
Empty Categories in a Hindi Treebank

Archna Bhatia•, Rajesh Bhatt†, Bhuvana Narasimhan∗, Martha Palmer∗, Owen Rambow‡,
Dipti Misra Sharma/, Michael Tepper5, Ashwini Vaidya∗, Fei Xia5

• Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, bhatia@illinois.edu
∗ Univ. of Colorado, Boulder, CO 80309, USA, {narasimb,mpalmer,Ashwini.Vaidya}@colorado.edu

† Univ of Massachusetts, Amherst, MA 01003, USA, bhatt@linguist.umass.edu
‡ Columbia Univ, New York, NY 10115, USA, rambow@ccls.columbia.edu

/ Intl Institute of Information Technology, Hyderabad 500019, India, dipti@iiit.ac.in
5 Univ. of Washington, Seattle, WA 98195, USA, {mtepper,fxia}@uw.edu

Abstract
We are in the process of creating a multi-representational and multi-layered treebank for Hindi/Urdu (Palmer et al., 2009), which

has three main layers: dependency structure, predicate-argument structure (PropBank), and phrase structure. This paper discusses an
important issue in treebank design which is often neglected: the use of empty categories (ECs). All three levels of representation make
use of ECs. We make a high-level distinction between two types of ECs, trace and silent, on the basis of whether they are postulated to
mark displacement or not. Each type is further refined into several subtypes based on the underlying linguistic phenomena which the
ECs are introduced to handle. This paper discusses the stages at which we add ECs to the Hindi/Urdu treebank and why. We investigate
methodically the different types of ECs and their role in our syntactic and semantic representations. We also examine our decisions
whether or not to coindex each type of ECs with other elements in the representation.

1. Introduction

We are in the process of creating a multi-representational
and multi-layered treebank for Hindi/Urdu (Palmer et al.,
2009). “Multi-layered” means that the treebank has dif-
ferent layers of representation: we represent both syn-
tax and lexical predicate-argument structure. “Multi-
representational” means that we use both dependency and
phrase structure for syntactic representation. This paper is
about an important issue in treebank design which is often
neglected: the use of empty categories (ECs). ECs are a
common representational device for treebanking, but they
are often not specifically motivated, and may be unclear
why an EC is used in a treebank to represent a syntactic fact,
rather than some other representational device. The goal of
this paper is to carefully explain and justify the types of ECs
we use in our Hindi/Urdu treebank. We examine our choice
of EC types and our decisions with respect to whether or
not to coindex them with other elements in the representa-
tion. We also discuss the reasons why certain types of ECs
are introduced at different stages during the annotation pro-
cess. Our goal of automatic conversion from dependency
structure to phrase structure places special emphasis on the
role of empty arguments.

The paper is structured as follows. Section 2. provides an
overview of the project, and Section 3. discusses two types
of ECs in treebanking and motivates their use. In Section
4. we discuss in some detail the ECs introduced at our three
levels of representation, Dependency Structure, PropBank,
and Phrase Structure. This section also contains Table 2,
which summarizes all types of ECs used in our project. We
summarize our use of ECs in this project in Section 5., and
then conclude.

2. An Overview of the Hindi/Urdu Treebank
This section provides a quick overview of the syntactic

and semantic annotation choices we have made for the tree-
bank, which has three main layers: Dependency structure,
PropBank, and Phrase structure.

2.1. Dependency Structure (DS)
The Paninian grammatical model (Bharati et al., 1995;

Begum et al., 2008) has been chosen as the basis of our de-
pendency structure analysis. The sentence is treated as a
series of modifier-modified relations which has a primary
modified (generally the main verb). The appropriate syn-
tactic cues (relation markers) help in identifying various re-
lations. The relations are of two types: karaka (roles of
various participants in an action, i.e., arguments, notated as
k1-k6) and others (roles such as purpose, reason, and pos-
session, which are captured using the relational concepts of
the model, i.e., adjuncts).

2.2. Propbank (PB)
PropBanking is a semantic layer of annotation that adds

predicate argument structures to syntactic representations
(Palmer et al., 2005). For each verb, PropBank represents
the information about the arguments that appear with the
verb in its corresponding frame file. The arguments of the
verbs are labelled using a small set of numbered arguments,
e.g. Arg0, Arg1, Arg2, etc. Table 1 shows the frame file for
the verb pii (to drink), which has two arguments: Arg0 and
Arg1.

In the frame files for each verb, the numbered argument
labels are associated with fine-grained verb-specific de-
scriptions. Additionally, verb modifiers are annotated using
functional tags such as ArgM-LOC, ArgM-TMP, ArgM-
MNR. The PropBank framesets for Hindi will also include

1863

‘pii’ ‘to drink’, Transitive
raam ne sharaab pii
‘Ram drank liquor’

Arg0 drinker: raam
Arg1 liquid: sharaab

Table 1: A frame file for Hindi

mappings to the karaka (e.g., k1 and k2). Although Prop-
Bank annotation does not typically involve adding empty
arguments to syntactic trees, in the case of Hindi-Urdu we
have taken a somewhat different approach. We insert the
core empty arguments of the verb (subject, object or indi-
rect object) and assign them semantic role labels just as we
do for the overt arguments. The resulting richer predicate
argument structure on top of DS allows for high-quality
conversion - an additional advantage of inserting empty ar-
guments given our commitment to automatic conversion
from dependency structure to phrase structure (Palmer et
al., 2009). The information contained in the verb frame
files can act as a valuable resource in allowing for recovery
of the empty arguments before we annotate them using the
semantic role labels.

2.3. Phrase Structure (PS)
The Phrase Structure guidelines are inspired by

the Principles-and-Parameters methodology of Chomsky
(1981). PS assumes a binary branching representation,
where a minimal clause distinguishes at most two positions
structurally (the core arguments). Any displacement of core
arguments from their canonical positions is represented via
traces. The displacement of other arguments is only repre-
sented if it crosses a clause boundary.

2.4. Overall Process
The treebank is created in three steps. The first step is the

manual annotation of DS. In contrast with traditional DS
annotation, we insert empty predicates (e.g., in the gapping
construction) in DS when the empty predicates have depen-
dents (arguments or adjuncts). The second step is Prop-
Banking, which focuses on adding the lexical predicate-
argument structure on the top of DS. Most empty arguments
are added at this stage. The third step is the automatic cre-
ation of PS, which is done by a DS-to-PS conversion pro-
cess that takes DS and PropBank as input and generates
PS as output (Xia et al., 2009). For syntactic movement,
the conversion process will insert traces and coindex them
with the antecedents automatically.

In order to ensure successful conversion from
DS/PropBank to PS, we are developing the three sets
of guidelines for Hindi (DS, PB, and PS) simultaneously.
While allowing DS and PS guidelines to be based on
different, independently motivated principles of linguistic
representation, we have been going through a compre-
hensive list of constructions in Hindi as a team, carefully
exploring any issues that might impact the conversion pro-
cess. In particular, during the guideline design phase, we
make sure that DS and PB contain sufficient information to
support the desired PS structure.

3. The Role of Empty Categories

3.1. Types of Empty Categories

We make a high-level distinction between different kinds
of empty categories on the basis of whether they are postu-
lated to mark displacement or not. Empty categories that
mark displacement are called traces. In theories that use
movement as a device to derive valid syntactic representa-
tions, traces are created as a result of movement. A trace is
always co-indexed with another constituent in the sentence,
and the interpretation is that the co-indexed constituent was,
at a previous phase of the derivation, in the location of the
trace (or, in some theories, at the same time).

All other empty categories are grouped under the label
silent. These empty categories do not mark displacement;
rather they represent undisplaced syntactic elements which
happen to lack phonological realization. The label silent
covers silent proforms as well as silent heads. Silent pro-
forms are like other proforms (such as pronouns): they are
co-referential with another element in the sentence or else-
where in discourse, or implicit in the discourse situation.
Examples include empty subject pronouns (Are you hun-
gry? Don’t know.), or empty clauses in Null Complement
Anaphora (A: Bill will be late again. B: I know.). Silent
heads resemble their non-silent counterparts. They differ
from silent proforms in that they are not co-referential with
other heads in the sentence or in the discourse context; they
have their own reference. Examples include silent conjunc-
tions, silent causative heads, and silent complementizers.

A different way of classifying empty categories emerges
if we examine whether they can or must be co-indexed,
and if they are what does the co-indexation indicate? As
mentioned above, traces form a uniform class and always
represent the movement relationship that forms them via
co-indexation. The silent class is heterogenous with re-
spect to co-indexation. The empty categories in this class
are not a product of movement and co-indexation with ele-
ments of this class indicates a semantic dependency instead.
However, we do not represent all semantic dependencies
in the phrase structure; only those semantic dependencies
which are completely determined by the syntax. Pronom-
inal coreference (e.g. the relationship between John and
he in When John came back, he was upset) is not fully de-
termined by the syntax and for this reason it is not repre-
sented in the phrase structure. The referent of the silent
PRO subject of an infinitival clause is sometimes fully de-
termined by the syntax (John wanted [PRO to dance]), in
which case it is represented via co-indexation; but in other
cases the referent is left unspecified ([PRO to dance] is
fun), and is not co-indexed. A similar case arises with silent
VPs (*HEAD-VP*). In the case of gapping, the silent ver-
bal projection is fully determined by the syntax and hence
the silent VP is co-indexed with its antecedent. In the
case of sluicing, however, the syntactic structure does not
fully determine the antecedent of the silent VP and hence
the semantic relationship between the silent VP and its an-
tecedent is not represented via co-indexation in the phrase
structure.

1864

Description Type Where Label Coindexed
Inserted in PS?

1 Empty (Head of an) NP silent DS *HEAD-NP* no
(ellipsis)

2 Empty (Head of a) VP silent DS *HEAD-VP* gapping:yes (structure sharing)
(gapping, sluicing) sluicing: no

3 Empty subject with predicative silent DS *pro* no
adjective and “ki” complement clause

4 Empty conjunction head silent DS *CONJ* no
5 Empty subject or object silent PB *pro* no

(regular pro-drop)
6 Empty subject of a non-finite clause silent PB *PRO* reference, but

(control) only if explicit
7 Empty relative pronoun silent PB *RELPRO* no
8 Trace of phrase undergoing trace PS *EXTR* movement

extraposition (rightward movement)
9 Trace of phrase moving to case trace PS *CASE* movement

position in verbal projection
10 Trace of a moved relative pronoun trace PS *RELTR* movement
11 Trace of scrambling (leftward movement) trace PS *SCR* movement
12 Trace of head moving to incorporate trace PS *HEAD* movement
13 Causative head silent PS *CAUS* no
14 Complementizer silent PS *COMP* no

Table 2: Empty category table. In column “Type”, trace means that the empty category shows the original location of
a moved element while silent indicates an unmoved category that just happens to lack an overt phonological realization.
Column “Coindexed in PS?” shows whether the empty category has co-indexation with another element in the PS, and if
so, whether the co-indexation is due to movement or reference.

3.2. Linguistic Motivation for Empty Categories
The primary reason why linguistic theories postulate ECs

is that it allows for simpler descriptions. Often we find that
sentences with certain empty elements have essentially the
same properties (interpretation, case-marking, agreement)
as the corresponding sentences where the element is overtly
realized. In such cases, assuming that the putatively empty
element is in fact realized by an empty category allows for
simpler analyses; without such a postulation we would need
two sets of rules - one where the element is overtly realized
and one where it is not overtly realized. If the trees in a tree-
bank are intended to follow the principles of some linguis-
tic theory, then if the linguistic theory in question assumes
ECs, so does the treebank.

Traces are the result of choosing a linguistic representa-
tion which includes movement, as we do for PS. While the
result of movement (typically) reflects surface order (such
as a fronted wh-element), the underlying position reflects
other important information (such as licensing by a lexical
predicate, i.e., lexical predicate-argument structure). Since
we want to represent both surface order and underlying po-
sition, we use traces.

3.3. Empirical Motivation for Empty Categories
A different kind of motivation for postulating ECs comes

from the demands of natural language processing, in par-
ticular information extraction, question-answering, and re-
lated semantic tasks. The more precise and detailed our
predicate argument structures are (including empty cate-
gories), the more complete our event descriptions will be,

and therefore the more effective our semantic processing
techniques will be. As argued above, in certain represen-
tations, traces provide information as to the true governing
head of the moved argument, which can also be used in
appropriate semantic role labeling and semantic process-
ing. Consider the difference between [Which candidate]i

do you expect ti to win? and [Which prize]i do you expect
to win ti?. The position of trace and the coindexation be-
tween trace and its antecedent indicate different readings of
two sentences with very similar wordings.

4. Annotating Empty Categories
For the reasons just stated we have decided to include

ECs in the treebank annotation. We use a very fine-grained
representation of ECs, as summarized in Table 2. We dis-
cuss each stage of EC insertion below, emphasizing the cri-
teria we use to determine at which layer ECs should be in-
serted.

4.1. Dependency Structure
In DS, only ECs that are required for completing a tree

are inserted. ECs which would be leaf nodes in the DS tree
are never included. The cases of ECs inserted in DS are
listed in the first four rows of Table 2.

The first case is *Head-NP* for empty heads of NPs
when the empty heads have dependents. One such example
is in Ex (1), where the head of the NP “piilii *Head-NP*”
is empty (elided). In order to complete the tree, *Head-NP*
is inserted in the DS to mark the empty head as shown in
Figure 1.

1865

raam_ne shirt

piilii

*

aur

’Ram_erg’

’shirt’
’Mohan_erg’

’blue’

’and’

khariid−ii

niilii

ccof ccof

k1 k2
k1 k2

adj
adj

’buy−perf’

mohan_ne *Head−NP*

kharii−dii ’buy−perf’

’yellow’

Figure 1: DS for the NP ellipsis example in Ex (1)

ravi
Ravi’’Mohan’ ’early’

<troot=aa>

ccof ccof

k7p k1 adv k1

Head−VP

’party_in’

der_se

aur ’and’

adv

aa−yaa_thaa ’come−perf_ past’

paarTii_meiN mohan jaldii

’delay_with’

Figure 2: DS for the backward gapping example in Ex (2)

(1) Empty Head of an NP when the head has depen-
dents:

raam
Ram

ne
erg

niilii
blue

shirt
shirt

khariid-ii
buy-perf

aur
and

mohan
Mohan

ne
erg

piilii
yellow

Head-NP
NULL

khariid-ii
buy-perf

’Ram bought the blue shirt and Mohan bought the
yellow (one)’

The second case where an EC node is inserted in DS is
that of backward gapping as illustrated in Ex (2). In order
to provide a place for its arguments to attach to, an EC node
HEAD-VP representing the empty verb is inserted in the
DS and the arguments are then attached to it as shown in
Figure 2.

(2) Empty Head of a VP as in backward gapping:

paarTii
party

meiN
in

mohan
Mohan

jaldii
early

HEAD-VP
NULL

aur
and

ravi
Ravi

der
delay

se
with

aa-yaa
come-perf

thaa
pst

’Mohan (came) early to the party and Ravi came
late’

It should be noted that the *Head-NP* and the *Head-VP*
empty categories are given distinct interpretations in the DS
and the PS. The DS treats these as standing for heads of
NP/VP while the PS treats these as silent nominal/verbal
projections (NP/VP).

As mentioned above, empty arguments are normally not
marked in DS since they tend to be leaf nodes in the DS.
The only exception is when something else depends on an
empty argument. An example is in Ex (3) (cf. Row 3 in

hai ’is’

gaurtalab

k1

rs

is_saal monsoon der_se

k7t k1 adv

<troot=yaha>

pro

aa−ii ’come−perf’

’noticable’

’this year’ ’monsoon’ ’delay_with’

k1s

Figure 3: DS for the empty subject example in Ex (3)

Table 2), where a clause “ki is saal monsoon der se aa-
ii” (that the monsoon arrived late this year) depends on the
empty subject of the verb hai (is). An EC node representing
the empty subject (*pro*) is inserted in the DS so that the
head of the clause can depend on it.

(3) Empty subject with predicative adjective and “ki”
complement clause:

pro
NULL

gaurtalab
noticable

hai
is

ki
that

is
this

saal
year

monsoon
monsoon

der
delay

se
with

aa-ii
come-perf

’It is to be noted that the monsoon arrived late this
year’

Coordination is another case where DS inserts an EC.
Coordination poses a problem for any dependency gram-
mar based approach, and several alternative strategies exist
for DS treatments of co-ordination (Nivre, 2005). At the
DS level, the Hindi Treebank treats a conjunction as the
root of a coordinate construction. However, sometimes a
conjunction is not realized explicitly in a sentence in Hindi.
In such cases, an EC node is posited to which its conjuncts
are attached as illustrated in Figure 4 for the sentence in Ex
(4).

(4) Empty conjunction head:

bacce
children

baRe
old

ho
become

ga-ye
GO-perf

haiN
pres

,
,

CONJ
NULL

kisii
anyone

kii
gen

baat
advice

nahiiN
not

maan-te
accept-imperf

’The children have grown big (and) do not listen to
anyone’

4.2. Propbank
In the PB layer of the Hindi Treebank, we include the

empty arguments of verbs. As mentioned above, the infor-
mation about the semantic roles of arguments that appear
with a verb is provided in corresponding frame files con-
taining the verb’s subcategorization information. This in-
formation is used to insert ECs for empty arguments.

1866

baat

kisii_kii

’children’

’advice’

 CONJ

’anyone−gen’

ccof ccof

k1 k1s k2

r6

bacce baDe

’not accept−imperf’

’old’

ho_gaye_haiN nahiiN_maan−te’become_GO−perf_pres’

Figure 4: DS for the coordination example in Ex (4)

The set of ECs that are annotated at the PropBank stage
include the following: core arguments of the verb (in-
cluding subjects, direct and indirect objects) that are typ-
ically elided for discourse-pragmatic reasons (pro marked
as *pro*), as well as empty subject arguments occurring in
nonfinite complement and adjunct clauses (PRO marked as
PRO) or empty arguments in relative clauses (labeled as
RELPRO) that are controlled by antecedents within the
same sentence. Examples of constructions with these dif-
ferent types of empty categories that are added at the PB
layer are provided below.

As shown in example (5a), the subject argument of the
transitive verb paRh ‘read’ can be elided, e.g. when it is
recoverable from the prior discourse or situational context.
The label *pro* is used not only to represent empty subjects
as in (5a) but also objects, as in (5b):

(5) Examples of *pro*
a. Empty subject represented with *pro*:

pro
NULL

kitaab
book

paRh-egii
read-fut

‘(She) will read the book’.
b. Empty object represented with *pro*:

kis
who

ne
erg

darwaazaa
door

khol-aa
open-perf

?
?

mohan
Mohan

ne
erg

pro
NULL

khol-aa
open-perf

‘Who opened the door? Mohan opened (it)’.

Empty subjects that occur in nonfinite clauses are labeled
as *PRO*. Example (6) is an example of an infinitival com-
plement of the verb chaah ‘want’ with a syntactically empty
subject that is controlled by the subject of the matrix verb:

(6) Empty subject of control verb shown by *PRO*:

mohani

Mohan
ne
erg

[*PRO*i

NULL
kitaab
book

paRh-nii]
read-Inf

caah-ii
want-perf

‘Mohan wanted to read the book.’

The category *RELPRO* in example (7) represents gaps
in participial relative clauses that are used as prenominal
modifiers of noun phrases:

(7) Gap in participial relative clause shown as *REL-
PRO*:

zyaadaatar
most-of-the

[*RELPRO*
NULL

kal
yesterday

khul-e]
open-perf

darvaaze
doors

‘Most of the doors that opened yesterday’

For annotation, the arguments labeled *pro* will be in-
serted manually, using information from the context as well
as the information contained in the verb frame files. The
arguments labeled *PRO* (that are obligatorily non-overt)
typically occur in a limited set of environments, e.g. in
nonfinite complements of small number of control verbs as
well as nonfinite adjunct clauses. Since the environments
in which *PRO* occurs can be identified deterministically,
the *PRO* labels will be inserted automatically during a
preprocessing step. A similar solution is envisaged for the
label *RELPRO*.

4.3. Phrase structure
The empty categories postulated by PS can be grouped

into two classes: those created by movement (various kinds
of traces) and those corresponding to unpronounced struc-
ture such as silent pronouns (*pro*, *PRO*), silent verbal
ellipsis structures and silent heads.

For the reasons discussed in the preceding sections,
empty arguments are represented using silent proforms.
Empty subjects of non-finite clauses are represented by
PRO and silent relative pronouns in participial relative
clauses by *RELPRO*. Other empty arguments are rep-
resented by *pro*. Since theoretical assumptions do not
force structural representation of adjuncts, we do not repre-
sent putatively empty adjuncts with silent pronouns unless
this is forced by other considerations.

Silent pronouns are also used extensively in ellipsis en-
vironments, in particular NP-ellipsis and Null Complement
Anaphora, both of which we treat as involving silent pro-
nouns. The treatment of Gapping and Right Node Raising
also makes reference to a silent verbal projection but unlike
other cases of ellipsis (such as Null Complement Anaphora)
the reference of the empty VP is completely determined by
the structure. Therefore the empty VP (marked *HEAD-
VP*) is always co-indexed with its antecedent.

The second class of empty categories (‘traces’) are used
to mark displaced elements - they always bear an index that
identifies their antecedent. The motivation for postulating
such empty categories comes from the linguistic theory be-
hind our particular PS treatment: not only must all argu-
ments of a predicate be realized, they must be syntactically
realized in their canonical positions (which represent the
lexical predicate-argument structure of the governor). If the
argument is displaced, then its canonical position is occu-
pied by an empty category (its ‘trace’) and the displaced
element is coindexed with the empty category. We make
a number of distinctions between traces depending upon
the direction and the motivation of the movement that pro-
duced the trace and the size of the object (phrase vs. head)
whose movement produced the trace. We begin with traces
of phrasal movement. Here we make a distinction between
two kinds of traces: traces whose antecedent precedes them
i.e. traces created by leftward movement and traces whose

1867

antecedent follows them i.e. traces created by rightward
movement. The latter kind of trace is labelled *EXTR*.

(8) Trace of extraposed finite clause represented with
EXTR:

raam
Ram

*EXTR*1

NULL
jaan-taa
know-hab

hai
pres

[ki
that

siitaa
Sita

der
delay

se
with

aa-egii]1
come-Fut.FSg

‘Ram knows that Sita will come late.’

VP

��
��
�

HH
HH

H

VP

��
��

HH
HH

VP

��
�

HH
H

NP

N
raam

VP-Pred

�� HH
NP

*EXTR*1

V
jaan-taa

V
hai

CP1
ki siitaa der se aa-egii

Even among traces created by leftward movement, traces
differ in the motivation of the movement that created them.
Traces created by movements driven by case motivations
are marked *CASE*, traces created by movement of the
relative phrase are marked *RELTR*, and finally traces cre-
ated by all other kinds of leftward movement are marked
SCR.

(9) Trace of case-related movement in a passive voice
sentence represented with *CASE*:

raam
ram

dwaaraa
by

khiir1
rice-pudding

*CASE*1

NULL
khaa-yii
eat-perf

ga-yii
GO-perf

’Rice-pudding was eaten by Ram.’

VP

��
��

HH
HH

NP-NST

�� HH
NP

N
raam

NST
dwaaraa

VP

��
�

HH
H

NP1

N
khiir

VP-Pred

��
�

HH
H

NP
*CASE*1

V

�� HH
V

khaayii
V

gayii

(10) Trace of moved relative phrase represented by
RELTR:

vo
those

kitaabeN
books

[jo1

Rel
(ki)
that

siitaa
Sita

*RELTR*1

NULL
khariid-egii]
buy-fut

‘The books that Sita will buy.’

NP

��
�

HH
H

D
vo

NP

�
��

H
HH

NP

N
kitaabeN

CP

�
��

HH
H

NP1

N
jo

C’

��
�

HH
H

C
ki

VP

�
��

H
HH

NP

N
siitaa

VP-Pred

�
��

H
HH

NP
*RELTR*1

V
khariid-egii

(11) Trace of scrambling-related movement represented
with *SCR*:

[monaa
Mona

ko]1
Acc

aatif
Atif

ne
Erg

*SCR*1

NULL
dekh-aa
see-perf

‘Atif saw Mona./‘It was Atif who saw Mona.’

VP

�
��
�

H
HH

H

NP-P1

��HH
NP

N
monaa

P
ko

VP

��
�

HH
H

NP-P
��HH

NP

N
aatif

P
ne

VP-Pred

�� HH
NP

*SCR*1

V
dekh-aa

While most of the cases of traces in the treebank arise
from the movement of phrases, certain structures involve
movement of heads and the traces left behind by head-
movement are indicated by *HEAD*.

(12) Trace of head-movement represented by *HEAD*:

raam
Ram

ne
erg

use
he.dat

nahiiN
neg

*HEAD*1

NULL
shamaa1

forgiveness
ki-yaa
do-perf

‘Ram did not forgive him.’

VP

��
��
�

HH
HH

H

NP-P
��HH

NP

N
raam

P
ne

VP-Pred

�
��

��

H
HH

HH

NP-P1

N
use

V’

��
�
��

HH
H

HH

NP

�
��

H
HH

NP
*CASE*1

N
*HEAD*2

V

��
�

HH
H

Neg
nahiiN

V

�� HH
N2

shamaa
V

ki-yaa

In addition to silent pronouns and traces, the phrase
structure annotation introduces a silent causative head and

1868

a silent relative complementizer. These silent heads differ
from traces and proform in that they do not depend upon
another element of the same kind in the sentence or in the
discourse context for their interpretation. The causative
head introduces a causer argument and explicitly brings in
causative semantics. There is a systematic relationship be-
tween the presence of the silent causative head in the phrase
structure and the presence of a -vaa suffix on the verb that
heads the VP complement of the causative head.

(13) Empty causative head represented by *CAUS*:

raam
Ram

ne
erg

mohan
Mohan

se
instr

TikaT
ticket

kharidvaa-ye
buy-cause-perf

CAUS
NULL

‘Ram made Mohan buy the tickets.’

VP

��
��

�
��

HH
HH

H
HH

NP-P
��HH

NP

N
raam

P
ne

V’

�
��

��

H
HH

HH

VP

�
��

H
HH

NP-P
��HH

NP

N
mohan

P
se

VP

VP-Pred

�� HH
NP

N
TikaT

V
kharidvaa-ye

V
CAUS

The -vaa causative alternation is highly productive in
Hindi. With a few exceptions, any transitive or unergative
verb in Hindi has a -vaa causative. We have chosen to rep-
resent this productivity in causative formation in the syntax.
If the syntactic representations in our treebank allowed for
a decompositional analysis of morphology, the -vaa suffix
would occupy the position occupied by the silent causative
head. But since we have not opted for a decompositional
treatment, the silent causative head functions as a place-
holder for the -vaa suffix on the causative verb; it func-
tions as the head of a verbal projection which introduces
the causer argument. Hindi also has other causative alter-
nations that could in principle be represented using silent
causative heads. We have chosen not to do so because these
other alternations are neither as productive nor as morpho-
logically transparent as the -vaa causative alternation.

Embedded finite clauses in Hindi-Urdu are introduced by
the finite complementizer ki(that) (see Ex 8 and 10). How-
ever, there are also embedded finite clauses that do not in-
volve a ki. In such cases, we postulate a silent complemen-
tizer to emphasize the structural and distributional parallels
between finite clauses with and without ki.

(14) Empty complementizer head represented by
COMP:

vo
those

kitaabeN
books

[jo1

Rel
COMP
NULL

siitaa
Sita

*RELTR*1

NULL
khariid-egii]
buy-fut

‘The books that Sita will buy.’

NP

��
�

HH
H

D
vo

NP

��
��

HH
HH

NP

N
kitaabeN

CP

��
��

HH
HH

NP1

N
jo

C’

��
��

HH
HH

C
COMP

VP

��
�

HH
H

NP

N
siitaa

VP-Pred

��
�

HH
H

NP
*RELTR*1

V
khariid-egii

5. Empty Categories, Annotation, and
Information

Annotation is a process of adding linguistic information
to an existing linguistic representation. Our project starts
with the orthographic representation of a sentence. As sum-
marized above, we have two manual annotation phases, and
one automatic transformation which is not annotation. We
discuss here in more detail the annotation process, espe-
cially with respect to ECs.

• DS starts with the orthographic representation of a
sentence. DS is concerned only with representing the
syntactic relations between the words (or chunks) that
occur in the orthographic sentence, and adds exactly
these relations. This is done in a manual annotation
step which includes postagging and chunking as well
as full syntactic structure (of course, preprocessing
tools, including dependency parsers, are used to make
the annotation easier). ECs are only added if this is
necessary in order to form a tree while maintaining a
consistent linguistic description.

• PB starts with the DS for a sentence. PB is con-
cerned with the lexical predicate-argument structure of
the verbs in a sentence, and adds empty arguments to
the DS tree in order to make explicit the predicate-
argument structure. This happens both via a pre-
processing deterministic stage and manual annotation.
Since PB always just extends the DS tree, all ECs in-
troduced by DS are maintained.

• PS, unlike DS and PB, does not have a manual an-
notation stage. It is assumed that all the information
necessary for the PS structure is already present, ei-
ther explicitly or implicitly, in the DS/PB annotation.
As discussed in (Xia et al., 2009), the DS-to-PS con-
version process relies on being provided with a large
number of examples of linguistic phenomena which
illustrate in detail how to build the PS structure given
the DS/PB input. Some changes, such as different arc
labels, are fairly straightforward, and there are other
commonalities. PS uses the ECs introduced by DS
for the same reason (in order to create a tree), and it

1869

uses the ECs introduced by PB since it shares its in-
terest in representing lexical predicate-argument struc-
ture. In many cases, such as movement, the PS struc-
ture is quite dramatically different from the DS/PB
input and may involve the reordering of dependents.
PS may also introduce additional ECs, such as traces.
However, these alternative representations of move-
ment that PS provides are still based on the underlying
predicate-argument structure that is already captured
in the DS/PB annotation.

Consider again Table 2. It is not a coincidence that all
empty arguments are introduced at DS or PB (they rep-
resent new information being added manually), while all
traces are added at PS (they are representational devices
which can be deduced from other representational devices).

6. Conclusion
We have discussed the motivation and described the pro-

cess for including empty categories, ECs, in the Hindi/Urdu
Treebank. We have demonstrated that ECs can play an im-
portant role in producing rich linguistic representations but
that clear definitions of their usages are needed. Our goal
of creating a single treebank with multiple syntactic and
semantic perspectives has caused us to carefully examine
our intuitions concerning ECs, and to pinpoint precisely the
most appropriate annotation layer for each type. We have
described several different types of ECs, each one of which
is used to represent different types of information in dif-
ferent types of representations: the ECs added during DS
provide essential structural nodes; the ECs added during
PB fill out subcategorization frames; and the EC’s that the
conversion process places in the PS are there to track the
movement of displaced arguments.

7. Acknowledgment
This work is supported by the National Science

Foundation CISE Collaborative Grants for A Multi-
Representational and Multi-Layered Treebank for
Hindi/Urdu, CNS-0751089, CNS-0751171, CNS-
0751202, and CNS-0751213. Any opinions, findings,
and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

8. References
Rafiya Begum, Samar Husain, Arun Dhwaj, Dipti Misra

Sharma, Lakshmi Bai, and Rajeev Sangal. 2008. Depen-
dency annotation scheme for indian languages. In Pro-
ceedings of The Third International Joint Conference on
Natural Language Processing (IJCNLP), Hyderabad, In-
dia.

Akshar Bharati, Vineet Chaitanya, and Rajeev Sangal.
1995. Natural Language Processing – A Paninian Per-
spective. Prentice-Hall of India.

Noam Chomsky. 1981. Lectures on Government and Bind-
ing. Dordrecht: Foris.

Joakim Nivre. 2005. Dependency grammar and de-
pendency parsing. Technical report, Vaxjo University:
School of Mathematics and Systems Engineering. MSI
report 05133.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106.

Martha Palmer, Rajesh Bhatt, Bhuvana Narasimhan, Owen
Rambow, Dipti Misra Sharma, and Fei Xia. 2009. Hindi
Syntax: Annotating Dependency, Lexical Predicate-
Argument Structure, and Phrase Structure. In Proceed-
ings of ICON-2009: 7th International Conference on
Natural Language Processing, Hyderabad.

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer,
and Dipti Misra Sharma. 2009. Towards a multi-
representational treebank. In The 7th International
Workshop on Treebanks and Linguistic Theories (TLT-7),
Groningen, Netherlands.

1870

