
LIMA: A Multilingual Framework for Linguistic Analysis and Linguistic
Resources Development and Evaluation

Romaric Besançon, Gaël de Chalendar, Olivier Ferret, Faiza Gara,
Meriama Laïb, Olivier Mesnard, Nasredine Semmar

CEA, LIST, Vision and Content Engineering Laboratory,
Fontenay-aux-Roses, F-92265, France;
firstname.lastname@cea.fr

Abstract
The increasing amount of available textual information makes necessary the use of Natural Language Processing (NLP) tools. These
tools have to be used on large collections of documents in different languages. But NLP is a complex task that relies on many processes
and resources. As a consequence, NLP tools must be both configurable and efficient: specific software architectures must be designed for
this purpose. We present in this paper the LIMA multilingual analysis platform, developed at CEA LIST. This configurable platform has
been designed to develop NLP based industrial applications while keeping enough flexibility to integrate various processes and resources.
This design makes LIMA a linguistic analyzer that can handle languages as different as French, English, German, Arabic or Chinese.
Beyond its architecture principles and its capabilities as a linguistic analyzer, LIMA also offers a set of tools dedicated to the test and the
evaluation of linguistic modules and to the production and the management of new linguistic resources.

1 Context and objectives
In this article, we present the LIMA (CEA List Multilin-
gual Analyzer) platform which is, as GATE (Cunningham
et al., 2002), together an architecture, a set of tools and
resources and an environment for developing applications
based on Natural Language Processing (NLP). This plat-
form was developed by the LVIC laboratory of CEA LIST
with the following requirements:

• multilingualism, with the objective of dealing with a
broad spectrum of languages;

• a large diversity of applications. LIMA aims at be-
ing used as a basic component for various applications
that can be text-based applications such as automatic
summarization or question-answering but can also be
applications dealing with multimedia documents;

• extensibility, that is to say the ability to support the
addition of new functionalities. As illustrated by Sec-
tion 2.2, the current version of LIMA mainly performs
analyses up to syntactic analysis but we also aim at ex-
tending it to semantic and discourse analyses;

• the need for efficiency. A platform such as LIMA must
be able to process very large corpora both because the
processing of such corpora is more and more required
by work in Computational Linguistics (see (Pantel et
al., 2009) for instance) and because it also has to be
used in an industrial context.

The first three requirements make necessary to design an ar-
chitecture based on modularity and flexibility at a high de-
gree. All languages are not characterized by the same set of
linguistic phenomena and as a consequence, their process-
ing doesn’t rely on the combination of the same elementary
analyses. Moreover, even if a linguistic analysis module
can be used for two different languages, the linguistic re-
sources it relies on are generally specific to each language.
The same need for modularity and flexibility comes from

the diversity of applications LIMA has to deal with: using
the same system for lemmatizing a set of keywords from
a base of images, a newspaper article or the transcription
of a phone conversation is not the best means to have good
results in each of these three contexts. Finally, the main dif-
ficulty LIMA had to face was to fulfill these requirements
without sacrificing efficiency.

Several kinds of architectures were already proposed to ad-
dress these different issues. Process-oriented architectures
focus on the combination and the control of a set of mod-
ules together with the communication between them. They
generally implement a loosely integration by the means
of a “glue” that can be a multi-agent system as in Tal-
Lab (Wolinski et al., 1998) or a client-server architecture
as in FreeLing (Carreras et al., 2004). Data-oriented archi-
tectures also represent a weak type of integration by con-
centrating on the normalization of data between modules,
as in the MULTEXT project (Ide and Véronis, 1994) or the
LT XML Library (Brew et al., 1999). The TIPSTER-like
architectures (Grishman, 1997) go a step further by impos-
ing both a shared representation of data, often by annota-
tion graphs (Bird and Liberman, 1999), and a uniform in-
terface for modules. The GATE platform (Cunningham et
al., 2002) is the typical representative of this kind of archi-
tectures but TEXTRACT (Neff et al., 2004) and its most
recent descendant, UIMA (Ferrucci and Lally, 2004), also
belong to this category. Finally, the highest degree of in-
tegration is reached by formalism-oriented architectures in
which both data and processes are represented through a
declarative formalism associated to a kind of inference en-
gine. This approach was initially dedicated to the develop-
ment of grammars as in ALVEY (Grover et al., 1993) but
was also applied more widely through platforms such as
ALEP (Simkins, 1994), NooJ (Koeva et al., 2007) or Out-
ilex (Blanc et al., 2006).

As it will be illustrated in the following sections, we chose
a TIPSTER-like architecture for LIMA as it represents the
best trade-off between modularity and efficiency, which are

3697



the main requirements LIMA must fulfill. However, we
particularly emphasized the design of the framework for
supporting processes to enable the use of LIMA with vari-
ous kinds of interfaces.

2 Presentation of LIMA
2.1 Principles

In order to have a flexible architecture, allowing to han-
dle multiple languages, and thus take into account vari-
ous linguistic phenomena in the analysis, the choice was
made to use the principle of a configurable processing chain
(or pipeline) applying in cascade several treatments corre-
sponding to different stages or different levels of linguis-
tic analysis. The various treatments use specific linguistic
resources and share and modify a common data structure.
Moreover, this processing chain is conceived to integrate
LIMA in applications based not only on a direct integration
but also in a client-server environment, either CORBA or
SOAP based.
Figure 1 gives an illustration of the flexibility of LIMA
through its configuration. One master file points at a config-
uration file for each language. Each language configuration
file defines a set of pipelines; in our example, one dedicated
to the processing of open-domain documents and one ded-
icated to medical documents. A pipeline is described as a
list of processing units and a processing unit can refer to a
set of resources. In the example of Figure 1, each of two
pipelines contains a rule-based named entity tagger but the
two corresponding processing units, while relying on the
same type of tagger, are different as they refer to two dif-
ferent resources: the rules for recognizing medical named
entities such as diseases or drugs are different from the rules
for recognizing persons or locations. Each resource has
also its own configuration data, which are limited in our
example to the file in which the compiled rules for the gen-
eral or medical named entity tagger are stored. Pipelines
can also share components: in Figure 1, the named entity
logger, a component that dumps named entities in a XML
format, is shared by the general and the medical pipelines
as it is not specific to a domain.
The main design pattern used for implementing this flexi-
bility is the Factory pattern. All parts of the system have
factories that allow to select them at runtime based on con-
figuration files stating the names of the modules to use. Not
only processing units are based on factories, but also the
resources associated to them. So, a simple change in a con-
figuration file allows to replace a component by another,
different kind of tokenizers for example, or to make a given
pipeline unit to use a different resource, e.g. replacing a
named entities rules file by another one specific to the cor-
pus processed. In the same manner, a process unit can be
inactivated or a completely different chain can be selected
at runtime.
Linguistic resources are dynamically initialized: the initial-
ization of each process unit triggers the loading of the re-
sources needed by this treatment. So, only the resources
that are useful for the given analysis session will be ini-
tialized. Moreover, the resources are handled by an inde-
pendent manager, which allows to share resources between

different processing units and thus avoid to load a same re-
source several times.
A collection of data structures is transmitted all along the
processing chain. The main data structure is an analy-
sis graph (built around the boost::graph C++ library)
whose nodes are tokens associated to several annotations,
such as tokenization status (e.g. capitalization), or mor-
phosyntactic categories. There is two kind of edges: se-
quential links between adjacent tokens and syntactic links
bearing syntactic dependency information between the to-
kens. One should also note that contrary to annotation
graphs used in other systems, our graphs are lattices, al-
lowing to keep some kind of segmentation ambiguities be-
fore a dedicated process unit can remove them. Along
this main graph comes another graph, a generic annotation
graph whose nodes and edges can be associated to the nodes
and edges of the analysis graph and that can handle any data
structure thanks to the boost::any C++ library.
A specific unit (called “dumper”) is dedicated to the out-
put of the analysis, given the content of the analysis data
structures. According to the applications, different levels of
details or different formats are to be considered: each out-
put format needed can be implemented by a corresponding
dumper and specified at runtime.

2.2 Examples of LIMA configurations
In this section, we illustrate the configurability of LIMA
with the detailed description of two different pipelines, for
French and Arabic standard textual documents.

2.2.1 LIMA configuration for French analysis
The French pipeline uses the following treatments covering
segmentation, morphological analysis and morphosyntactic
analysis:

• tokenization: performed using a character-based au-
tomaton with a context of up to three characters on
both side. The tokenization is absolute, meaning that it
does not consider tokenization ambiguity at this step.
But later steps will be able to group some tokens or
split other ones;

• dictionary check: each word is checked against a full-
form dictionary (a dictionary including all the known
forms of single words of the language obtained from a
list of lemmas and inflection rules), and possible lem-
mas and part-of-speech (POS) are associated with it;

• hyphenated words: this unit performs a special treat-
ment to associate lemmas and categories of hyphen-
ated words not present in the dictionary (parts of the
split word are looked up in the dictionary);

• idiomatic expressions: the full-form dictionary con-
tains only single words, compound expressions are
recognized with this specific unit (which allows to re-
duce the ambiguity before POS tagging by considering
the expression as a whole for the rest of the analysis).
This step uses a generic pattern recognition unit based
on finite state automata.

• unknown words: the unknown words are given default
POS using a guesser based on typographical clues;

3698



# Pipeline definitions

# Process unit definitions

# Resource definitions

lima­conf.xml

# Dumper and logger 
   definitions

<cf lang="fre" 
      file="lima­fre.xml"/> 

<cf lang="ara" 
      file="lima­ara.xml"/> 

lima­fre.xml

lima­ara.xml

<pipeline name="general">

<pipeline/>

<pu name="named­entities­gen"/>

<pipeline name="medicalmedical">

<pipeline/>

<pu name="named­entities­mednamed­entities­med"/>

<pu name="named­entities­gen" type="neTagger">

<pu/>
<res name="named­entities­gen­rules"/>

<log name="named­entities­logger"/>

<log name="named­entities­logger"/>

<pu name="named­entities­mednamed­entities­med" type="neTagger">

<pu/>
<res name="named­entities­med­rulesnamed­entities­med­rules"/>

<res/>

<param key="file" value="named­entities­gen­rules"/>

<res name="named­entities­med­rulesnamed­entities­med­rules">

<res/>
<param key="file" value="named­entities­med­rules"/>

<res name="named­entities­gen­rules">

<log name="named­entities­logger">

<log/>
<param key="outputSuffix" value=".se.xml"/>

Figure 1: Configuration of LIMA

• specific entity recognition: the same pattern recogni-
tion unit is used with different rules to recognize num-
bers, dates and named entities (the treatment is per-
formed before POS-tagging because it reduces the am-
biguity);

• POS-tagging: default POS-tagging implemented in
LIMA uses a Viterbi algorithm on POS trigrams, with
a fallback to bigrams, unigrams and lemma a priori
probabilities;

• syntactic analysis: it is performed using a dependency
grammar implemented as a set of simple rules ex-
ecuted by the generic pattern recognition unit (Be-
sançon and Chalendar (de), 2005). This step is itself
splitted in sub-steps, each able to handle specific kinds
of relations, such as local or distant ones.

2.2.2 Adding a specific process unit for Arabic
analysis

The Arabic pipeline has a similar skeleton to the French
pipeline, but without the special treatment for hyphenated
words and with and additional unit dedicated to some speci-
ficities of Arabic, namely the fact that Arabic texts are of-
ten completely unvowelled or partially vowelled and a large
number of proclitics and enclitics can be attached respec-
tively to the beginning or the end of a word (Grefenstette et
al., 2005). The following treatment is then added:

• clitic stemmer: this unit uses two additional dictionar-
ies for clitic (containing 77 proclitics and 65 enclitics)
in order to split Arabic agglutinated words into procli-
tics, simple forms and enclitics. It proceeds as follows:

– Several vowel form normalizations are per-
formed: the vowel symbols @� @�

�
@

�
@

�
@

�
@ are

removed, the characters
�
@ @




@ are replaced by the

character @ and the final characters ø


ø 
ð or �è

are replaced by the characters ø Zø Zð or . è;

– All clitic possibilities are computed by using pro-
clitics and enclitics dictionaries;

– A radical, obtained by removing these clitics,
is checked against the full form lexicon. If it
does not exist in the full form lexicon, re-write
rules are applied, and the altered form is checked
against the full form dictionary. For example,
consider the token " é�KQºK." (with its ball) and the
included clitics H. (with) and è (its), the com-
puted radical �HQ» does not exist in the full form
lexicon but after applying one of the re-write
rules, the modified radical " �èQ»" (ball) is found in
the dictionary and the input token is segmented
into root and clitics as: è + �èQ» + H. = é�KQºK.
(with + its + ball);

– The compatibility of the grammatical tags of the
three components (proclitic, radical, enclitic) is
then checked. Only valid segmentations are kept
and added into the graph of words.

2.2.3 Reusing and combining process units
The clitic stemmer had been developed for Arabic but treats
a general linguistic phenomenon that is useful for other lan-
guages: for instance, the same processing is used in Span-
ish, in which the verb forms can have pronominal enclitics.
For example, the imperative form “dame” (gives me) is a

3699



form composed of agglutinated radical “da” and the enclitic
“me”. The Spanish pipeline if hence configured to use the
clitic stemmer with an enclitic dictionary.
Similarly, the German pipeline has two additional specific
units dedicated to treat compound words. German has the
ability to form compound words by combining all possi-
ble words together: nouns, adjectives, adverbs, participles,
verbs, prefixes, prepositions. Specific elements can be used
for coupling the words: -e ; -es ; -s ; -n ; -en. These addi-
tional units are:

• before POS-tagging, a processing unit seeks if a word
is an agglutination of several lexical units, possibly
separated by a delimiter, and assigns a grammatical
tag to the compound word. Lexical units are checked
against full form lexicon and delimiters are specified
in another resource. All grammatical tags of the last
unit are assigned to the compound word.

• after POS-tagging, another processing unit is used to
separate compound word components, to be treated
separately in the rest of the analysis.

For example, the word “Vorlesungsbetrieb” contain “’Vor-
lesung” + (“s”) + “betrieb”. “Vorlesung” and “betrieb” are
found in the full form lexicon and ’s’ is a delimiter. “be-
trieb” can be VERB or NOUN. The grammatical tags of
the last unit (VERB or NOUN) are assigned to the com-
pound word. Separating word components is done after
POS-tagging in order to decrease lexical ambiguity.
When dealing with new languages, the different process
units developed to treat specific linguistic phenomenons
can be combined. For instance, Hungarian is a highly
agglutinative language: for example, “hazamban” is the
equivalent of the English prepositional phrase “in my
house”. Hungarian has also the ability to compose
words like German. For example, “anyanyelv”=”anya”
(“mother”)+”nyelv” (“language”) is a composed word and
means “native language”. In order to develop a pipeline for
Hungarian text processing, we integrated the clitic stemmer
developed for Arabic and the decompounder developed for
German. The only additional work needed is the develop-
ment of specific resources for these pipeline units for the
Hungarian language.

2.3 Performances
2.3.1 Part-of-speech tagging
We present in Table 1 an evaluation of the performances
of the Part-Of-Speech tagging of LIMA on different lan-
guages. These evaluation measures have been obtained us-
ing a ten-fold cross validation on the reference tagged cor-
pus that is used as training for the default n-gram model
used by LIMA for its POS tagging module. We use in
the LIMA POS-tagging a rich tagset with many features,
which makes the POS-tagging a more complex task and
makes necessary larger corpus for training (which we do
not have for all languages). We present the results for the
fine-grain tagset, and the results on the main part-of-speech
categories, limited to 12 tags.
The performance of LIMA POS tagger is a bit below state-
of-the-art taggers for English language (around 96 or 97%),

lang corpus size POS-tagging precision
(words) fine-grain 12 tags

eng 30086 91.4% (136 tags) 93.5%
fre 28828 87.7% (168 tags) 94.4%
ara 13257 80.2% (85 tags) 86.1%
spa 30088 80.6% (114 tags) 84.1%
ger 20155 63.5% (423 tags) 89.1%

Table 1: Evaluation of LIMA POS-tagging

but has reasonable performances on the other languages.
The modular architecture of LIMA allows to easily change
the model of a particular module, and we are currently test-
ing other paradigms of POS-taggers for English (SVM and
MaxEnt models, which achieve the best performance in the
litterature).

2.3.2 Syntactic analysis
LIMA has been evaluated during two evaluation campaigns
of French syntactic analyzers, Easy in 2005 and Passage
in 2009. In these two campaigns, analyzers were evalu-
ated on non recursive minimal chunks and on relations be-
tween these chunks, while LIMA produces a pure depen-
dency analysis. Thus, we had to design a converter able
to produce Easy/Passage formats from our dependencies.
Table 2 shows the F-measures on groups and relations for
LIMA and the best system for each campaign. Note that the
Passage results are still unofficial and very preliminary as
they concern only a small subset of the evaluated material,
namely 989 words out of the final 430,000 final reference.

Campaign LIMA Best system
Easy Groups .82 .89
Passage Groups .85 .94
Easy Relations .50 .59
Passage Relations .60 .68

Table 2: Evaluation of LIMA during Easy and Passage
(very preliminary results) campaigns ; F-measure on groups
and relations

We can see that although LIMA is still not at the level of the
best system, it has progressed between the two campaigns,
particularly on relations. The progress was obtained thanks
to a work on resources eased by the development environ-
ment described in section 3.1.

2.3.3 Speed of processing
Since the LIMA framework has been developed with the
goals of both configurability and efficiency to treat large
amounts of data, the time required to process texts is an im-
portant criterion of LIMA evaluation. We present in Table
3 the evaluation of speed processing, in number of words
per second (CPU time), for different languages, and for
two levels of processing: one for the part-of-speech tag-
ging only, and one for the complete syntactic analysis and
concept extraction. These measures have been obtained on
a standard workstation (Intel Core2 Duo 3Ghz, 4Go RAM).

These results are quite good, compared to other NLP pro-

3700



Language POS tagging Syntactic analysis
eng 12066 w/s 4332 w/s
fre 8646 w/s 6580 w/s
spa 23282 w/s 11819 w/s
ger 4854 w/s 4394 w/s
ara 436 w/s 146 w/s

Table 3: Evaluation of speed of LIMA processing (in num-
ber of words per second)

cessors1. However, the figures show that speed perfor-
mances are different across languages, which can be ex-
plained by the differences of treatments and the complexity
of the resources used (morphological analysis, dictionary
sizes, grammar sizes). For instance, in German and even
more in Arabic, the morphological analysis is costly due to
clitic treatments and complex words decompouding.

3 Developing with LIMA
This section describes the three steps involved in making
LIMA a useful tool for Natural Language Processing tasks.
First of all, one has to be able to develop resources used by
the analyzer (section 3.1). Then, LIMA must communicate
with the application using it. Section 3.2 shows the various
ways in which this communication can be handled. Finally,
section 3.3 lists a few applications in which LIMA has been
integrated.

3.1 LIMA Integrated linguistic analysis development
environment

As other real-size linguistic analyzers, LIMA is a large-
scale software, whose development involved many man-
years of work, in terms of both coding and resource de-
velopment. Given, for example for French, a dictionary of
110k lemmas, a few hundred syntactic analysis rules, 20k
ngrams matrices and other resources, it is difficult to predict
what will be the impact of adding a new possible category
to a given verb or a new syntactic rule. Any modification
may imply, besides what was expected, unforeseeable side-
effects and the complexity of the system makes it difficult
to guess the overall impact of even small changes. Thus,
in association with the analyzer, we need tools that allow
to easily edit the resources and to iteratively evaluate the
quality of the analysis using a reference corpus. We have
developed two such tools, a benchmarking tool and a re-
sources editor (de Chalendar and Nouvel, 2009). Both have
been developed using the Qt 4.5 GUI library.
The benchmarking tool (Figure 2) allows to run an evalua-
tion against a reference corpus, to see immediately the per-
formance, globally and for each of a set of different evalu-
ation dimensions. Its specificity is its genericity. It is not
limited to the evaluation of LIMA but can be configured
to use a different analyzer, a different evaluation program
and a different set of evaluation dimensions. Besides the
evaluation results themselves, the tool allows to compare

1It would for instance be in second place behind the Tree-
Tagger in Matthew Wilkens’ evaluation of POS-taggers, on a
similar computer: http://workproduct.wordpress.com/2008/11/08/evaluating-

pos-taggers-speed/

Figure 2: Benchmarking tool showing the measures panel
on all evaluated files and with all groups and relations se-
lected

an evaluation run with the previous one or with the refer-
ence by displaying the analysis graph for both using the
Syanot tool2, a graphical view of the syntactic analysis re-
sults (Figure 3). Note that Syanot is also an editor allowing
to graphically annotate texts.

Figure 3: Syanot used to compare changes between two
runs in the Benchmarking Tool

The benchmarking tool allows also to run the analyzer on a
given sentence (“One Shot” tab) in order to observe its be-
haviour in handling a specific linguistic phenomenon. The
results are shown in Syanot but also as raw XML showing
the full dump of the data structures and in KgraphViewer
(Figure 2) to show the internal representation of the anal-
ysis graph. KgraphViewer is available for all in the KDE
extragear module3.
The resource development tool is currently tied to LIMA
but we plan to make it more generic. It offers a clean and
easy to use interface to the dictionary, the part-of-speech
tagging learning corpus and the syntactic analysis grammar
rules. It has been designed to be easily usable by non com-
puter specialists. Figure 5 shows the tab allowing to dig
into the part-of-speech tagging learning corpus. It is cen-
tered around the (filterable) list of trigrams. When select-
ing a trigram, the user sees below the occurrences of this
trigram in the corpus. The right part shows a correspon-

2Syanot is a graphical syntactic annotations editor developed
under an open source licence. It will soon be publicly available.

3http://extragear.kde.org/apps/kgraphviewer/

3701



Figure 4: KGraphViewer

dence table between two tag sets used respectively during
the compilation of the matrices and during the analysis by
LIMA.
Three other editors are available in other tabs: one allowing
to edit the dictionary that is used to produce the final full-
form dictionary; a second one allowing to edit the syntactic
analysis rules and a third one to edit the rules recognizing
idioms. Each interface permits to save, compile and deploy
the respective resources.

Figure 5: Resource tool

3.2 Interfaces of LIMA

As stated above, LIMA has been conceived to be very
modular. It has also been conceived to be modularly in-
tegrated in various architectures and to be easily portable to
other platforms, even if its primary development platform
is GNU/Linux. Its factory based API allows for a direct in-
tegration but it can also be used in a UNIX-style script by
writing to files using various dumpers dedicated to specific
tasks, such as the Easy/Passage dumper writing in the syn-
tactic analysis Passage format (de la Clergerie et al., 2008).
Three kinds of client/server integration modules also exist:

• simple socket: a Perl TCP server waits for commands
using an ad-hoc protocol and calls the analyzer;

• CORBA: LIMA can act as a CORBA server using a
dedicated API;

• SOAP Web Services: we implement sev-
eral of the services specifications de-
fined by the WebContent project4, in-
cluding NamedEntitiesExtraction,
SemanticAnnotation, etc.

This versatility makes LIMA very easy to integrate into
larger applications.
To illustrate the flexibility of the general architecture, we
present how we used LIMA to analyze the output from
speech-to-text transcription tools. This can be made with-
out difficulties by simply configuring the reader of LIMA
and making it accept as input documents with format spe-
cific to the tool used to perform transcription. Document
are considered in this configuration as any other written
text.
In order to better take into account the nature of the source
document and to fully exploit the results of the transcrip-
tion step, we propose another configuration. The idea is to
keep not only the most likely words, as computed by the
final stage of transcription, but to keep also other hypothe-
sis with their respective weights as inputs for the linguistic
processing performed by LIMA. To be able to keep these
hypotheses it is necessary to import a lattice. In this lattice,
a node is created to represent each word hypothese. The
word is associated with a value wich reflects its occurrence
probability according to the acoustic model. To perform
this import, we do not need to change anything in the ar-
chitecture or recompile existing code. We have written a
process unit which reads the outputs from speech-to-text
tool and builds a graph. To integrate the new process unit
into the pipeline we have substituted it to the tokenizer in
the pipeline configuration.

3.3 Applications based on LIMA
Several applications developed by the CEA LIST use the
LIMA framework as a core module for linguistic analy-
sis: (1) a multimedia search engine, in which LIMA is
used for the analysis of both textual documents and queries
(with different pipelines); this search engine has been used
in various CLEF campaigns (Besançon et al., 2004); (2)
the ŒDIPE question answering system, in which LIMA is
used for the question analysis and in the search engine used
to pre-select the documents; this QA system has partici-
pated in CLEF and EQUER campaigns (Besançon et al.,
2007); (3) the CHORAL summarization system, in which
LIMA is used for the linguistic analysis of the text to iden-
tify the most important concepts used for sentence selec-
tion and to provide a syntactic analysis that can be used for
syntactic simplification of kept sentences (Chalendar (de)
et al., 2005; Garcia-Flores and Chalendar de, 2008). The
efficiency of LIMA was also illustrated by its use in the
Semantic Map project (Grefenstette, 2007) where its syn-
tactic analyzer processed 2 million French Web pages to
build a large network of syntactic co-occurrences that now
supports work about the automatic building of semantic re-
sources such as word senses (Mouton et al., 2009) or se-
mantic frames.

4http://www.webcontent-project.org

3702



4 Conclusion and future work
In this article, we have presented LIMA, a platform dedi-
cated to the implementation of Natural Language Process-
ing based applications. LIMA was designed to offer a large
flexibility of configuration without sacrificing processing
speed and quality of results. On one side, the emphasis
in LIMA on flexibility comes from two needs: taking into
account the problem of multilinguality and covering a wide
range of applications. On the other side, the need for pro-
cessing very large corpora with the deeper and deeper lev-
els of analysis required by advanced search tools such as
question-answering systems justifies the need for efficiency
in LIMA. Furthermore, we have seen that LIMA is not only
an architecture but also gathers a set of tools for several lan-
guages, going from tokenization to syntactic analysis5 and
taking into account various linguistic phenomenons such as
the absence of delimiters, agglutination, composition or the
lack of vowels. LIMA was also used in a large set of appli-
cations as various as information retrieval, ontology popu-
lation, automatic summarization or question-answering.
Although LIMA is already usable in a wide set of contexts,
we plan to develop several extensions for enlarging its capa-
bilities. From the architecture viewpoint, this enlargement
focuses on execution control. First, the control structures
for defining a pipeline are currently very limited in LIMA
since a pipeline is restricted to a list of processing units.
Introducing conditional or iteration structures as in UIMA
would be a first way for a pipeline to adapt the processing of
documents to their content. Furthermore, we would like to
make LIMA able to modify its configuration dynamically:
current LIMA pipelines are only statically configurable and
a dynamic configuration would enable the modification of
a pipeline according to the results of a module, which is
a powerful means for adapting the processing of a docu-
ment according to its content. Finally, the widespread use
of clusters and multi-core processors makes necessary for
LIMA to define ways of exploiting parallelism.
From a wider perspective, we apply LIMA not only to tex-
tual documents but more and more to multimedia docu-
ments, which has led us to generalize and extend the ar-
chitecture of LIMA for supporting the multimedia search
engine we currently develop (Delezoide et al., 2010 to ap-
pear). We plan to release this extended version of LIMA as
a open-source software.

5 References
Romaric Besançon and Gaël Chalendar (de). 2005.

L’analyseur syntaxique de LIMA dans la campagne
d’évaluation EASY. In actes de la 12e conférence an-
nuelle sur le Traitement Automatique des Langues Na-
turelles, TALN 2005, Dourdan, France, June.

Romaric Besançon, Gaël de Chalendar, Olivier Ferret,
Christian Fluhr, Olivier Mesnard, and Hubert Naets.
2004. In 4th Workshop of the Cross-Language Eval-
uation Forum, CLEF 2003, chapter Concept-based
Searching and Merging for Multilingual Information Re-

5The highest level of analysis is not the same for all the lan-
guages processed by LIMA.

trieval: First Experiments at CLEF 2003, pages 174–184.
Springer Verlag.

Romaric Besançon, Mehdi Embarek, and Olivier Ferret.
2007. In Evaluation of Multilingual and Multi-modal
Information Retrieval - 7th Workshop of the Cross-
Language Evaluation Forum, CLEF 2006, volume 4730
of Lecture Notes in Computer Science, chapter Finding
Answers in the Œdipe System by Extracting and Ap-
plying Linguistic Patterns. Springer Berlin / Heidelberg,
September.

Steven Bird and Mark Liberman. 1999. Annotation graphs
as a framework for multidimensional linguistic data anal-
ysis. In ACL Workshop Towards Standards and Tools for
Discourse Tagging, pages 1–10.

Olivier Blanc, Matthieu Constant, and Eric Laporte. 2006.
Outilex, plate-forme logicielle de traitement de textes
écrits. In 13e conférence annuelle sur le Traitement Au-
tomatique des Langues Naturelles (TALN 2006).

Chris Brew, David McKelvie, Richard Tobin, Henry
Thompson, and Andrei Mikheev. 1999. The XML Li-
brary LT XML version 1.1 User documentation and ref-
erence guide. Technical report, Language Technology
Group.

Xavier Carreras, Isaac Chao, Lluí Padró, and Muntsa Padró.
2004. Freeling: An open-source suite of language an-
alyzers. In 4th International Conference on Language
Resources and Evaluation (LREC’04).

Gaël Chalendar (de), Romaric Besançon, Olivier Fer-
ret, Gregory Grefenstette, and Olivier Mesnard. 2005.
Crosslingual summarization with thematic extraction,
syntactic sentence simplication, and bilingual genera-
tion. In Crossing Barriers in Text Summarization Re-
search Workshop, RANLP-2005.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: A framework and
graphical development environment for robust NLP tools
and applications. In 40th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’02).

Gaël de Chalendar and Damien Nouvel. 2009. Modular
resource development and diagnostic evaluation frame-
work for fast NLP system improvement. In Proceed-
ings of the Workshop on Software Engineering, Testing,
and Quality Assurance for Natural Language Processing
(SETQA-NLP 2009), pages 65–73, Boulder, Colorado,
June. Association for Computational Linguistics.

Eric V. de la Clergerie, Olivier Hamon, Djamel Mostefa,
Christelle Ayache, Patrick Paroubek, and Anne Vilnat.
2008. Passage: from french parser evaluation to large
sized treebank. In Proceedings of the Sixth International
Language Resources and Evaluation (LREC’08).

Bertrand Delezoide, Hervé Le Borgne, Romaric Besançon,
Gaël de Chalendar, Olivier Ferret, Faiza Gara, Patrick
Hède, Meriama Laib, Olivier Mesnard, Pierre-Alain
Moëllic, and Nasredine Semmar. 2010, to appear.
MM: modular architecture for multimedia information
retrieval. In 8th International Workshop on Content-
Based Multimedia Indexing (CBMI 2010), demo session,
Grenoble, France.

David Ferrucci and Adam Lally. 2004. UIMA: an architec-

3703



tural approach to unstructured information processing in
the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Jorge Garcia-Flores and Gaël Chalendar de. 2008.
Syntactico-semantic analysis: a hybrid sentence extrac-
tion strategy for automatic summarization. In MICAI
2008: Advances in Artificial Intelligence, Atizapán,
México, November 2008. Springer, Lecture Notes in Ar-
tificial Intelligence.

Gregory Grefenstette, Nasredine Semmar, and Faiza
Elkateb-Gara. 2005. Modifying a natural language pro-
cessing system for european languages to treat arabic in
information processing and information retrieval appli-
cations. In Proceedings of the ACL Workshop on Com-
putational Approaches to Semitic Languages, pages 31–
37, Michigan, USA, June.

Gregory Grefenstette. 2007. Conquering language: Using
nlp on a massive scale to build high dimensional lan-
guage models from the web. In 8th International Confer-
ence on Computational Linguistics and Intelligent Text
Processing (CICLing 2007, pages 35–49, Mexico City,
Mexico.

Ralph Grishman. 1997. Tipster architecture design docu-
ment version 2.3. Technical report, DARPA.

Claire Grover, John Carroll, and Ted Briscoe. 1993. The
Alvey Natural Language Tools grammar (4th release).
Technical Report 284, Computer Laboratory, Cambridge
University.

Nancy Ide and Jean Véronis. 1994. Multext : Multilingual
text tools and corpora. In 15th International Conference
on Computational Linguistics (COLING’94), pages 588–
592.

Svetla Koeva, Denis Maurel, and Max Silberztein. 2007.
Formaliser les langues avec l’ordinateur : De Intex à
Nooj. Les Cahiers de la MSH Ledoux. Presses Universi-
taires de Franche-Comté.

Claire Mouton, Guillaume Pitel, Gaël Chalendar (de), and
Anne Vilnat. 2009. Unsupervised word sense induc-
tion from multiple semantic spaces with locality sensitive
hashing. In 7th Conference on Recent Advances in Natu-
ral Language Processing (RANLP 2009) - poster session,
Borovets, Bulgaria.

Mary S. Neff, Roy J. Byrd, and Branimir K. Radev. 2004.
The Talent system: TEXTRACT architecture and data
model. Natural Language Engineering, 10(3-4):307–
326.

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-
Maria Popescu, and Vishnu Vyas. 2009. Web-scale dis-
tributional similarity and entity set expansion. In Pro-
ceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing, pages 938–947, Sin-
gapore, August. Association for Computational Linguis-
tics.

Neil K. Simkins. 1994. An open architecture for language
engineering. In First CEC Language Engineering Con-
vention.

Francis Wolinski, Frantz Vichot, and Olivier Gremont.
1998. Producing nlp-based on-line contentware. In Nat-
ural Language Processing and Industrial Applications

(NLP+IA’98), volume 2, pages 253–259.

3704


