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Abstract
We describe the re-annotation of selected types of named entities (persons, organizations, locations) from the MUC7 corpus. The focus
of this annotation initiative is on recording the time needed for the linguistic process of named entity annotation. Annotation times
are measured on two basic annotation units – sentences vs. complex noun phrases. We gathered evidence that decision times are non-
uniformly distributed over the annotation units, while they do not substantially deviate among annotators. This data seems to support the
hypothesis that annotation times very much depend on the inherent ‘hardness’ of each single annotation decision. We further show how
such time-stamped information can be used for empirically grounded studies of selective sampling techniques, such as Active Learning.
We directly compare Active Learning costs on the basis of token-based vs. time-based measurements. The data reveals that Active
Learning keeps its competitive advantage over random sampling in both scenarios though the difference is less marked for the time
metric than for the token metric.

1. Introduction

Cost awareness has not been a primary concern in most of
the past linguistic annotation initiatives. Recently, strate-
gies which strive for minimizing the annotation load have
gained increasing attention. Selective sampling of the units
to be annotated, such as Active Learning (Cohn et al.,
1996), is certainly one of the most promising approaches.
Still, when it comes to the empirical assessment of annota-
tion costs even proponents of Active Learning make overly
simplistic and empirically questionable assumptions, e.g.,
the uniformity of annotation costs over the number of lin-
guistic units (typically tokens) to be annotated.
In this paper, we describe MUC7T , an extension of the
MUC7 corpus (Linguistic Data Consortium, 2001), where
we couple common named entity annotation metadata with
a time stamp which indicates the time measured for the lin-
guistic decision making process.1 In MUC7T , annotation
time meta data is available for sentences as well as for noun
phrases as annotation units. The second part of the paper
shows how this new resource can be applied in the context
of effort leveraging annotation strategies.
The rest of the paper is structured as follows. Section 2.
gives a detailed description of the annotation setting, de-
scribes how and on which unit level time measurements
were taken, and evaluates the annotator’s performance in
terms of inter-annotator agreement. Section 3. provides
MUC7T statistics, with the main finding that annotation
time is subject to high variation. This supports our as-
sumption of non-uniform time costs. We then apply the
MUC7T corpus for a cost-sensitive evaluation of a stan-
dard approach to Active Learning in Section 5. Finally, Sec-
tion 6. concludes and points out additional application sce-
narios for the MUC7T corpus.

1These time stamps should not be confounded with the anno-
tation of temporal expressions (TIMEX in MUC7).

2. Corpus Re-Annotation
2.1. Annotation Task Setup
Our re-annotation initiative targets the named entity anno-
tations (ENAMEX) of the English part of the MUC7 corpus,
viz. PERSONS, LOCATIONS, and ORGANIZATIONS. Tem-
poral and number expressions (TIMEX and NUMEX) were
deliberately ruled out. The annotation was done by two ad-
vanced students of linguistics with good English language
skills. For consistency reasons, the original guidelines of
the MUC7 named entity task were used.
MUC7 covers three distinct document sets for the named
entity task. We used one of these sets to train the anno-
tators and to develop the annotation design, and another
one for the actual annotation experiment which consists of
100 articles reporting on airplane crashes. We split lengthy
documents (27 out of 100) into halves so that they fitted
in the screen of the annotation GUI without the need for
scrolling. Still, we had to exclude two documents due to ex-
treme over-length which would have required overly many
splits. Our final corpus contains 3,113 sentences (76,900
tokens) (see Section 3. for more details).
Annotation time measurements were taken on two syntac-
tically different annotation units of single documents: (a)
complete sentences and (b) complex noun phrases. The an-
notation task was defined such as to assign an entity type
label to each token of an annotation unit. The use of com-
plex noun phrases (CNPs) as an alternative annotation unit
is motivated by the fact that in MUC7 the syntactic en-
coding of named entity mentions basically occurs through
nominal phrases. CNPs were derived from the sentences’
constituency structure using the OPENNLP parser (trained
on PENNTREEBANK (Marcus et al., 1993) data) to deter-
mine top-level noun phrases.2 To avoid overly long phrases,
CNPs dominating special syntactic structures, such as co-
ordinations, appositions, or relative clauses, were split up at

2http://opennlp.sourceforge.net/
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Figure 1: Screenshot of the annotation GUI showing an annotation example where the the complex noun phrase “GTE
Airfone services” is highlighted for annotation.

discriminative functional elements (e.g., a relative pronoun)
and these phrases were eliminated from further analysis.
An evaluation of our CNP extractor on ENAMEX annota-
tions in MUC7 showed that 98.95% of all entities were
completely covered by automatically identified CNPs. In-
complete coverage was mostly due to parsing errors.
While the annotation task itself was “officially” declared
to yield annotations of named entity mentions within the
different annotation units, we were nevertheless primarily
interested in the time needed for making annotation deci-
sions. For precise time measurements, single annotation
examples were shown to the annotators, one at a time. An
annotation example consists of the chosen MUC7 document
with one annotation unit (sentence or CNP) selected and
highlighted (yet, without annotation). Only the highlighted
part of the document could be annotated and the annotators
were asked to read only as much of the visible context sur-
rounding the annotation unit as necessary to make a proper
annotation decision. Figure 1 shows a screenshot of the an-
notation GUI.
To present the annotation examples to annotators and allow
for annotation without extra time overhead for the “me-
chanical” assignment of entity types, our annotation GUI
is controlled by keyboard shortcuts. This minimizes anno-
tation time compared to mouse-controlled annotation such
that the measured time reflects only the amount of time
needed for taking an annotation decision.
In order to avoid learning effects for annotators on origi-
nally consecutive syntactic subunits, we randomly shuffled
all annotation examples so that subsequent annotation ex-
amples were not drawn from the same document. Hence,
annotation times were not biased by the order of appear-
ance of the annotation examples.
Annotators were given blocks of either 500 CNP-level or
100 sentence-level annotation examples. They were asked
to annotate each block in a single run under noise-free con-
ditions, without breaks and disruptions. They were also in-

structed not to annotate for too long stretches of time to
avoid tiring effects making time measurements unreliable.
All documents were first annotated with respect to CNP-
level examples within 2-3 weeks, with only very few hours
per day of concrete annotation work. After completion of
the CNP-level annotation, the same documents had to be
annotated on the sentence level as well. Due to randomiza-
tion and rare access to surrounding context during the CNP-
level annotation, annotators credibly reported that they had
indeed not remembered the sentences from the CNP-level
round. Thus, the time measurements taken on the sentence
level do not seem to exhibit any human memory bias.
Both annotators went through all annotation examples so
that we have double annotations of the complete corpus.

2.2. Annotation Performance
To assess the quality of the performance of our annotators
(henceforth called A and B), we compared their annotation
results on 5 blocks of sentence-level annotation examples
created in the training phase. Annotation performance was
measured by Cohen’s κ coefficient on the token level and
by determining the entity-segment F -score against MUC7
annotations. The annotators A and B achieved κA = 0.95
and κB = 0.96, and FA = 0.92 and FB = 0.94, respec-
tively.3 Moreover, they exhibit an inter-annotator agree-
ment of κA,B = 0.94 and an averaged mutual F-score of
FA,B = 0.90.
These numbers reveal that the task was well-defined and
the annotators had sufficiently internalized the annotation
guidelines. Although we were not specifically interested
in the annotations itself, high annotation performance is re-
quired for valid time measurements. Figure 2 shows the an-
notators’ scores against the original MUC7 annotations for
the 31 blocks of sentence-level annotations. Kappa scores

3Entity-specific F-scores against MUC7 annotations for A and
B are 0.90 and 0.92 for LOCATION, 0.92 and 0.93 for ORGANI-
ZATION, and 0.96 and 0.98 for PERSON, respectively.
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Figure 3: Length distribution of sentences and CNPs.
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Figure 2: Average kappa coefficient per block.

range from κ = 0.89 to κ = 0.98 and annotation perfor-
mance is similar for both annotators. Annotation perfor-
mance shows that they consistently found a block either
rather hard or easy to annotate. Moreover, annotation per-
formance appears stationary – no general trend in annota-
tion performance over time can be observed.

3. MUC7T Corpus Statistics
MUC7T comprises 3,113 sentences which amount to
76,900 tokens. About 60% of all tokens are covered by
CNPs showing that sentences are made up from CNPs to a
large extent. Still, removing the non-CNP tokens markedly
reduces the amount of tokens to be considered for entity
annotation. CNPs cover slightly less entities (3,937) than
complete sentences (3,971). This marginal loss is due to the
incomplete coverage of the CNP extractor. Table 1 summa-
rizes statistics on the time-stamped MUC7 corpus.
On the average, sentences have a length of 24.7 tokens,
while CNPs are rather short with 3.0 tokens, on the average.
However, CNPs vary tremendously in their length, with the
shortest ones having only one token and the longest ones
(mostly due to parsing errors) spanning over 30 (and more)
tokens. Figure 3 depicts the length distribution of sentences
and CNPs showing that a fair portion of CNPs have less
than five tokens, while the distribution of sentence lengths
almost follows a normal distribution in the interval [0, 50].

sentences 3,113
sentence tokens 76,900

chunks 15,203
chunk tokens 45,097

entity mentions in sentences 3,971
entity mentions in CNPs 3,937
sentences with entity mentions 63%
CNPs with entity mentions 23%

Table 1: Descriptive statistics of MUC7T .

While 63% of all sentences contain at least one entity men-
tion, only 23% of the CNPs contain entity mentions. These
statistics show that CNPs are generally rather short and a
large fraction of CNPs do not contain entity mentions at all.
We may hypothesize that this observation will be reflected
by annotation times.

4. Time Measurements
The annotation process should not be subject to learning
effects but be stationary instead. This requirement holds
especially for our time measurements, otherwise the use of
the time data for learning cost models or evaluating sam-
pling strategies might lead to questionable results.
Figure 4 shows the average annotation time per block
(CNPs and sentences). Considering the CNP-level annota-
tions, we found a slight learning effect for annotator B dur-
ing the first 9 blocks and no learning effect at all for anno-
tator A. After this ‘calibration’ phase for annotator B, both
annotators are approximately on a par regarding the anno-
tation time. For the sentence-level annotations, no learn-
ing effect at all could be identified because both annotators
yield similar annotation times per block. So, with the ex-
ception of block one to nine for annotator B, time measure-
ments are also stationary.
Figure 4 also shows that there there is quite some variation
in the average annotation time per blocks, especially in the
sentence-level annotation setting. While the annotation of
the sentences in blocks 25 and 26 require about 6 seconds
on average, only about 4.5 seconds are required in blocks
28 and 29. As for CNP-level annotations, this variation is
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Figure 4: Average annotation times per block. Annotator B
exhibits a learning effect within the first 9 blocks of CNP-
level annotation.

less pronounced when considering complete blocks.
For further investigation into the variation of annotation
times, Figure 5 shows the distribution of annotator A’s
CNP-level annotation times for block 20. A’s average anno-
tation time on this block amounts to 1.37 seconds per CNP,
the shortest duration being 0.54, the longest one running up
to 10.2 seconds. The figure provides ample evidence for an
extremely skewed time investment for coding CNPs.
In summary, both annotation performance and annotation
time are basically stationary which allows an independent
interpretation of single time measurements. However, time
and performance plots also clearly reveal that some blocks
were generally harder or easier than others because both
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Figure 5: Distribution of annotation times.

annotators operated on both metrics in tandem – they both
spent more time and reached lower Kappas on harder ones
than on easier ones.

5. Application of MUC7T to Evaluate
Selective Sampling Strategies

Section 4. gave strong evidence that the assumption of uni-
form annotation costs per annotated unit is untenable. Ac-
cordingly, methods which aim at making the inherently
costly process of language resource creation more econom-
ical through intelligent selection of the items to be man-
ually annotated should be based on valid cost criteria. As
things stand, we have to give up over-simplifying cost mod-
els which rely on counting the number of tokens in favor of
empirically more adequate annotation time metrics.
As an example, we now will discuss Active Learning (AL),
an approach to reduce annotation efforts, from the perspec-
tive of alternative cost models. In the AL scenario, the
learner is in control of the data to be chosen for training.
Labels are only requested from a human annotator for such
examples which are (estimated) to have a high utility for
the training process. For a wide range of NLP problems to
which supervised machine learning methods were applied,
it has already been shown that AL can indeed dramatically
decrease the number of training examples needed to yield
a certain target performance (Engelson and Dagan, 1996;
Ngai and Yarowsky, 2000; Ringger et al., 2007; Tomanek
et al., 2007). However, all arguments concerning cost effi-
ciency were based on token counts in these studies.
In the following, we compare the standard token-based
measurement of efficiency against a metric based on an-
notation time costs by using the MUC7T corpus. We apply
a standard AL approach known as Uncertainty Sampling
(Cohn et al., 1996) where the utility of an example is based
on the model’s uncertainty in its prediction. Algorithm 1
formally describes the AL procedure. In each AL iteration,
b examples are selected, handed to the annotator for label-
ing, and then added to the set of labeled training data L
which feeds the classifier for the next training round.

Algorithm 1 Uncertainty Sampling AL
Given:
L: set of labeled examples, P: set of unlabeled examples
b: number of examples to be selected in each iteration
u(x): utility function

Algorithm:
loop until stopping criterion is met

1. learn model θ from L
2. b′ = 0; while b′ < b

• select example: x∗ = argmaxx∈P u(x)
• query annotator for label y∗ for x∗

• move example: P = P \ x∗, L = L ∪ (x∗, y∗)
• b′ = b′ + 1

return L

The utility of an unlabeled example x ∈ L is calculated as

u(x) = 1−max
y′∈Y

Pθ(y′|x)

where Pθ(y′|x) is the confidence of model θ that y′ is the
correct label. While many different utility functions for AL
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Figure 6: Learning curves for AL and RS evaluated against number of tokens and true annotation time as available through
the MUC7T corpus.

have been proposed (Settles and Craven, 2008), we deliber-
ately chose this straight-forward utility function for reasons
of simplicity.
We apply Conditional Random Fields (CRFs) (Lafferty et
al., 2001) as our learning algorithm for the NER task and
make use of a rich set of standard features for statistical
NER. In this experiment, we consider complete sentences
as an appropriate example grain size so that in each AL
iteration b sentences are selected for manual annotation.
Results reported are averages over 20 independent runs. For
each run, the MUC7T corpus was randomly split into a
pool from which AL selects (90% of the sentences) and
an evaluation set used to plot the learning curve (remain-
ing sentences). AL was started from 20 randomly selected
sentences; 20 sentences were selected in each AL iteration.
The annotation time assessment is taken from the sentence-
level time stamp metadata of the MUC7T corpus (we chose
annotator A’s time stamps here).
Figure 6 shows the performance of this AL approach by
learning curves which describe model performance as a)
a function of corpus size and b) a function of the annota-
tion time. Comparing AL with the random selection (RS)
of examples, which is still the standard procedure in most
annotation campaigns, it is evident that AL is much more
efficient than RS both in terms of corpus size as well as
annotation time. In terms of tokens, an F-score of 89% is
reached by RS after manual annotation of 60,015 tokens,
AL requires only 32,513 tokens which is a decrease of an-
notation efforts of about 46 %. When looking at the anno-
tation time needed to achieve the same F-score level, AL
is still much more efficient than RS, consuming only 8,728
seconds instead of about 13,000 seconds — a real saving
of annotation time of about 33 %. Obviously, AL does not
only decrease the required corpus size but can indeed re-
duce the necessary annotation time considerably.
However, comparing both cost metrics, AL still does much
better when merely tokens are counted and performs worse
when annotation time is taken into consideration. We
claim, however, that the time annotators spend doing their
job is a more realistic metrical unit than the number of
tokens they deal with. Fortunately, even under this more

realistic ‘budgetary’ perspective the advantages of Active
Learning are preserved and an efficient alternative to ran-
dom sampling exists.
Claire et al. (2005) and Hachey et al. (2005) also found
that the actual sampling efficiency of an AL approach de-
pends on the cost metric being applied. They studied how
sentences selected by AL affected the annotators’ perfor-
mance both in terms of the time needed and the annotation
accuracy achieved. They found that selectively sampled ex-
amples are, on the average, more difficult to annotate than
randomly sampled ones. This observation, for the first time,
questioned the widespread practice that all annotation ex-
amples can be assigned a uniform cost factor. It also raises
another interesting and open issue, viz. whether examples
with a high utility for classifier training are, at the same
time, also cognitively more demanding, e.g., due to their
intrinsic linguistic or conceptual complexity.

6. Conclusions
This paper proposed a new breed of metadata for a linguis-
tic corpus, viz. information on the time it takes to add cer-
tain linguistic annotations, such as NER in our case. For
this purpose, we have created a time-stamped version of
MUC7 entity annotations, MUC7T .
An analysis of the time stamps recorded in MUC7T pro-
vides ample evidence for the intuitive assumption that the
time needed to annotate a particular unit varies consider-
ably (independent from single annotators). Moreover, we
showed how such a corpus can be used to assess, in a realis-
tic scenario, the sampling efficiency of AL strategies where
the goal should be not only to decrease the corpus size but
even more so to decrease the annotation effort in terms of
actual time needed to perform the annotation task.
To make AL more cost-conscious, estimated annotation
time may be incorporated into the selection process, so that
examples which are highly informative, but come with ex-
tremely high costs in annotation time, are ignored. In this
context another issue arises, viz. the prediction of annota-
tion time in real applications where time stamps are natu-
rally not available. The availability of annotation time in-
formation on linguistically well-motivated and fine-grained
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units – such as noun phrases – allows for an informed esti-
mate of the costs implied. In this spirit, MUC7T may serve
as an empirical foundation to derive annotation cost mod-
els which even allow to predict annotation time on new and
unseen data.
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