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Abstract

Intonation is an important aspect of vocal production, used for atyasfecommunicative needs. Its modeling is therefore crucial in
many speech understanding systems, particularly those requiringnotenf speaker intent in real-time. However, the estimation of
pitch, traditionally the first step in intonation modeling, is computationally incoiare in such scenarios. This is because it is often, and
most optimally, achieved only after speech segmentation and recogritioonsequence is that earlier speech processing components,
in today’s state-of-the-art systems, lack intonation awareness by fatiat known to what extent this circumscribes their performance.
In the current work, we present a freely available implementation oftamative to pitch estimation, namely the computation of the
fundamental frequency variation (FFV) spectrum, which can be easiployed at any level within a speech processing system. Itis our
hope that the implementation we describe aid in the understanding of thisamouestic feature space, and that it facilitate its inclusion,
as desired, in the front-end routines of speech recognition, dialog@mgmition, and speaker recognition systems.

1. Introduction presenting a steep learning curve for researchers who may

Intonation is an important aspect of vocal production, usedrv;]s_h touse 'tc;g their worr]k. | blem b .
for a variety of communicative needs. Its estimation Is paper addresses the latter problem by presenting our

and modeling is therefore crucial to speech classiﬁcatior?ur,rent i.mplem.entation .of_the FFV algorithm (priefly de-
and understanding systems. This is particularly true 01SCI‘Ibed in Section 3.) within a frge, publ|§:Iy avaﬂable and
those systems operating in real-time, in which inference ofommonly used speech processing toolkit. The implemen-
speaker intent should be achieved with low latency. At thd2Uon exposes, via a Tcl/Tk interface, the critical parame

present time, the overwhelming majority of such system§ﬁrS driving the FFV spectrfurrr]l (_:omﬁputanon. dV\:]e _de;scfrlb?
reconstruct intonation contours from frame-level estesat these parameters, some of their eflects, and their aefaults

of pitch (Fy), computed by a pitch-tracking component; in Section 4.; Section 5. discusses several possibilites f

these estimates are then normalized to eliminate absolut@q,Ode“ng the spectrum. In Section 6., we present a graph-

speaker-dependent values. ical corppar!tsohntbenli\/eerjrtrkg splzc;;umf and' the output of
Due to its sensitivity to noise and voicing occlusions, Ipitc a popular pitch tracker (Talkin, ) for singing voice.

is computed and modeled onéfter speech is segmented Blt_efo:_e C°f_‘°'“‘:]'.”% I\évFeVenumera'ge thec;mn 7.r?ever?l ?)p-
and, often, also recognized. The resulting system floyP" cations in whic processing has been shown 1o be

makes intonation contours unavailable to early processin ﬁiffltjl' thei:)ipeiCtnth?tFt;l\lf fev&d(:nce,n?ollfcttilvsli)r/; mar;y ;‘a—
components, where they are likely to be at least as usef ate the inclusion o eature computation In genera

as in downstream processing. It is therefore of some im—SpeeCh analysis software, such as WaveSurféigSger

port that an instantaneous, frame-level characterizadfon an<_j B;ﬁSkaW’tzooé)) afngl Z_raatt ((\j/an HeLrJ]ven(,j 20(31)'01?5 well
intonation in speech, available as early as speech datecti@s " (€ front-ends ot dedicated speech understanding sys-

itself, be developed. Although pitch is visually appealing ems.
the long-observation-time requirements for accuratehpitc .
estimation do not recommend it as a basis for frame-level 2. The Snack Sound Toolkit

modeling. The Snack Sound Toolkit (8lander, 2001) is developed
The fundamental frequency variation (FFV) spectrum, deand maintained by &re Splander. It is designed to be
signed to address these concerns (Laskowski et al., 2008ajsed with a scripting language, and currently has bindings
offers a computationally tractable alternative to chaact for Tcl/Tk (Ousterhout, 2008), Python (van Rossum, 2008)
izing intonation which obviates the need to first estimateand Ruby (Matsumoto, 2008). It ships with the standard
absolute pitch, and then to normalize it out its averageActiveStatéC) distributions of Tcl and Python. Snack al-

It is based on a simple observation, namely that the ratéows users to create multi-platform audio applicationgwit
of change inF(, across two temporally adjacent frames just a few lines of code, with commands for basic sound
of speech produced by the same speaker, can be inferréndling and primitives for waveform and spectrogram vi-
by finding the dilation factor required to optimally align sualization. Snack supports WAV, AU, AIFF, MP3, CSL,
the harmonic spacing in their magnitude frequency spectré&SD, SMP, and NIST/Sphere file formats. The toolkit is de-
This can be achieved without knowledge of the frequencysigned to be extensible, and new commands, filters, and
scale (provided it is the same in both frames). Unfortu-sound file formats can be added using the Snack C li-
nately, FFV processing entails a significant deviation frombrary. The freely available Open Source tool WaveSurfer
traditional, pitch-centered conceptualizations of irtiion,  (Sjolander and Beskow, 2000) provides a graphical user in-
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snack: : sound s
s read $file
foreach line [s ffv
-tFra tpa -tSep tsep
-tint tine -tEXt test
-w nShapel nt < string-literal >
-wi nShapeExt < string-literal >
3. The FFV Spectrum -Ng N, -tSepRef ¢}
-filterbank < string-literal >

terface and visualizations for the functionality in Snaitk;
also can be extended with new custom plug-ins, and be em-
bedded in other applications.

The fundamental frequency variation spectrum is a recently ]
introduced representation (Laskowski et al., 2008a) which
captures instantaneous, per-frame variation in fundamen-
tal frequency. The algorithm relies on the comparison ofThe positive real-valued parametérbr a, t Sep, t | nt,

the frequency magnitude specifa andF ; of the leftand  t Ext, t SepRef, the positive integer-valued parameter
right halves of an analysis frame, respectively. The comparNg, and the string-valued parametens nShapel nt,

ison is implemented as a dot product following frequencywi nShapeExt, andfil t er bank in the above com-
dilation by a factorp of one of F;, or Fr. The dot prod- mand are described individually in the following subsec-
uct, expressed ag(p), yields a continuous spectrum when tions.

computed over a range of an example is shown in Fig-

ure 1. 4.2. Framing Parameters

As mentioned in Section 3., the FFV algorithm relies on an
estimate of the frequency magnitude spectra of the left and
right halves of each analysis frame. These spectra are com-
puted using two asymmetrical analysis windows, placed
symmetrically about the frame’s center, as shown in Fig-
05l _ | ure 2. Parameters governing window shape can be modi-
fied from their default values using arguments to the Snack
f f v function:

puts $line

Figure 1: The FFV spectrum for a randomly chosen voiced
speech frame; the magnitude @fp), shown along the-
axis, is a function of the dilation factprshown along the:--
axis in octaves per 0.008 s (the temporal separation between | ¢,
the maxima of the two window functions used in computing
F. andFR).

text

FFV processing offers several advantages over other repre-
sentations of variation in fundamental frequency; most no-
tably, it is alocal estimatejndependenof the absolute fun-
damental frequency, and it does not require dynamic pro-
gramming as employed in most pitch tracking applications. to
This makes the representation directly amenable to hidden

Markov modeling (HMMing). Examples of successful us-

age in this way (cf. Section 7.) include speaker change IoreEigure 2: Relative placement of the left and right window

diction in dialogue systems, speaker recognition, andgial UNCtions.hi, andhy, in a single analysis frame of dura-
act classification in meeting data. tion 2t..; + tsep CeNtered on instant. The parameters

tint, text, @Ndt,ep, all in seconds, are as described in the
text. Successive frames are placed such that their respec-
tive instantg, aret ¢, seconds apart, not shown.

4. The Snack FFV Interface

) -tFra The frame step between successive analysis
4.1. Synopsis frames, in seconds; the default value is 0.008.

Given the path nam#f i | e of a file containing a snippet -t Sep The temporal separation between the maxima of
of audio, the following Tcl code frames and prints out the the left and right window functions in seconds; the de-
FFV spectrum for each frame: fault value is 0.014.
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-t I nt The temporal extent of the left and right window for convenience):
functions towards the center of the analysis frame, in
seconds; the default value is 0.011. 1, if 117 <i <139

0, otherwise

1, if 246 <i <250
s if ¢ =245 or i =251 (3)
0, otherwise

1, if 250 <i <254

2 if i =249 or i =255 (4)
0, otherwise

1, if 255 <4 <257

/2 if =254 or i =258 (5)
0, otherwise

1, if 258 <i <262

12 if ¢ =257 or i =263 (6)
0, otherwise

1, if 262 <i <266

1o if ¢ =261 or i =267 (7)
0, otherwise

1, if 373 <i<395 ®)
0, otherwise

f-slil = 2

-t Ext The temporal extent of the left and right window
functions away from the center of the analysis frame, F-a[d]
in seconds; the default value is 0.009. B

-wi nShapel nt The shape of the left and right window ,
functions from their maximum towards the center of fali] = {
the analysis frame; currently implemented alternatives

include Hammi ng and Hann. The default value is {

Hann. foli] =

-w nShapeExt The shape of the left and right window
functions from their maximum away from the center ,
. . fa1 1]
of the analysis frame; currently implemented alterna-
tives includeHanmi ng andHann. The default value
is Hanmi ng. ‘
fr2li] =

4.3. Discretization Parameters

FFV spectra such as that shown in Figure 1 are continuous; frsli] =
their discretization requires a specification of a sampling
frequency and range of interest. This is achieved by modi-

fying the parameterisig andt SepRef : Source domain filter limits must lie if0, N,]. A

filterbank value of NONE will output all N, + 1

; . values ofg (p).
-Ng An even integer-valued parameter governing the

number of values of (p) which are to be computed, )
at equi-spaced intervalsp (described below)Y,/2is ~ 4-5-  Error Handling

the number of (p) values computed fgr < 0 andthe  |nvalid parameter values, as well as errors due to a miss-
number ofg (p) values computed fop > 0; g (0) is  ing or a mis-formatted filterbank specification file (when
always computed, for a total number®df, + 1 values  such is specified), are posted as exceptions by returning the
of g (p). The default value ol is 512. TCL_ERRORerror code to the Tcl interpreter.

-t SepRef A positive real-valued parameter, expressed in . .
seconds, governing the separatidp between succes- 5. Modeling Alternatives

sive values op at whichg (p) is sampled, We list several possible ways in which the information

4 available in the FFV representation may be modeled.
_* ‘sep

Ap = N ref Q)
9 sep 5.1. Peak Localization and Tracking
The default value is 0.008. The value ofg(p) at p is the cosine distance between the
magnitude frequency spectiy, andF i in each analysis
4.4. Filterbank Specification frame, following frequency dilation by. Whenp < 0,

. . . . ._itis the left-half spectrun¥; which is frequency-dilated
As with other signal representations in speech processin

: 277; whenp > 0 is positive, the right spectruf is
estimates of the FFV spectrum can be passed through P P gnt sp R

hing filterbank 1o i h b fd guency-dilated bg . The cosine distance is computed
smoothing filterbank to improve the robustness o OWNover a sub-range of the frequencies spanned by the original

stream modeling. Snack’s defadlf v filterbank can be F, andF, because, after dilatiof,; andFj, differ in
replaced by user-specified variants as desired, using tr@oLmain eftent ’ L n

filterbank parameter. This interpretation ofy(p) recommends an obvious appli-

cation. For voiced frames in which only one person is vo-

-filterBank Allows specification of a filterbank. The calizing, we can localize the peak in the spectrum,

currently implemented alternatives includdONE,

DEFAULT, andfileName wherefileNamespecifies the p* = argmaxg(p) . )
path name of a file containing a filterbank structure o

description. The default value BEFAULT, corre-

sponding to a filterbank dif = 7 filters defined as If desired, the peak can be tracked from frame to frame,
follows (the default filters are indexed by the integersusing a dynamic programming approach such as that found

{-3,-2,-1,0,4+1,+2,+3} rather than{1, ... Nf } in most pitch detection algorithms.
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5.2. Density Modeling and Estimation is shown in Figure 3(a). To the right of panel 3(a), in

In contrast to localizing and optionally tracking the supre Panel 3(b), we show the slopst] of the pitch curvep [t],
mum ofg(p), we can model the entire FFV spectrum, with in octaves per second,
or without a filterbank. Mathematically, this is similar to 1 Pt + toen/2t 0]

. . . . fra
modeling the magnitude frequency spectrum or Mel filter- plt] = ; log, T 1 (10)
bank filter responses, instead of formant center frequen- sep Pt = teenfotse]
cies (which correspond to* in this analogy). The filter- As can be seen in the Snagkt ch syntax abovet,., the
bank described in Section 4.4. reduces the dimensionalitframe step, is 0.008 s; we have chosen to estimétein
of the feature space, and improves robustness by averagquation 10 over intervals @f., = 0.112 s. (Division by
ing g (p) over perceptually similar rates of change in fun- ¢, in Equation 10 yields rates in octaves per second rather
damental frequency. However, the outputs of the defaulthan in octaves peft,,, seconds).
filterbank are correlated, and mixture modeling may beneThe graphical result in Figure 3(b) can be directly com-
fit from decorrelation prior to model estimation. This haspared tof f v output. In Snack, we invoke
been shown to be the case in all applications inwhich FFV ¢ ¢¢\ ¢ Fra 0. 008 -t Sep 0. 112

spectra have been employed (cf. Section 7.). Decorrelation ~tint 0.088 -tExt 0.072

if desired, needs to be performed externally to Snaitks ~filterbank NONE

function.

5.3. FFV Modulation Spectrum using the same parameter valuestfér a (t ¢,) andt Sep

Finally, a method that is promising but has not been preV|-(t“p) as are useq in Equation 10 (namely,, = 0.008 s

. . i andt,., = 0.112 s; the values for | nt andt Ext are their

ously explored is the computation of the modulation spec- S .

. . default values scaled by a factor of 8, which is the ratio of

trum over the FFV representation. The magnitude mod-, . .

. ; ) . . teep = 0.112 s to its default value of,., = 0.014 s). This

ulation spectrum characterizes the frequencies with which ) .

o ) leads taV, +1 = 513 values ofy (p) per frame; we display

specific rates of change in fundamental frequency appear.

. . S a contour plot of only the 23 values for each frame, centered

For example, it may reveal that increases in pitch of 1 oc- L

) . onp = 0, in Figure 3(c). As can be seen, the agreement

tave per second (computed for a particular analysis frame

! . with Figure 3(b) is very high; differences ipavalue are due
size) are observed once per second (see Section 6.2.). to the fact that the FFV algorithm computes variatiof'in

6. An Example: Singing Voice using windows oft;,,; + te,s = 0.160 s without dynamic
Cg;ogramming, rather than over windows of 0.0075 ms with

We now present several graphical examples of the Sna namic programming.

f f v output, and a comparison with the output of the Snack
ESPS pitch tracker (Talkin, 1995). We do so for singing 6.2. A Scale

voice (Lindblom and Sundberg, 2005), for three reasonsg, ;. second example is an 8-note scale, from the same vo-

First, the application of FFV processing to singing voice .5jist  we show the corresponding diagrams in Figure 4.
has not been previously explored, and the current work proa | gpack commands used the same syntax as described
vides a convenient opportunity to do so. Second, MOrg,ier As can be seen in panel (b) of the figure, the slope
importantly, singing involves long stretches uninteragpt [t] of the ESPS pitch trajectory indicates seven instants
by an absence of voicing, allowing us to ignore what hap'of fast change, corresponding to inter-note transitione Th

pens at the onset and offset of voicing. This is importanty»yima in Figure 4(c) follow an almost identical trajectory
when comparing pitch tracker tof v output because the 4 in oyr example of glissando in the previous section.
two methods behave differently in these environments; iNve also show, in Figure 4(d), the modulation spectrum of
particular, the output of a pitch tracker is numerically end the FFV spectrum, computed using a Hamming window
fined in unvoiced regions. Finally, demonstration of siggin over 256 values of (p) at fixedp, for all values of» shown

voice i.s easy to grasp, especially visually, and t'ra'n'scendi% panel (c). The modulation spectrum indicates how fre-
potentially language- and culture-dependent definitidns Oquently specific rates of F, variation (along they-axis)

contours which are considered prosodically meaningful. appear, expressed in Hertz along thaxis. As the dark-

6.1. Glissando est region in panel (d) suggests, rates of approximately

. octave per second (along theaxis), corresponding to note

We begin with an example of glissando (or portamento), i o .
which the voice “slides” across a range of pitches. Our glis'}ransmons, appear ata rate of just over 1 Hz (alongithe

sando recording was made by a professional female vocaﬁXis)' The remaining modulation frequencies, for positive
o : - rates off'y change, are harmonics of this 1 Hz frequency.
ist in a home environment on a laptop; it was downsampled

from 44.1 kHz to 16 kHz prior to processing. The output of§.3. A Scale with Vibrato

the SnackESPS pitch tracker, invoked using the Tcl com- Finally,

4 we show a similar scale sung by the same vocal-
man

ist, this time with vibrato, in Figure 5. This is an effect of
s pitch -nethod ESPS small-scaleF, variation, superimposed on the underlying
-mnpitch 60 note. As for our previous two examplds, variation com-

- maxpi tch 1000 puted from pitch tracker output, in Figure 5(b), exhibits th

-franel ength 0.008 ;
_wi ndowl engt h 0. 0075 same features as that expressed directly by the output
(Figure 5(c)).

3745



550 ; . . : I§
2
500 : : : : : : ! v
450+ 05
400t
0
350t
300l -0.5
250t -1
2%% 1 2 3 4 0 1 2 3 4
(a) (b)

0 1 2 3 4
()

Figure 3: Glissando. Clockwise from the upper left: &), the output of a pitch tracker, in absolute frequency aldreg t
y-axis, as a function of time in seconds along #haxis. (b)p [¢t], computed fronmp [¢] using Equation 10, in octaves per
second along thg-axis, as a function of time in seconds along thaxis. (c) Bird’s eye view of consecutive FFV spectra
gt (p), with timet in seconds along the-axis, and rate of, variation in octaves per second along thaxis; darker shades
of gray indicate larger magnitudes @f(p).

The modulation spectrum in Figure 5(d) indicates that ratepitch-trajectory-derived counterparts. This sectionmeer

of Fy change in the ranget+0.5, +1.0) octaves per second ates several applications in which FFV processing has been
appear at a frequency of just over 1 Hz, as observed also ishown to be beneficial and/or enabling in that regard.
Figure 4(d). However, in addition, there is a dark patch at

p values of approximately-0.5 octaves per second, which 7.1. Text-Independent Speaker Change Prediction

appears at the much higher modulati.on frequency of ,3'5 HZSpeaker change prediction is the task of deciding whether a
This up and down change, symmetric abput 0 and dis- currently vocalizing speaker is signaling the intent to-con

tinct from the mostly positive rates of change at approxi-jine, following an incipient pause. It is an important func
mately 1 Hz, is due to vibrato. tionality in dialogue systems which aim to exhibit human-
.. . . like response times, avoiding long hold-over waits before
7. Applications in AUto_mat'C Speech initiating a turn (Edlund and Heldner, 2005). From a sys-
Processing tem design perspective, real-time speaker change prewicti
FFV processing has been applied to a number of tasks iwould ideally be incorporated into speech activity detec-
speech understanding, and in a limited few cases a contion; this calls for frame-level acoustic features chagezt
parison has been made with information available from dng instantaneous intonation sub-phrases.
standard pitch trajectory. It is important to note, how-The FFV representation was designed primarily with this
ever, that the computational flexibility afforded by adopt-task in mind, and was tested (Laskowski et al., 2008a) on
ing FFV features cannot be duplicated when using theithe Swedish Map Task Corpus (Helgason, 2006). Graph-
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Figure 4: A scale. Clockwise from the upper left: {d}], the output of a pitch tracker; (I)[¢], change in pitch computed
from p [t]; (c) consecutive FFV spectia (p); axes as in Figure 3. (d) Modulation spectrunyptp) for specific values of
ratesp of F variation, shown along thg-axis as for panel (c); modulation frequency shown aloraxis in Hertz; darker
shades of gray indicate larger magnitudes.

ical depiction of what HMMs learn for this task, namely crimination of 70.6 to 72.2%. FFV model analysis re-
that speakers employ predominantly flat intonation convealed that talkspurts implementing these dialog acts are
tours to signal a desire to continue speaking, was showmitiated with flat intonation contours, and terminatedhwit

in (Laskowski et al., 2008b). In (Heldner et al., 2008), slower speech. Several modifications, and augmentation
it was additionally shown that intonation contours prior to with other prosodic features, are presented in (Laskowski
speaker change differ as a function of speaker role; instrucet al., 2009b).

tion giversemploy more falls than rises, whifellowers
use the opposite strategy. Finally, (Laskowski et al., 2008
considered several refinements to the FFV representati
for the speaker change prediction task.

Most recently, the acoustic prosodic vector defined in
o(rl]_askowski et al., 2009b) has been implemented in
a full-scale text-independent HMM dialog act decoder
(Laskowski and Shriberg, 2010), which segments and clas-
sifies audio into 8 types of dialog acts, with 3 types of dia-
The FFV representation has also been applied in multifog act termination. The decoder operates without reliance
party conversational settings (Laskowski et al., 2009&), i on word boundaries, typically used for inferring models of
tially to detect floor mechanism dialog acts in the ICSlintonation, and is therefore deployable in privacy-séresit
Meeting Corpus (Janin et al., 2003). We reported floar ~ settings in which spectral envelopes may not be computed.
holdersand holds signaling floor reservation (and there- For several dialog act types and termination types, its per-
fore quite similar to the phenomena in Section 7.1.), carfformance approaches that of a contrastive lexical system
be separated from all other dialog act types with a diswhich uses human-transcribed words.

7.2. Text-Independent Dialogue Act Recognition
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Figure 5: A scale with vibrato. Clockwise from the upper:l€f) p [t], the output of a pitch tracker; ()[¢], change in
pitch computed fronp [¢]; (c) consecutive FFV spectrg (p); (d) modulation spectrum af; (p); axes as in Figure 4.

7.3. Pitch Detection Jin, 2009; Jin et al., 2010), do not model).
An approach which appears conceptually identical to FFV .
processing and which may be computationally quite similar 8. Conclusions

was proposed for the purposes of improving pitch estimawe have implemented and presented an interface to the
tion in (Martin, 2008). Harmonic similarity between adja- computation of a novel representation of macro- and micro-
cent spectra was shown to benefit pitch tracking in severghtonation, the fundamental frequency variation (FFV)
examples of utterances with low signal-to-noise ratios.  spectrum, within the popular and publicly available Snack
N Sound Toolkit. The interface exposes the majority of
7.4. Text-Independent Speaker Recognition parameters governing FFV behavior, and our description
Finally, the FFV representation has also been shown tonakes it possible for speech researchers, practitioners an
aid in the task of speaker recognition, in both nearfieldvoice pathologists to explore its potential use in theirkvor
(Laskowski and Jin, 2009) and farfield (Jin et al., 2010)without needing to understand and to re-implement the sig-
scenarios. The temporal locality of the FFV features makesal processing internals.
possible the construction of single-state Gaussian maxturThis work has also compared the FFV representation to the
model systems, such as those used with standard Me$lope of thei trajectory, as estimated via a frequently used
frequency cepstral coefficient systems. Because these sygitch-tracking method. For relatively clean signals of ex-
tems do not model trajectories, the observed improvement®nded intervals of continuous voicing, the representatio
in baseline speaker recognition system performance sugnaximum appears to contain the same information as do
gest that speakers differ in their preferences of ratepf such slopes, over a wide range of magnitudes of rai&,of
change, in addition to differences in absollitg (which  change. This fidelity is achieved without reliance on dy-
FFV features, and therefore the systems in (Laskowski andamic programming, as employed in most pitch trackers,
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