Analysis and Presentation of Results for Mobile Local Search

Alberto Tretti, Barbara Di Eugenio

Department of Computer Science, University of Illinois at Chicago
Chicago, IL 60607, USA
atrett3 @uic.edu, bdieugen @cs.uic.edu

Abstract
Aggregation of long lists of concepts is important to avoid overwhelming a small display. Focusing on the domain of mobile local search,
this paper presents the development of an application to perform aggregation of Yahoo! Local results. We performed an analysis of the
data available through Yahoo! Local, compiled new resources, and developed algorithms evaluated through a prototype. The results
obtained from a user study show that, while maintaining the quality of the results and a high user satisfaction, the methods implemented

can significantly reduce the result space.

1. Introduction

Devices such as cell phones and PDAs are becoming in-
creasingly sophisticated and are supporting Internet brows-
ing more and more. Users can perform mobile searches and
browse results on their devices. The specific features of the
devices, including their small sizes, pose challenges to the
usual interfaces to search engines: long lists of concepts are
difficult to navigate with the controls of a portable device;
text-to-speech is not the answer either, because of cogni-
tive limitations in remembering those long lists. An answer
to these problems is summarization, with the ultimate goal
of engaging the user in a dialogue where results are pre-
sented via abstract descriptions and the user is engaged in
choosing which of those concepts is closer to what s/he is
looking for, until the appropriate set of results is found. In
this paper, we focus on the first stage of such an approach,
that of aggregating the results into meaningful classes and
choosing the appropriate classes to present to the users.

The idea of exploiting aggregation to improve usability has
already been used in the domain of mobile devices. Re-
search has focused on compact visualization of HTML doc-
uments (Buyukkokten et al., 2002), on systems for brows-
ing document collections based on clustering (Bordogna et
al., 2008) and hierarchical document summarization (Chan
et al., 2002). User studies from these and other research
agree on the fact that clustering of search results on mobile
devices, while providing higher performance than ranked
result lists, is both feasible and effective.

Our project focuses on local search, which consists of
“geographically constrained searches against a structured
database of local business listings” (Wikipedia). We se-
lected the Yahoo! Local web service to compile the re-
sources needed and to compare our approach with a pop-
ular commercial application. The methods developed ex-
ploit Yahoo! Local’s listings categorization to reduce the
result space and pinpoint the category containing the most
relevant results. Moreover, the presentation of the results
has been enhanced with respect to Yahoo!’s mobile appli-
cation, supporting category selection and homonym results
aggregation and ranking. We evaluated our prototype with
a user study, which pitted our system against Yahoo! Lo-
cal, and against a plain list of search results. We found that

our aggregation methods are quite effective, cutting down
the results on average by 43%, but leaving search efficiency
and user satisfaction unaffected. Moreover, on difficult, less
specific tasks, Hello Local shows promise, even if the trend
is not significant: users using our prototype were able to
find relevant results faster. More details on this research
can be found in (Tretti, 2009).

2. Yahoo! Local Search

Yahoo! Local offers search through three different means:
the standard website, the Y!Go mobile application', and the
API for developers. This allows for a comparison between
the standard and the mobile interface and, most interesting,
the development of an application that can access Yahoo!’s
database. While the website offers the full set of features to
search through local listings (e.g. sort and filter by various
parameters, view business details), the mobile interface is
limited both in screen size and features. This affects the
search effectiveness as users must interact with long lists of
results without any effective aid.

Each local listing in Yahoo!’s database is associated with
information such as title, address, map coordinates, rating,
reviews, phone number, categories, etc. Using the API, the
only fields containing free text are the title, the reviews and
the categories. The title is the name of the business; the
reviews are short unstructured comments written by users;
the categories are manually specified tags that define the
nature of the local listing. Unfortunately, for any given list-
ing the API allows to retrieve only the last user review. On
the other hand, there is no restriction on the number of cat-
egories associated with a particular business.

The categorization represents a very useful feature. Each
entry in Yahoo!’s database is associated with one or more
categories (e.g. ‘“Sushi Restaurants”, “Opticians”, “Hair
Salon”). These tags are precompiled and organized in a
tree structure that can be seen as an ontology. The root is a
node that represents the city where the search is performed.
The first level nodes are 15 meta-categories that cannot be
assigned to a business but represents the major categoriza-

'Since the time the research was conducted, Yahoo! dis-
countinued the original Y!Go service. Its functionalities are now
part of new Yahoo! Local mobile website and applications.

2585

Category Unique Title results | Have BusinessUrl | Have LastReviewlIntro
Food & Dining 10619 3280 (30%) 4020 (37%)
Recreation & Sporting Goods 2967 1291 (43%) 458 (15%)
Entertainment & Arts 7655 3076 (40%) 1187 (15%)
Travel & Lodging 4788 1587 (33%) 750 (15%)
Education 3774 1651 (43%) 518 (13%)
Automotive 8600 2567 (29%) 1163 (13%)
Retail Shopping 12933 4056 (31%) 1437 (11%)

Table 1: Analysis of listings in Chicago by category (same-title entries are counted only once).

LEINT3

tion areas, such as “Food & Dining”, “Retail Shopping”,
“Automotive”, etc. The lower level nodes are the actual
categories associated with local listings. This ontology is
manually maintained by Yahoo! and, at the time of writing,
is composed by over 1300 nodes.

Yahoo! Local retrieves and ranks the list of search results
presumably based on the categories and on additional infor-
mation, such as title, business overview, user reviews etc.
To better understand the amount of data available for text
analysis, we crawled Yahoo!’s database of local listings in
Chicago. From the collection of over 170,000 unique en-
tries, it appeared that this additional information is very
sparse: Table 2 shows that only one third of the total num-
ber of results contains a link to the business’ web site (row
BusinessUrl) and only 8% contains at least one user com-
ment (row LastReviewlntro). It is also interesting to note
the high number of businesses sharing the same 7itle, com-
posed mainly by chain stores. We will call these homonym
entries. Excluding homonym entries, the percentage for
BusinessUrl drops to 29% because most chain-store listings
have a web site. The percentage of results with reviews re-
mains constant, because the number is consistent for both
homonym and non homonym entries.

Unique ID entries
Homonym 7itle entries
Have BusinessUrl
Have LastReviewlntro

177, 491 (100%)
28, 048 (16%)
60, 127 (33%)
15, 580 (8%)

Table 2: Analysis of local listings in Chicago

Table 1 shows how these numbers vary across categories.
The table lists the seven categories with highest percent-
age of LastReviewIntro. The top categories are probably
those that interest people the most, such as Food and Din-
ing, Entertainment & Arts, Recreation & Sporting Goods,
and Travel & Lodging. In fact, these categories, along with
Retail Shopping, are also the categories that are most likely
to be searched on a mobile device according to various stud-
ies (Yi et al., 2008) (mspatial.com, 2007 revision). Unfor-
tunately, even for popular categories the amount of natural
language data associated with local listings is very limited.
After analyzing the available data, we studied the results
retrieved by Yahoo! Local for various queries. We no-
ticed that the system often returns hundreds or thousands
results, many of which do not appear to be relevant to the
query. This long list of results is particularly difficult to

navigate with Yahoo!’s mobile interface that requires the
user to browse the list in order, nine results at the time. A
query example can be found in Table 3. where the scenario
is a person trying to find a chocolate store. Among the 257
results, many of these belong to categories that are most
likely unrelated to the query, such as “Cellular Providers”
or “B2B? Food Wholesalers”.

Search | Chocolate Store
Location | 60608 Chicago, IL
No. Results | 257
Categories | Food Manufacturers & Processors (75)

Grocery Stores (59)

B2B Food Wholesalers (51)
Candy & Sweets (50)
Restaurants (72)

Cellular Phones (27)
Bakeries (26)

Cellular Providers (25)
Others (21)

Table 3: Example of query analysis - number of results for
a given category in parentheses.

3. Methods

The application we developed implements an algorithm to
filter and aggregate the results returned by Yahoo!’s APL
The idea is to exploit the categorization by grouping the lo-
cal listings by categories and eliminating those categories
non relevant to the query. The general steps are the follow-
ing: first, the system gets the query from the user and stores
Yahoo!’s results in a tree structure where the nodes repre-
sent categories; then, a greedy search explores the tree to
find those nodes most likely to contain relevant results; fi-
nally, within those nodes, the system aggregates homonym
results and re-ranks the final list.

3.1. Category tree generation

Once the search results have been retrieved through Ya-
hoo!’s API, the first step is to map each category-node to
the set of results containing that category. A result will then
appear in the tree once for every category it belongs to. Ya-
hoo! does not put restrictions on how categories can be as-
signed to a business listing, thus it happens that results are

ZBusiness to business.

2586

HOME

chocolate store Chicago| " £

Memw Search

—_—
Select a category

Food & Dining (206)
Restaurants (72)

Candy & Sweets (50)

Select

_
‘chocolate store Chicago’ results

THw R x (1)
Ghirardelli Chocolate Shop
0.7 mi 830 M Michigan Ave, #1

L i
La Parisianne Du Chocolat
0.5 mi

R R R (2)
Godiva
0.6 mi 3locations

Fannie May Fine Chocolates
0.1 mi 3locations

Mew Search Select

Figure 1: Hello Local interface and the three main stages of interaction: query input, category selection and result browsing.

categorized both as a node and its parent. For instance, the
listing “Grand Lux Cafe” is associated both with “Restau-
rants” (parent node) and with “American Restaurant” (child
node). Our algorithm ignores the higher level category and
maps the result only to the child node. Since the tree is a
hierarchical structure, the child node already contains the
implicit information about the parent category.

Being manually generated, local listings can be poorly cat-
egorized. It is possible that a business listing is associated
with too many categories (as just explained), that the cate-
gories are not correct (i.e. they do not represent that busi-
ness) or that there are no categories at all. For non cat-
egorized entries, our algorithm creates an additional node
called “Other Categories”.

3.2. Category-node selection

Once the results are stored, the algorithm explores the tree
to find categories containing relevant results. The search
can be divided into two parts: the selection of the starting
node and the actual search from the starting node.

3.2.1. Query-category mapping

By default the search starts from the root, but there are cases
in which it is possible to directly map the query to an inter-
mediate node. For example, the query “italian restaurant”
can be easily mapped to the category “Italian Restaurants”.
Other mappings may be more complex: the query “natural
food” should be mapped to the category ‘“Natural & Or-
ganic Foods”; the query “restaurant” should be mapped to
“Restaurants”, but not to “Italian Restaurant”. A simple
algorithm based on edit distance would not always work.
Especially, it would fail for categories where noun and ad-
jective are not contiguous (e.g. the “natural food” exam-
ple). To deal with all possible cases, our algorithm bases
the query-category comparison on entities rather than sin-
gle words. Thus, the mapping is successful only if the
query matches any of the entities extracted from the cat-
egory. To perform entity extraction the system uses a sim-
ple patter matching method. This is possible because all

categories are named using specific sequences of adjectives
and nouns. For example, going back to the “natural food”
query, the entities extracted from the category “Natural &
Organic Foods” (pattern: Adjective & Adjective Noun) are
“natural food” and “organic food”, thus the matching is suc-
cessful.

3.2.2. Search strategy

From the starting node, the algorithm performs a greedy
search. The objective is to find the category containing the
best set of results, meaning the smallest set that contains
the desired result. But since the desired result is unknown a
priori, the algorithm must search for the category that most
likely contains what the user is looking for.

The heuristic used for the search is based on the concept
of dominant node. The determination of dominant nodes
is based on the number of results contained in its subtree.
The threshold for being classified as dominant can be calcu-
lated in many ways, such as: a percentage of the maximum
frequency (i.e. if the category with the highest number of
results has 200 results, then the threshold is a percentage
of 200), the mean of the frequencies, the mean of the fre-
quency plus or minus a standard deviation. For our evalua-
tion the threshold was empirically set to 50% of the maxi-
mum frequency.

At any given point in the search, there may be more than
one dominant node. In this case, the algorithm is not able
to determine which category-node to expand and thus halts
to get more user input. The user is then presented with the
list of dominant categories and can either choose one or
stop the search at the present node.

If there is only one dominant category, the search proceeds
from the selected node and continues until: the selected cat-
egory is a leaf node; or the number of results in the current
node is small enough (e.g. less than 10); or the user chooses
to stop at a given node.

Using the query “chocolate store” as example, the algo-
rithm first chooses the “Food & Dining” node (containing
206 results); then, it prompts the user to choose between

2587

the “Food & Dining” parent node and its children “Candy
& Sweets”(50), and “Restaurants”(72); finally, the user is
presented with the results contained in the chosen node.
Figure 1 illustrates the main three stages of the user inter-
action with the system. The first one is the query input, the
second is the category selection (if needed), and the last one
is the results browsing.

3.2.3. Category aggregation

A problem with this algorithm is that the number of dom-
inant categories may be too high, spoiling the user expe-
rience. Moreover, sibling-categories can be very similar
making the user’s choice rather confusing. For instance,
when looking for “Starbucks”, the system may prompt the
user to choose between “Cafes” and “Coffee Houses”. To
solve this problem, our system detects similar categories
and aggregates them into a single category.

To decide when and how two categories should be aggre-
gated, the algorithm counts the number of results common
to both categories and, if higher than a threshold, empir-
ically set to 90%, it merges the two categories. Then,
an affinity value is used to decide which category is more
prominent and thus which name the new category will have.
The affinity is a concept derived from data mining and is
used to discover co-occurrence relationships in the market
basket problem. In this problem, a store records each item
contained in a market basket. Each purchase is then an en-
try with its set of associated items. The objective of the
store is to find association rules, that is co-occurrences of
items within a basket, to determine how purchased items
are related. For instance, a store may find that customers
buying hamburgers are likely to also buy ketchup.

In the case of local listings, we can see every entry as a
purchase and the categories as basket items. The affinity is
then a positive value that relates one category with respect
to another. In other terms, the affinity is the confidence
of the association rule. Given the categories A and B, the
formula is:

(Al B).count

affinity(AB) = A count

ey

Note that this is the probability Pr(BJA) and
af finity(AB) # af finity(BA). If Pr(B|A) <
Pr(A|B), then category A is more important and thus
takes the name of the merged category. Being calculated
a priori, the affinity is query independent. To calculate
affinity values, we used our record of 177,491 Yahoo!
Local listings, each with its set of associated categories.
Some examples of affinity calculations can be found in
Figure 2.

3.3. Homonym results aggregation

Unlike Yahoo! Local, the algorithm aggregates homonym
results (e.g. multiple locations of chain stores) into a sin-
gle entry to avoid overwhelming the small screen. The
user can select the title of the business and expand the spe-
cific location of all nearby branches. This feature is very
handy in case of stores, such as Starbucks, where there
are potentially tens of results. Aggregated entries are then

A = Japanese Restaurants

B = Sushi Restaurants
P(B|A) = 60/188 = 0.319
P(A|IB) = 60/69 = 0.869

A = Salons

B = Hair Salons

P(B|A) = 465/1719 = 0.270
P(A|B) = 465/1119 0.415

A = American Restaurants
B = Burgers

P(B|A) = 274/1039 0.263
P(A|B) = 274/688 = 0.398

Figure 2: Examples of category affinities.

re-ranked in the list to boost popular places with multi-
ple branches. The boost is proportional to the number of
branches. Because of this, businesses with many locations
will be pushed higher in the list, while places with few lo-
cations will keep the same relative position.

4. Evaluation

To evaluate the algorithm, we implemented a software pro-
totype, called Hello Local, that mimics Y!Go’s interface
and input methods (see Figure 1).

The prototype was used in a user study designed to demon-
strate that the usual approach of returning a long list of re-
sults is not the best solution for a mobile interface. We
argue that a more interactive search can lead to better re-
sults and consequently improve user satisfaction. To test
this hypothesis we ran the user study with three systems:
the first is Y!Go which represents the baseline condition;
the second is Hello Local implementing the search strategy
described in Section 3.2.2.; the third is Hello Local with-
out such strategy, which means displaying the plain list of
results with no user prompts - we will call this Plain List.
The study was performed between-groups® with three
groups of 13 subjects each, totaling 39 people. Due to the
limited number of subjects available, we decided against a
within-groups study. The subjects were college students of
age between 18 and 30. Demographic data was collected
to ensure an even distribution of subjects’ gender, level of
studies, and English proficiency. 79% of the subjects never
used Yahoo! Local before, but they were familiar with other
local search engines.

Each subject performed 7 different tasks divided in easy
and difficult. Easy tasks consisted in finding a specific place
being able to specify its name in the query (e.g. find the
Borders bookstores in Chicago). Difficult tasks required
not to use the name of the place to resemble a situation in
which the user is exploring an area.

3In a between-groups study, subjects are divided in groups and
each group tests only one system. In a within-groups study, sub-
jects test all systems. To avoid the risk of bias, a within-groups
study should randomize the order users try the systems.

2588

Application | Time (s) | Position | Queries
Hello Local | 20 (33) 1524) | 1.0(0.2)
Plain List 34 (45) | 21(19) | 1.4(0.7)
Y!Go 40 (70) 19 (20) | 1.3(0.8)

Table 4: Mean and standard deviation for difficult tasks.

Both subjective and objective measures were collected dur-
ing the study. As subjective measure, we recorded user
satisfaction through a questionnaire at the end of each
task. Objective measures were the percentage of completed
tasks, mean time to task, mean steps to task, and number of
results returned to the user.

From the analysis of the data collected through the ques-
tionnaires, it emerges that all three software were evalu-
ated positively: the user satisfaction score was high for each
group (over 4 on a 5 points scale) with no significant dif-
ference. Also the percentage of completed tasks was very
similar across groups (about 90%). Thus these measures
do not show whether one application performs better than
another.

Given the goal of reducing the amount of information pre-
sented to the user as a plain list, an important measure is the
percentage of deleted results. This value is computed com-
paring the size of the result list returned by Yahoo! with
the size of the list returned by Hello Local. Considering
grouped homonym results as one, and not counting queries
with less than 10 results®, the mean is 43% (o = 0.27):
on average, Hello Local was able to reduce the initial list
of results to almost half its size. The mean drops to 29%
(o = 0.25) if homonyms results are not grouped into a sin-
gle entry. Considering how the user satisfaction is very high
and comparable to Y!Go’s, we can say that the methods
implemented successfully filters out non-relevant data and
provide the user with a reduced list of results.

Other objective measures are presented in Table 4 and 5.
ANOVA? in conjunction with Tukey’s test revealed statis-
tically significant difference (p ~ 0.03) only in Table 5 for
Time column between Hello Local and Plain List and be-
tween Hello Local and Y!Go. The columns show the sec-
onds to visualize the desired result without loading times,
the position in the list of the desired result, and the number
of queries needed to find the desired result. For the difficult
tasks, it is not possible to draw a definite conclusion, but
one can notice a favorable trend for Hello Local. Table 5,
instead, shows that users looking for a specific name were
slower with Hello Local. This is due to the overhead intro-
duced by the software requesting additional user input to
select the categories.

5. Conclusion and Future Work

Unlike current local search software, Hello Local imple-
ments a system-initiative strategy, prompting the user with
a list of terms, or categories, to refine the search. A user
study showed how Hello Local is capable of greatly re-
ducing the list of results returned to the user. This is ac-
complished without impacting results’ quality, but adding

4Short lists do not need to be reduced.
5 Analysis of variance.

Application | Time (s) | Position | Queries
Hello Local 14 (22) 6 (22) 1.1 (0.3)
Plain List 3(8) 2(5) 1.1 (0.3)
Y!Go 5(1) 3(7) 1.1 (0.2)

Table 5: Mean and standard deviation for easy tasks.

a temporal overhead for straightforward queries. Literature
on spoken dialogue interfaces and user interfaces in general
(Geelhoed et al., 1995) and (Walker et al., 1997) seems to
back up the hypotheses that, rather than giving the user an
immediate set of results (speed over quality) it is more im-
portant to provide a possibly better set of results with a few
more user interactions (quality over speed).

In future work we aim to expand the domain to non-local
searches and overcome the dependency on external catego-
rization to automatically determine appropriate partitions
of the result space.

6. Acknowledgements

This work was supported by the award “Intelligent Ag-
gregation for Mobile Search”(G6579) from Motorola Inc.
through the University Partnership in Research program.
Many thanks to Steve Nowlan (Motorola), Paul Davis (Mo-
torola), Zhuli Xie (formerly at Motorola), and Will Thomp-
son (Motorola) for stimulating discussions and valuable
suggestions.

7. References

Gloria Bordogna, Alessandro Campi, Giuseppe Psaila, and
Stefania Ronchi. 2008. An interaction framework for
mobile web search. In MoMM °08: Proceedings of
the 6th International Conference on Advances in Mobile
Computing and Multimedia, pages 183-191, New York,
NY, USA. ACM.

Orkut Buyukkokten, Oliver Kaljuvee, Hector Garcia-
Molina, Andreas Paepcke, and Terry Winograd. 2002.
Efficient web browsing on handheld devices using
page and form summarization. ACM Trans. Inf. Syst.,
20(1):82-115.

D. L. Chan, R. W. P. Luk, W. K. Mak, H. V. Leong, E. K. S.
Ho, and Q. Lu. 2002. Multiple related document sum-
mary and navigation using concept hierarchies for mo-
bile clients. In SAC '02: Proceedings of the 2002 ACM
symposium on Applied computing, pages 627-632, New
York, NY, USA. ACM.

Erik Geelhoed, Peter Toft, Suzanne Roberts, and Patrick
Hyland. 1995. To influence time perception. In CHI
’95: Conference companion on Human factors in com-
puting systems, pages 272-273, New York, NY, USA.
ACM.

mspatial.com. 2007 revision. http://www.mspatial.com/
news/latest_mobile_local_search_index_shows_tech_savvy
_consumers_want_wireless_internet.

Alberto Tretti. 2009. Analysis and presentation of results
for mobile local search. Master’s thesis, University of
Mlinois at Chicago.

2589

Marilyn A. Walker, Diane J. Litman, Candace A. Kamm,
and Alicia Abella. 1997. Paradise: a framework for
evaluating spoken dialogue agents. In Proceedings of
the eighth conference on European chapter of the Asso-
ciation for Computational Linguistics, pages 271-280,
Morristown, NJ, USA. Association for Computational
Linguistics.

Jeonghee Yi, Farzin Maghoul, and Jan Pedersen. 2008.
Deciphering mobile search patterns: a study of yahoo!
mobile search queries. In WWW ’08: Proceeding of the
17th international conference on World Wide Web, pages
257-266, New York, NY, USA. ACM.

2590

