increasing the parenting level)
does not help improve the performance. These data-sets
seem to have fully used the information that the syntax can
provide us. On those sets, that naturally yield lower base-
line results, we see a better performance after the integra-
tion of the semantic features into the model.

3. Conclusion and Outlook

From our experiments so far it is clear that adding infor-
mation about the meaning of the sentence can be beneficial
for disambiguating the parser’s output. We have shown that
the MRS structures that are provided by the grammar can
be translated into features that contribute to the disambigua-
tion model.
Moreover, that the same improvement can be observed in
cross domain experiments as well. The semantic informa-
tion consistently helps the model to re-rank the readings
and increases the precision.
Another important result of this work is the observation that
the LOGON corpus is a very artificial choice to evaluate
systems developed using the ERG. We can see that in all
our experiments working solely with the LOGON treebank
results in very high figures that do not represent the true
abilities of the disambiguation model.
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