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Abstract 

This paper describes the development of a hybrid tool for a semi-automated process for validation of treebank annotation at various 
levels. The tool is developed for error detection at the part-of-speech, chunk and dependency levels of a Hindi treebank, currently 
under development. The tool aims to identify as many errors as possible at these levels to achieve consistency in the task of annotation. 
Consistency in treebank annotation is a must for making data as error-free as possible and for providing quality assurance. The tool is 
aimed at ensuring consistency and to make manual validation cost effective. We discuss a rule based and a hybrid approach (statistical 
methods combined with rule-based methods) by which a high-recall system can be developed and used to identify errors in the 
treebank. We report some results of using the tool on a sample of data extracted from the Hindi treebank. We also argue how the tool 
can prove useful in improving the annotation guidelines which would in turn, better the quality of annotation in subsequent iterations. 

 

1. Introduction 

For effective processing of text, tools at different 

conceptual levels, say from letter/syllable level to 

discourse level are needed. Output of these tools can then 

be used in different NLP applications beginning with spell 

checkers to machine translation. These tools could be 

completely rule-based, completely statistical or a 

combination of both, i.e., hybrid systems. In quite a few 

cases, manually annotated gold standard data is required 

to build such tools. The annotated data, as one would 

expect, should be error free. Hence, the importance of 

validation of data and error correction cannot be 

undermined. On the other hand, annotation in itself is a 

time-consuming task. Thus, it is only desirable that the 

task of validation of data is fast without compromising 

quality. But doing validation of data completely manually 

would again be time consuming, as the validators have to 

look at each word in the annotated corpus.  To make the 

task of validation easy and cost effective, we need tools 

that can supplement validators‟ task with a view of 

making the overall task fast without compromising 

reliability. With the help of such tools, validator can 

directly go to error instances and correct them. Therefore 

we need the tool to have high recall. It is easy to see that a 

human validator can directly reject un-intuitive errors 

(false positives) without much effort; one can therefore 

compromise on precision. 

The proposed tool has been used for validating the 

dependency representation of a multi-layered and multi- 

representational treebank for Hindi (Bhatt et al., 2009). 

The tool identifies errors in the Hindi annotated data at 

POS, chunk and dependency levels. Additionally, the 

identification of errors can help resolve ambiguous cases 

and thus improve the guidelines for annotation. Improved 

guidelines will directly make the task of annotation more 

consistent. 

The paper is divided as follows. The first section is about 

introducing the work. Section 2 gives a brief overview of 

the Hindi dependency treebank. A survey of some of the 

previous efforts on automated validation is done in 

section 3. In section 4, we describe our approach in detail 

with examples. Results are reported in section 5. General 

discussion and directions for future work follow in section 

6. We conclude our paper in section 7. 

2. Hindi Dependency Treebank  

A multi-layered and multi-representational treebank for 

Hindi (Bhatt et al., 2009; Xia et al., 2009) is being 

developed. The treebank will have dependency, 

verb-argument (PropBank, Palmer et al., 2005) and 

phrase structure (PS) representation. Automatic 

conversion from dependency structure (DS) to phrase 

structure (PS) is being worked out. Hence, it is important 

to have a high quality version of the dependency treebank 

to ensure efficient conversion from DS to PS 

representation. The focus of the current paper is to 

describe the methodology employed to detect errors in the 

DS representation. The dependency treebank contains 

information encoded at the morpho-syntactic 

(morphological, part-of-speech and chunk information) 

and syntactico-semantic (dependency) levels. Each 

sentence is represented in SSF format (Bharati et al., 

2007). POS and chunk information is encoded following a 

set of guidelines (Bharati et al., 2006). The guidelines for 

the dependency framework (Bharati et al., 2009) have 

been adapted from computational Paninian grammar 

(CPG) (Bharati et al., 1995). For Indian languages, like 

Hindi, Paninian dependency scheme has been shown to be 

effective by Begum et al. (2008).  

3. Related Work 

Validation and correction tools are an important part for 

making treebanks error-free and consistent. Significant 

efforts have been made in this direction to develop such 

tools. One such approach for treebank error detection was 

employed by Dickinson and Meurers (2003; 2005) where 

they find out „variations‟ in syntactic annotation. They use 

certain statistical patterns (n-grams) derived from large 

annotated corpora such as the Penn treebank (Marcus et 

al., 1993) to detect anomalies in treebanks. Their work 

includes anomaly detection in continuous and 
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discontinuous structural annotation. Adapting from a 

generalized approach on discontinuous structural 

annotation, this work was extended to detect errors at the 

dependency level in treebanks (Boyd et al., 2008). Some 

other earlier noteworthy methods employed for error 

detection in syntactic annotation (mainly POS and chunk), 

are by Eskin (2000) and van Halteren (2000). Other 

examples of detection of annotation errors in treebanks 

include (Kaljurand, 2004; Kordoni, 2003). 

4. Approach 

Our aim is to identify errors in POS, chunk and 

dependency annotated data. To identify the errors at each 

level of annotation we use both rules and statistics. We 

take 40k words manually annotated and validated data as 

development data. We used this development data to 

frame rules as well as to take decisions based on statistics. 

We followed a two-fold approach. The first part of 

approach involves detection of errors purely by 

rule-based methods. In the second part of the approach we 

use frequency-based measure to determine the possible 

errors and then prune out the false positives to improve 

precision by using some rules. 

4.1 Rule-Based approach 

In this approach, we use generic rules to identify the 

errors. Particular tags (POS/chunk/dependency) demand 

some particular patterns and vice-versa. This is the main 

idea in framing the generic rules. For example, if the 

POS-tag is “SYM
1
” then the lexical item should not 

contain any character in the unicode range of Hindi or 

digits. Similarly, if the lexical item is a digit, then the 

POS tag should be QC (POS tag for cardinals). Similar 

rules can be framed at chunk and dependency levels also. 

We used the annotation guidelines (Bharati et al., 2006, 

2009) as an initial step to frame the rules. The guidelines, 

apart from providing description of the tags, give many 

pointers for annotators, in the form of linguistic cues to 

identify the tags, exceptional cases, common confusing 

and error-prone cases. More rules were later formulated 

using the development data. Further, we extracted 

mismatches in the annotated and validated sets of the 

development data. These mismatches are basically errors 

made by annotators which were corrected by validators. 

Analysis of these mismatches helped in framing 

additional rules. The nature of the rules varies for 

different type of annotation, as the context required is 

different for different types of annotation. For example, 

POS tagging rules are based on current lexical item, POS 

tags of previous words etc., whereas in case of 

dependency tags, rules are framed on features of current 

node, its parent, siblings, children and sometimes even a 

complete tree/sub-tree. 

Figure 1, shows a sample output of the tool identifying the 

POS tag errors. In the example sentence depicted in the 

figure, “Ram gave three books to Sita”, the rule that, a 

                                                           
1 SYM: POS tag for a punctuation marker, see Bharati et al., 

2006 for complete details.  

number should have its POS tag either a „QC
2
‟, or a „QF

3
‟ 

(refer, Bharati et al., 2006) comes in handy while 

detecting the error. Therefore, the word “3” which had 

been erroneously tagged as a demonstrative (DEM) in the 

sentence, is identified as an error which can be then 

promptly corrected by the human validator. 

 

Figure 1: Error detection by rule-based approach at POS 

level. The erroneous case is shown by the pointer „◄◄‟ 

in the sentence above. 

 

Error detection at the dependency level is illustrated with 

the help of example sentence in Figure 2 below. The 

sentence is “Ram is a good boy.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Ram is a good boy” 

Figure 2: Error detection by rule-based approach at the 

dependency level. The erroneous case is shown by the 

pointer „◄◄‟ in the tree. 

 

There are some dependency labels that are dependent on 

the presence of particular labels in a sentence. Following 

from this rule in the sentence above, a „k1s‟ should be 

marked only when a „k1‟ is present in the same sentential 

clause. Hence, an error is detected in the dependency tree.  

The number of actual errors detected using such rules is 

high on precision but low on recall value. In order to 

detect a wider coverage of errors we need to employ other 

techniques. These measures are described in the following 

subsection.

                                                           
2 QC: POS tag for words denoting a cardinal number 
3 QF: POS tag for words denoting quantifiers 

raama 

‘Ram’ ERG 

  hei        

 ‘is’ 

ladakaa 

‘boy’ 

       ►► k2 k1s 

acchaa 

‘boy’ 

nmod 

Identification of Errors using Rules 
 

1 raama „Ram‟ NNP 

2 ne  „ERG‟ PSP 

3 sitaa  „Sita‟  NNP 

4 ko  „DAT‟ PSP 

5 3   ‘3’  DEM   ◄◄    

6 kitaabein „books‟ NN 

7 diiM  „gave‟ VM 

 
“Ram gave three books to Sita.” 
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Figure 3: Error detection in inter-chunk dependencies by hybrid approach. 

 

4.2 Hybrid Approach 

Hybrid approach comprises of two modules. (1) the 
statistical module and, (2) Rule-based post-processing 
module. Statistical module tries to identify as many errors 
as possible. The goal of the statistical module is to achieve 
a high recall. Following this, we run a rule-based 
post-processing module on the output of the statistical 
module. The aim of this module is to increase precision of 
the system. With this approach we intend to detect the 
errors with high recall and reasonable precision. 

4.2.1. Statistical Module 
Statistically, low frequency is a sign of possible error. We 
calculate the frequencies of pattern and tag pairs, where 
tag can be either of POS or chunk or dependency. These 
patterns are annotation specific. For POS, word level 
patterns are considered. For chunks, lexical items and the 
POS tags of the sequence of words within the chunk are 
considered. For inter-chunk dependencies, chunk tag, 
lexical item and POS tag sequence within the chunk of 
child and parent are considered as the pattern. As both 
label and attachment are important for dependency 
analysis, our patterns contain child as well as parent 
features. 
Once we get the frequencies at each level, we keep some 
threshold on the frequency and all the pairs less than that 
threshold are considered as possible errors. This threshold 
is decided after experiments with the development data 
and it can vary with annotation level. For all the pairs 
greater than the threshold, if a pattern has multiple tags, 
then there might be a possibility of error. So, for such 
pairs, if the frequency of a pair is less than certain 
percentage of the total instances of that pattern, then it is 
considered as a possible error. 

The above approach is fine at POS level. But, when it 

comes to chunk and dependency levels, sparsity creates 

problems. Probability of occurrence of the same pattern is 

very low due to which a lot of valid instances get 

identified as errors. To resolve this, instead of original 

patterns, we find similarity between patterns and merge 

similar patterns. Again, the measure of similarity varies 

with annotation type. On these merged patterns, we apply 

the above approach to detect the errors.  

4.2.2. Rule-based post-processing Module 
The approach explained above about finding similarity 
patterns reduces the instances of correct patterns being 
identified as errors but not completely remove it. To 
further reduce the negative effect of sparsity on these 
merged patterns, we use certain robust rules to remove 
correct patterns from the errors list. So, a robust rule is 
capable of overriding a low frequency based pattern 
induction and can remove such pattern from the final 
selection. 

4.2.3. Description of hybrid approach 

Figure 3, shows the complete approach taking inter-chunk 

dependency as an example.  

There are 6 pairs (pattern + tag) where all the patterns are 

different as shown in 3(a). As the frequency is low, all the 

6 patterns are identified as errors. After finding similarity 

between patterns and merging similar patterns, 6 pairs get 

reduced to 3. This is shown in 3(b). The arrows 

connecting the patterns in (a) with (b) show the merging 

process. Similarity criterion used here is as follows:  

For both child and parent chunks, consider POS type of 

the head of the chunk and lexical item and POS tags of the 

(a) (c) 

(b) 
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functional words.  

Out of 3 pairs in (b), 2 pairs are identified as errors based 

on statistics. After applying the following rule, 

If the child is an adverbial chunk (RBP) and the parent is 

a verbal chunk (VGF), then the dependency label can be 

“adv”.  

the number of errors reduced from two to one. 

5. Results and Analysis 

We evaluated the performance of our system using a 

65k-token (2694 sentences) manually annotated and 

validated sample of data derived from the Hindi 

dependency treebank. We divided the data into 40k, 10k 

and 15k for training, development and testing respectively. 

For the rule-based system, training and development data 

was used to frame the rules. In the case of hybrid approach, 

we used training data to train the models and development 

data to tune the parameters like threshold values. Rules 

meant for pruning false positives were also framed using 

this data. 

We ran the rule-based tool on the test data. Details of the 

type and number of errors identified by the rule based 

system are presented in Table 1. Using our rule-based 

system we detected 75%, 62.5% and 25.86% of errors at 

POS, chunk and dependency levels respectively. 

Currently in the treebank, dependency annotation is done 

at inter-chunk level only. So, dependency errors only 

represent inter-chunk dependency errors. 

 

Type of  

Error 

Total   

instances 

Total   

Errors 

Recall of the tool 

POS  

Errors 
13922 16 12/16     = 75% 

Chunk  

Errors 
7113 24 15/24     = 62.5% 

Dependency 

Errors 
7113 843 218/843 = 25.86% 

 

Table 1: Error Detection using rule-based system at 

different levels. 

 

At POS and chunk levels, as the number of errors is low 

which can be identified based on some standard rules, 

rule-based system performs quite well. We also tried the 

hybrid approach, but the number of false positives is so 

high that the hybrid approach is practically of no use at 

POS and chunk levels. 

But at dependency level, as more complex linguistic 

information is being annotated, the chance of making 

errors is more. As the number of errors is large we need 

tools to detect the errors so that the validation process 

becomes faster. With the rule based system we were able 

to identify only 25.86% of the dependency errors. We then 

tried out the hybrid based approach. Using this approach, 

we were able to identify 18.74% of the dependency errors. 

When we combined the outputs of both the rule-based and 

hybrid approaches, we could identify 40.33% of the errors 

at the dependency level. Results are shown in Table 2.  

 

Approach Total   

Errors 

System 

output 

Correct 

Errors 

Recall 

Rule Based 

Approach 

843 218 218 25.86% 

Hybrid 

Approach 

843 

 

2546 158 18.74% 

Combining 

both the 

Approaches 

843 

 

2728 340 40.33% 

 

Table 2: Recall of error detection using different 

approaches. 

6. Discussion and Future Work 

One basic difference between our approach and the other 

previous approaches is that we use a combination of a 

rule-based system and a hybrid system to detect errors. 

Most of the previous approaches work well with large 

corpora in which the frequency of occurrence of words is 

very high. Hence, none of them account for data sparsity. 

Our work is focused on detecting errors during the 

process of annotation. This means that the size that we 

worked on is not very large and hence we need to take 

care of the problems that accrue from sparsity. We employ 

a combination of a rule-based approach with a hybrid 

approach for error detection. Moreover, unlike earlier 

efforts, our work focuses on reduction of validation time 

and effort during treebank construction. So, our focus is 

on high recall with reasonable precision. 

The tool is constantly being improved. We are planning to 

improve the rules of both the rule-based error detection 

system and the rule-based post-processing module of the 

hybrid approach. We also plan to experiment with 

different similarity criteria to improve the recall. 

One limitation of our hybrid approach is that we can't give 

richer context due to the problem of sparsity. To find 

whether the dependency label is correct or not, apart from 

node and its parent information, sibling and child 

information is also helpful. Current state-of-the-art 

dependency parsers use these features for dependency 

labeling (McDonald et al., 2006; Ambati et al., 2009). 

Finding similarity between patterns and merging similar 

patterns would not help when we wish to take a much 

richer context. For this purpose, we also plan to explore a 

probability based hybrid approach. Instead of counts, we 

plan to use probabilities to detect the errors. We hope to 

achieve much better recall with the probability based 

hybrid approach. 

This tool can also help in improving the guidelines which 

subsequently improves the annotation. While correcting 

the errors if the validator comes across some ambiguous 

decisions or some common errors or comes up with new 

decisions, guidelines can be modified accordingly to 

reflect the changes. Data annotated based on new 

guidelines will reduce the occurrence of these errors and 

eventually the quality of annotation of individual as well 

as entire data will improve. Figure 4, shows the complete 

cycle of this process. 
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Figure 4: Cycle for improving guidelines for annotation. 

 

7. Conclusion  

In this paper, we proposed a new tool which uses both 

rule-based and hybrid systems to detect errors during the 

process of treebank annotation. We tested it on Hindi 

dependency treebank and were able to detect 75%, 62.5% 

and 40.33% of errors in POS, chunk and dependency 

annotation respectively.  For detecting POS and chunk 

errors, we used the rule-based system. For dependency 

errors, we used the combination of both rule-based and 

hybrid systems. The proposed approach works reasonably 

well for relatively smaller annotated datasets. 
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