Building a Node of the Accessible Language Technology Infrastructure

Bartosz Broda, Michal Marcinczuk, Maciej Piasecki

Institute of Informatics, Wroctaw University of Technology,
bartosz.broda@pwr.wroc.pl, michal.marcinczuk @pwr.wroc.pl maciej.piasecki @pwr.wroc.pl

Abstract

We present a limited prototype of the CLARIN Language Technology Infrastructure (LTI) node, which provides several types of web
services for Polish. The functionality encompasses morpho-syntactic processing, shallow semantic processing of corpus on the basis of
the SuperMatrix system and plWordNet browsing. We take the prototype as the starting point for the discussion on requirements that
must be fulfilled by the LTI. Some possible solutions are proposed for less frequently discussed problems, e.g. streaming processing
of language data on the remote processing node. We experimentally investigate how to tackle with several requirements from many
discussed. Such aspects as processing large volumes of data, asynchronous mode of processing and scalability of the architecture to large
number of users got especial attention in the prototype. Results of the performance tests are presented.

1. Widely Accessible Language Technology

The pace of Language Technology (henceforth LT) de-
velopment is high and the number of standards, formats
and solutions for language resources and tools is grow-
ing cf (Carlson et al., 2010). There are attempts to build
large Language Technology (henceforth LT) infrastructures
(LTIs) which collect elements of LT in one network (Varadi
et al., 2008; CLARIN, 2010a). Accessibility and usabil-
ity of the created technical architecture are key issues for
each LTI. Accessibility encompasses technical and legal as-
pects of access to LT. Technical access is typically based
on downloading language tools and language resources to
the user’s computer and perform all processing locally. As
this scenario requires from the final users spending time
on solving a lot of technical problems from the outside of
the domain of their research, the LTI CLARIN (CLARIN,
2010a; Vdradi et al., 2008) promotes combining distributed
language tools by the means of Web Services (WSs). How-
ever, two aspects of this approach are often neglected,
namely: processing huge language resources and coping
with a large number of users working simultaneously. The
legal aspects of the accessibility together with solutions in
the area of authorisation are well studied and several licens-
ing models have been proposed. However, the distributed
processing model creates the need for the introduction of a
yet another, new licensing model, namely: a model offering
a possibility of processing resources licensed to particular
users on remote computing nodes to which the resources
are only temporarily transmitted for the time of processing.
More generally speaking, new types of licenses are needed
for this distributed processing model, on the basis of which
several tools and resources of different locations and own-
ership can be temporarily and virtually combined to get the
final result. An LTI providing a network-wide model of au-
thorisation should help resolving these dilemma.

Providing access to remote language tools does not solve
all problems of the technical accessibility. The increas-
ing number of users accessing remote processing nodes
results with the increasing need for computing power and
network capacity. It is caused by the large number of re-

Work financed by the CLARIN project 7FP GRANT NR
212230

quests and huge amounts of language data that start to be
used in research, e.g. Leipzig Linguistic Services which are
comprised of 18 web services served about 70 millions of
requests (mostly short dictionary lookups) since their in-
stallation in 2004 till the October 2008 (Biichler and Heyer,
2009).

The basis of the LTI usability is a good understanding of
users® goals, tasks, and also their background knowledge
and technical skills. Concerning LTI usability, the diversity
of LT formats and standards is not the only problem of the
users. The other is lack of knowledge about the ways of
using language tools, constraints on their application and
interpretation of the obtained results.

Our ultimate goal is the construction of a node of CLARIN
LTI. The node is focused on Polish LTs, both existing and
emerging. In this paper, we want to discuss selected issues
of LTI from the perspective of the ongoing practical exper-
iment in building a node prototype on the basis of Service
Oriented Architecture implemented as a complex of WSs.

2. Architecture

Several important aspects of LTI have been recognised,
e.g., (CLARIN WP2, 2009; Viradi et al., 2008): service
persistency and security, persistent identifiers, the role of
metadata for LT in describing language resources and tools,
adherence to security guidelines, treatment of IPR issues
etc. These aspects must get the appropriate treatment in ev-
ery LTT and its nodes. However, in the case of LTI nodes
that provide access to ready-to-use language tools, some
other aspects of their construction are less often discussed.
The amount of language data available in an electronic
form is continuously increasing, e.g., the publicly avail-
able Polish corpora include around 360 million words in
total, the National Corpus of Polish will include 1 billion
words (Przepiérkowski et al., 2008), while some English
resources are much bigger. For example ukWaC corpus
(Baroni et al., 2009) contains nearly 2 billion words. Users
start using such huge amounts of data in practice, e.g., a so-
ciologist may be interested in investigating a range of asso-
ciations among people on the basis of documents collected
from Internet — to achieve this a processing chain of lan-
guage tools must be applied to texts including millions of
words. Thus, a LTI must be prepared for storing and pro-

937

cessing huge volumes of data sent to its services and ex-
pected as the result of processing. Moreover, in the case of
a successful LTI, we should expect a large number of users
working simultaneously within it. When both requirements
are combined, we may not be able to guarantee an imme-
diate, real-time response for every request. Tracking user
requests and their status becomes a necessity.

We need an architecture based on an asynchronous process-
ing model, in which the time by which the result will be
returned by services (or a sequence of services) is unspec-
ified. The picture gets complicated, as the technology of
WSs is based on the connection-less model of communi-
cation. So, there is no intrinsic mechanism of coupling
user requests and the result produced several hours later.
Nevertheless, such a mechanism must be implemented in
LTI, used in processing chains and next taken into account
while implementing processing chains consisting of lan-
guage tools run on different LTI nodes.

However, the asynchronous model may not suite all needs,
e.g., in the case of relatively simple requests that carry little
amounts of data (e.g., a dictionary look-up) one could ex-
pect immediate response of a WS call run in a synchronous
mode style. Some users can also apply LTI services in in-
teractive applications. So, the synchronous processing path
should be offered by a LTI, too.

Popular LTI nodes which are heavy loaded by user requests
must utilise such techniques like parallel, distributed pro-
cessing of requests orchestrated by a WS interface agent
or scheduling user requests according to some priorities or
prior reservation in order to offer faster tracks for particular
users (e.g., those who made earlier some kind of reserva-
tion) or requests of specific kinds (e.g., a short one).

Not only component services can be distributed across LTI
nodes, but the services will be very often separated from the
language resources which they process. The technical as-
pects of data transfer are encompassed by the requirement
of mass data processing, however the issue of IPR protec-
tion comes to play when language resources are temporar-
ily transferred to a remote processing node. That kind of
temporary presence of the resources on processing nodes is
not often foreseen by the existing IPR licenses that mostly
exclude creation of resource copies. A possible solution for
this problem could be based on a kind of streaming process-
ing of language data — in analogy to streaming multimedia
broadcasting and playing — in which chunks of language
data are sequentially transmitted for processing, and the li-
cence guarantees that the data are not stored on the process-
ing site, only the results of processing, e.g., the extracted
statistics.

Many perspective LTI users from the area of Humanities
and Social Sciences (HSS) will not have detailed linguis-
tic knowledge. LTI should deliver means of far going as-
sistance in selecting language tools and combining them
into processing chains according to user’s goal. Automatic
support in combining tools requires automatic compatibil-
ity checking of the tools on the basis of metadata describing
them. As even tiny differences in data types can matter, we
need some form of semantic annotation of WS, e.g., (Kiin-
gas and Matskin, 2006b; Kiingas and Matskin, 2006a).
Several WSs and WS-based systems in the area of LT have

been constructed, most of them are publicly accessible, and
at least some of them can be perceived as prototypes of the
perspective LTI nodes. The majority of the WS-based LT
systems have been already included into the network of the
CLARIN centres. Most LT centres are based on the SOAP!
technology, cf (Agatonovich et al., 2009).

Leipzig Linguistic Services (LLS) is a set of 18 WSs oper-
ating since 2004 and providing access to several language
resources and tools, to name a few: German dictionaries,
text corpora, co-occurrence statistics or extraction of simi-
lar words on the basis of their co-occurrence profiles. The
access to LLS is based on the SOAP protocol.

Recently, LLS have been included with the help of the We-
bLicht? environment (Hinrichs et al., 2009) into a large net-
work of LT WSs developed in the D-SPIN project (D-SPIN,
2009) — a German scientific project associated to CLARIN.
WebLicht provides user-oriented mechanisms for the in-
tegration of distributed LT WSs with standardized access
from the level of programming languages. The range
of German language tools integrated in WebLicht encom-
passes: text preprocessing, morphological analysis, mor-
phosyntactic tagging and parsing. WebLicht user interface
allows for combining individual WSs into a chain of lin-
guistic applications. The selection of WSs for the subse-
quent steps of processing is constrained by the WS profiles.
In the current profile matching mechanism it is assumed
that each services consist of a single operation invoked via
the REST protocol®.

A complex framework facilitating integration of heteroge-
neous LT tools on the basis of component-based meta-date
description was constructed under the name of ALPE (Au-
tomatic Linguistic Processing Environment) (Cristea et al.,
2007). ALPE is focused on free integration of language
tools via transformation of the XML-based input/output
data. The framework supports both types of the language
tools: run locally and invoked via remote WSs.

RACAI services offer (RACAI, 2009; Tufiz et al., 2008) a
complete chain of morphosyntactic processing for Roma-
nian and English, as well, as several other WSs. The WSs
are accessible via SOAP protocol. The set includes, e.g.,
WSs for: language identification, Named Entity Recog-
nition implemented on the basis on regular expressions,
searching Romanian Wikipedia and Romanian WordNet
lookup. The last WS provides functionality for browsing
through two aligned wordnets: Princeton 2.0 WordNet and
RoWordnet — the Romanian WordNet.

The family of IULA Statistical Web Services (SWS) per-
forms statistical tasks on a corpus provided by the user in
a text file, cf (Agatonovich et al., 2009). Functionality for
uploading a corpus, concordance and co-occurrence extrac-
tion, distribution analysis, and morphosyntactic process-
ing (for selected languages) are provided (CLARIN, 2010b;
IULA UPF, 2010). As operations on the corpus can be very
lengthy, SWS supports also asynchronous queries. A query
sent by the user is stored in the data base at the server node
and a ticket number is returned to the user. The user must
use a dedicated WS to get the status of his request.

!Simple Object Access Protocol (Gudgin et al., 2007)
2Short for: Web-Based Linguistic Chaining Tool.
3REpresentational State Transfer (Fielding and Taylor, 2002)

938

We gave above several examples of LT WSs. However, the
domain of LT WSs is quickly developing and new LT WSs
are continuously emerging. For other WSs that are not de-
scribed here, cf e.g. CLARIN reports (Agatonovich et al.,
2009; CLARIN, 2010b) and the CLARIN site (CLARIN,
2010a).

3. User Perspective

WSs are only intermediate products. We cannot expect that
researches from HSS, who do not have any knowledge in
programming, will be able to use the WSs directly, as this
requires at least some basic programming skills. Thus, we
believe that WSs should be accompanied by access applica-
tions to allow non-technical users to utilise the LTI, e.g. in
a form of web-based applications free from the download-
first requirement. The preferred solution seems to be a web-
based application, as it makes users free from downloading
and installing the tools. Moreover, users are not forced to
use some specific operating system. The developers do not
loose time on developing multi-platform applications.

The development of applications on the top of WSs does
not solve all the accessibility problems. One of the stum-
bling block is connected to the linguistic knowledge re-
quired for successful application of the very specialised lan-
guage tools, e.g., appropriate setting of parameters for the
extraction of the semantic relations between named enti-
ties from a large corpus that requires knowledge concern-
ing both: the language tools used for annotating the corpus
and the behaviour of the extraction algorithm in relation to
the frequency and diversity of the annotated occurrences of
the lexico-syntactic relations. In some cases the knowledge
required for the fruitful application of the tools can be quite
extensive. Knowledge concerning the internal algorithms
of a tool may be necessary for its full use, or for the inter-
pretation of the results obtained. Thus, the high level appli-
cations have to operate on the level of user scientific tasks
and offer functionality specific for a given domain, e.g., for
a sociologist aiming at investigating virtues associated with
a list of notions a perspective LTI should offer an applica-
tion, which would automatically produce lists of semantic
associations of words on the basis of the target words deliv-
ered to the system (possibly in any form, e.g. a simple list)
and a corpus (including documents produced by a certain
community) — the user should not be bothered with select-
ing specific algorithms for text preprocessing or association
extraction. This can be achieved, e.g., by the application of
the SuperMatrix system (Broda and Piasecki, 2008) which
was earlier configured appropriately to this specific task. A
WS for SuperMatrix is now in development for the needs
of CLARIN LTI, see the following sections.

4. Plans

For the needs of the initial phase of the CLARIN project we
wanted to perform an experimental design study by con-
structing a pilot version of the LTI node. We intended
to analyse several different aspects of the architecture in
a practical implementation, e.g., typical processing chains
vs specialised language tools, frequent requests with small
amount of data (short computation time) vs data intensive

operations (computation lasting many hours), and also ac-
cess to structured language resources. As a result, we con-
structed WSs providing the following functionality:

e a basic morphosyntactic processing chain for natural
languages — the Polish language in our case,

e a service giving access to the very large scale statisti-
cal analysis of text,

e and an access to a highly structured resource —
plWordNet (Piasecki et al., 2009).

4.1. TaKIPI WS

Basic processing chains are represented by a WS giving
access to the set of morphosyntactic tools for Polish, that
are included the TaKIPI morphosyntactic tagger of Polish,
cf. (Broda et al., 2008). The chain utilises a morphologi-
cal analyser called Morfeusz (Wolifiski, 2006). Due to its
character, we expect that the TaKIPT WS will be used for
processing both: short requests including up to several sen-
tences and requests including large text files or even cor-
pora. The TaKIPI WS is discussed in details in the next
section.

4.2. SuperMatrix WS

The complex WS based on the SuperMatrix system is an
example of a general but specialised and unique language
tool, cf. (Broda and Piasecki, 2008) for detailed description
and the comparison of the SuperMatrix system with several
similar systems. SuperMatrix supports automatic acquisi-
tion of lexical semantic relations from corpora for Polish
and English. It enables extraction of coincidence matrices
from large amount of text. The words in the matrices can
be described by the whole range of means: from simple co-
occurrences to instances of lexico-syntactic relations iden-
tified with the help of lexico-morphosyntactic constraints,
in the case of Polish, or shallow syntactic processing, in the
case of English. The constructed matrices can be next fil-
tered and transformed (according to several different algo-
rithms). Finally, different measures of semantic relatedness
can be obtained by the means of several well known and
unique algorithms. SuperMatrix can be combined with the
clustering tool called CLUTO (Karypis, 2002) and word-
nets, e.g., plWordNet (Piasecki et al., 2009). It can be used
also in the reverse way to extract statistical semantic simi-
larity of text documents. The present version of the system
works for Polish and English.

The SuperMatrix WS is being implemented in a similar
way to the TaKIPI WS described in the next section. First
of all, SuperMatrix WS gives access to full functionality
of the SuperMatrix system. Users can work with exist-
ing matrices by browsing various matrix statistics and in-
specting semantic relatedness of selected words according
to the selected matrix and algorithm. Next, users will be
able to upload their own corpora and define the process of
the co-incidence matrix construction, build the matrix and
extract the measures. The definition of the process will in-
clude: the list of words to be described, types of features
to be extracted, and the type of filtering and transformation
to be performed, cf. (Piasecki et al., 2009). The features

939

can be simply defined by a list of words (for counting co-
occurrence with the words being described), but also by the
specification of complex lexicalised morphosyntactic con-
straints written in the JOSKIPI language or by the use a
shallow parser, e.g. MiniPar (Lin, 1993). The expressive
power of the constraints allows for the extraction of word
pairs which are potentially instances of certain semantic re-
lations, cf. (Piasecki et al., 2009, ch. 4).

We want also to implement applications supporting several
scenarios acquired from HSS, e.g.,

e construction of language profiles for selected flag
words on the basis of the corpora and list delivered
by the user — in this case all SuperMatrix parame-
ters will be set to the default values preselected for
this scenario on the basis of the previous experiments,
cf (Pawtowski et al., 2009),

e re-implementation of the HAL technique (Lund and
Burgess, 1996) for the needs of psychological exper-
iments performed on corpora delivered by the user,
e.g., (Kruszynski and Raczaszek-Leonardi, 2006),

e extraction of a thesaurus for words or word senses spe-
cific in the given domain or for word senses specific in
the domain which is defined by a corpus delivered by
the user,

e extraction of associations between expressions repre-
senting certain concepts, proper names, trademarks
and common words as made by people in some do-
main; if one delivers to the WS a list of words which
express sentiment polarity, then he will get a kind of
sentiment analysis of the proper names on the basis of
the given corpus.

4.3. plWordNet WS

The pIWordNet WS provides an access to the Polish word-
net called p]WordNet 1.0 (Derwojedowa et al., 2009; Pi-
asecki et al., 2009) — a semi-automatically created network
of lexical-semantic relations between lexical units. plWord-
Net 1.0 is a example of a static and highly structured re-
source. The primary function of the plWordNet WS is to
provide means for browsing and retrieving lexical units and
their relations. The results are returned in one out of the
two following formats:

e WordNet-LMF (KYOTO WP2, 2009) — an XML-
based lexical data format for wordnets (selected here
to increase the interoperability of our WS and porta-

bility of the data between different systems that accept
this kind of data);

e and a composition of nested programming language
objects in the sense of structures used in a program-
ming languages that can be easily manipulated in other
applications.

We are planning to develop functions for finding semantic
paths between given words, measuring similarity and gen-
erating a list of word pairs being in a given relation.

Daemon #1

C++

Daemon #2

reques C++

sl Interface
PHP

Database
MySQL

Daemon #n

e

C++

Figure 1: TaKIPI-WS architecture

5. Case Study - TaKIPI Web Service
5.1. Overview

TaKIPI WS* is a good testing bed to investigate possi-
ble problems with the construction of WSs for large vol-
umes of data. TaKIPI is a morphosyntactic tagger for Pol-
ish available as a standalone application®, it accepts Pol-
ish text on its input and produces morphosyntactically dis-
ambiguated XML document in ICS PAS variant of XCES
format (Przepiérkowski, 2004). Under the hood, TaKIPI
performs the following tasks: morphological analysis, sen-
tence boundary detection, tokenisation (including finding
complex tokens like dates or URLs (Broda et al., 2008))
and finally disambiguation. As any of those steps can be
of use for a processing chain, we decided to make them all
available as intimidate steps for users. Each of the intimi-
date steps is available through the TaKIPI and TaKIPI WS,
too. However, we observed that it is lemmatisation which
is the most frequently used TaKIPI WS function by re-
searchers from HSS. Our earlier contacts with people from
humanities showed us that often not whole process of tag-
ging is of use — lemmatisation is also an important feature.
while originally, in TaKIPI, lemmas have to be extracted
from the XML-based output format, while in TaKIPI WS
the lemmatisation became one of its functions.

5.2. Architecture

The TaKIPI-WS is a system with a three-layer architec-
ture, an asynchronous model of request handling and multi-
agent-based processing.

5.3. Three-layer architecture

The TaKIPI-WS consists of three layers: WS Interface,
Database and Daemons.

The WS Interface is responsible for receiving and queu-
ing user requests, storing and retrieving data from the
Database. In case of a new request it may communicate
with the Daemons in order to notify them about the new
request.

The Database is the central part of the system. The role
of the Database is to store and exchange data between the
Interface and the Daemons. It stores the requests, text
transferred, produced results and information concerning
the available Daemons. The Daemons are responsible for

“http://plwordnet.pwr.wroc.pl/clarin/ws/takipi/
Shttp://plwordnet.pwr.wroc.pl/takipi/

940

executing the requests queued in the database. The Dea-
mons are described in more details in Section 5.5.

5.4. Asynchronous model

We faced very early a problem connected to performance:
processing of a single request by TaKIPI WS take a lot of
time if the input data are enough big. We have to cope with
the problem of possible very long processing time needed
for handling a single request. As a solution, we introduced
an asynchronous behaviour to the WS. In the case of a time
consuming request we cannot expect that the user will stay
connected to the WS all the time as the current network
architecture is still not reliable enough. In TaKIPI WS users
are given a unique token for every request with which they
can ask for the status of their request at their leisure. We
have also considered the introduction of a concept of small
requests, that would be handled in a synchronous manner.
However, this idea was later abandoned for a few reasons.
First of all, we wanted to simplify the request scheduling
mechanism and have a consistent interface across the whole
WS. Note that, even for the requests that can be processed
in rather short time this asynchronous aspect can be of use,
e.g., in the case of heavy loaded WS or hardware (software)
failures when some (or all) of the daemons goes off-line.

5.5. Multi-agent processing

The problem of a large number of requests handled by our
WS was solved by introducing tagging daemons, which
work independently from the other parts of the WS. The
daemons can be run simultaneously on different computing
nodes. Initially, only one daemon is constantly running, but
when the number of concurrent requests is increasing, next
daemons are started to cope with the load.

The daemons are semi-autonomous components. This en-
abled us to sidestep the complex problem of task scheduling
to some extent, because daemons are actively searching for
new data to process and only go to sleep if no new data is
found. The only scheduling task left for WS is to wake up
sleeping daemons when new data arrives.

5.6.

As mentioned before, WSs alone are tools for program-
mers, not end users. In order to make TaKIPI WS more
approachable for researchers without technical background
we created a proof-of-concept web-based application. The
user can submit a new request or browse requests already
submitted. After entering a text (or submitting a text file)
and choosing the function processing mode (e.g., morpho-
logical analysis, sentence splitting, lemmatisation, tokeni-
sation, or tagging) the request is registered and the result is
displayed to the user as soon as it is ready.

WS demonstration

5.7. [Experimental performance analysis

In order to measure the performance of our system we con-
ducted two experiments. In both experiments we used a lo-
cal machine from which requests were submitted, a server
that received the requests (Apache server with PHP and
MySQL) and two computing cluster nodes, with two dou-
ble core processors each, where the daemons were run. In

941

160 240
140 by 210
120 [\ 180
B @
z ?
2 100 150 =
) Client time 78’3
8 80 Server time {120 &
= Processing speed 2
2
) 60 90 g
£ . g
= - £
4 60
2.5
05 Avg. time of document processing - - .
1 2 3 4 5 6 7 8

Number of working daemons

Figure 2: A processing time of 100 documents, processing
speed and average document processing time for different
number of working daemons

Fig. 2, we present the average results from 5 runs of every
experiment.

In the first experiment we compared the times of process-
ing a fixed set of documents by TaKIPI-WS with different
number of working daemons (from 1 to 8). The testing set
consisted of 100 documents with the total size of 4.07 MBs.
The documents were submitted concurrently from the local
machine. We measured a client and a server processing
time. The client processing time is a time measured from
the moment of sending the first request to the moment of
receiving a result for the last request. The server process-
ing time is a time measured from the moment of fetching
the first request for processing to the moment of saving the
result of processing for the last request. The difference be-
tween the server and the client time is nearly constant (2-4
seconds) for the different number of daemons and can be
attributed to the delay introduced by communication over
the network. A single daemon processed all requests in
142 seconds (the server time), while the parallel process-
ing with 4 daemons took 50.56 seconds (time reduction to
36.56%) and with 8 daemons — 41.91 seconds (time reduc-
tion to 30.08%). As we can see on the Figure 2 the improve-
ment of processing speed is not linear. The average time of
document processing is rising from 1.43 seconds for one
daemon to 1.76 seconds for 4 daemons and 2.28 seconds
for 8 daemons that is caused by synchronized access to the
queue of requests.

Because active daemons (run on the cluster nodes) pro-
cess data independently the most important bottleneck in
our architecture is the server which receives and schedules
user requests. Both the Apache web server (hosting also
other services, not related to CLARIN) and the MySQL
database work on the same server and this severely lim-
its the throughput. Additional refinement is needed in our
database scheme — currently active daemons lock the shared
table with a request queue. The locking mechanism was
introduced as a mean to remove the need for a complex al-
gorithm of scheduling user requests — a daemon actively
searches for data to be processed. There is a straightfor-
ward way to overcome those limitations. First, the database

should be put on a separate piece of hardware (preferably
a computing cluster). Secondly, we should use row-level
locking rather then table-level locking. Alternatively we
could redesign the database schema so that all the data that
must be locked for serving a single request would be mini-
mized and moved to a separate table. Last but not least, we
should use a dedicated web server for handling the SOAP
requests (receiving, scheduling and responding to user re-
quests).

We performed also an additional experiment to test TaKIPI-
WS in a yet another scenario, in which an user has a corpus
consisting of many large documents, that differ in size. We
used a part of the IPI PAN Corpus (Przepiérkowski, 2004),
which can be described as documents related to the law do-
main, consisting of 1874 documents (49 MB of raw text).
In order to put additional stress on our architecture, we as-
sumed in this scenario that the user wants to process the
corpus as quickly as possible, so he submits many (20 in
our case) requests at the same time. After receiving results
of processing of any of the requests user submits next doc-
ument for processing. We tested a configuration with 4 pro-
cessing daemons as the introduction of additional daemons
did not yield significant improvement in performance. The
total time of corpus tagging was 13 minutes. In compari-
son — the off-line version of TaKIPI required 27 minutes to
process the corpus.

During our experiments we observed that for large requests
we got a very big XML file as a result (more then 90 MB
for 2.5 MB of raw text input). This is not a problem for
the daemons, but it presents a problem for a single Apache
process, as it needs to load the whole tagged document to
the memory when the user wants to download it. As there
can be a multitude of processes on the web server, so pre-
process memory usage has to be limited. This results in a
situation in which a user can submit large requests, but can-
not download them. Fortunately, this problem is fairly easy
to be amended, as the XML files are written in the IPI PAN
variant of XCES encoding (Przepiérkowski, 2004). This
format can be compressed easily — we observed that com-
pressed files are on average 20 times smaller using standard
bzip2 compression algorithm.

6. Conclusions

LTT is successful when it is effectively used by many users.
Contemporary language resources achieve very large vol-
umes. Thus LTT must be planned and built for user interest
and language data of that scale. LTI can represent high us-
ability when designed with focus on users and their tasks.
We will need an intermediate layer between the user tasks
and formal description of LT WSs, i.e. higher level WSs
being close to the application level.

We presented a limited prototype of a LTI node including
several types of services which was intended to illustrate
the identified requirements and possible solutions. In this
way we experimentally investigate how to tackle with sev-
eral requirements identified. Such aspects as processing
large volumes of data, asynchronous mode of processing
and scalability of the architecture to large number of users
got especial attention in the prototype.

7. References

Milan Agatonovich, Nuria Bel, Santi Bel, Marco Biich-
ler, Dan Cristea, Fabienne Fritzinger, Erhard Hinrichs,
Marie Hinrichs, Radu Ion, Marc Kemps-Snijders, Yana
Panchenko, Victor Rodriguez, Helmut Schmid, Pe-
ter Wittenburg, Uwe Quasthoff, Martha Villegas, and
Thomas Zastrow. 2009. Requirements specification
web services and workflow systems. Deliverable d2r-6,
Clarin, July.

M. Baroni, S. Bernardini, A. Ferraresi, and E. Zanchetta.
2009. The WaCky wide web: a collection of very large
linguistically processed web-crawled corpora. Language
Resources and Evaluation, 43(3):209-226.

Bartosz Broda and Maciej Piasecki. 2008. SuperMatrix:
a general tool for lexical semantic knowledge acquisi-
tion. In G. Demenko, K. Jassem, and S. Szpakowicz,
editors, Speech and Language Technology, volume 11,
pages 239-254. Polish Phonetics Assocation.

Bartosz Broda, Maciej Piasecki, and Adam Radziszewski.
2008. Towards a set of general purpose morphosyntactic
tools for Polish. In M. A. Klopotek et. al., editor, Pro-
ceedings of the International 11S’08, Zakopane, Poland,
June, 2008, pages 441-450. EXIT.

Marco Biichler and Gerhard Heyer. 2009. Leipzig linguis-
tic services — a 4 years summary of providing linguistic
web services. In Proceeding of TMS 2009 Conference,
Leipzig, Germany.

Rolf Carlson, Tommaso Caselli, Kjell Elenius, Bertrand
Gaiffe, David House, Erhard Hinrichs, Valeria Quochi,
Kiril Simov, and Iris Vogel. 2010. Language resources
and tools survey and taxonomy and criteria for the qual-
ity assessment. Clarin-d5c-2, CLARIN.

CLARIN WP2. 2009. CLARIN centres. CLARIN
project document published on the project
Web Page: http://www.clarin.eu/files/

centres-CLARIN-ShortGuide.pdf, February.

CLARIN. 2010a. Clarin — common language resources
and technology infrastructure. The Web Page of the
CLARIN project (EC FP7 project no. 212230), WWW:
http://www.clarin.eu, March.

CLARIN. 2010b. Linguistic processing chains as Web
Services: Initial linguistic considerations. Clarin-2009-
d5r-3a, CLARIN. Editors: Maciej Ogrodniczuk, Adam
Przepidrkowski.

Dan Cristea, Ionut Pistol, and Corina Forascu. 2007.
ALPE as LT4eL processing chain environment. In
RANLP Workshop Natural Language Processing and
Knowledge Representation for eLearning Environments,
Borovets, 26. September 2007.

D-SPIN. 2009. D-SPIN — a German infrastructure
for language resources and tools. Web Page of the
D-SPIN project, WWW: http://weblicht.sfs.
uni-tuebingen.de/englisch/index.shtml,
March.

Magdalena Derwojedowa, Maria Gtabska, Maciej Piasecki,
Joanna Rabiega-Wisniewska, Stanistaw Szpakowicz,
and Magdalena Zawislawska. 2009. plWordNet 1.0
The Polish Wordnet. Online access to the database of
plWordNet 1.0: www.plwordnet.pwr.wroc.pl, April.

942

Roy T. Fielding and Richard N. Taylor. 2002. Principled
design of the modern web architecture. ACM Transac-
tions on Internet Technology, 2(2):115-150.

Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-
Jacques Moreau, Henrik Frystyk Nielsen, Anish Kar-
markar, and Yves Lafon. 2007. SOAP version 1.2 part
1: Messaging framework (second edition). TR REC-
soap12-part1-20070427, W3C, April.

Erhard Hinrichs, Marie Hinrichs, Thomas Zastrow, Ger-
hard Heyer, Volker Boehlke, Uwe Quasthoff, Helmut
Schmid, Ulrich Heid, Fabienne Fritzinger, Alexander
Siebert, and Jorg Didakowski. 2009. WebLicht: Web-
based LRT services for German. In GSCL Workshop:
Linguistic Processing Pipelines (Book of Abstracts),
pages 11-14, Potsdam, Germany, September.

IULA UPF. 2010. Statistical web services. Web Page of
the Statistical Web Services IULA UPF, WWW:http:
//9ilmere.upf.edu/WS/, March.

George Karypis. 2002. CLUTO a clustering toolkit. Tech-
nical Report 02-017, Department of Computer Science,
University of Minnesota.

Bartosz Kruszynski and Joanna Raczaszek-Leonardi.
2006. Miedzy strukturalistyczna a psychologiczna
reprezentacja znaczenia: wielowymiarowa przestrzen
semantyczna (HAL). In P Stalmaszczyk, -editor,
Metodologie jezykoznawstwa. Podstawy teoretyczne,
pages 282-295. Wydawnictwo Uniwersytetu L.odzkiego,
Lodz.

Peep Kiingas and Mihhail Matskin. 2006a. Semantic Web
Service composition through a P2P-based multi-agent
environment. In Proceedings of the Fourth International
Workshop on Agents and Peer-to-Peer Computing (in
conjunction with AAMAS 2005), AP2PC 2005, Utrecht,
Netherlands, July 26, 2005, volume 4118 of LNCS, pages
106-119.

Peep Kiingas and Mihhail Matskin. 2006b. Web Services
analysis: Making use of Web Service composition and
annotation. In Proceedings of 1st Asian Semantic Web
Conference, ASWC’06, Beijing, China, September 3-7,
2006, volume 4185 of LNCS, pages 501-515. Springer-
Verlag.

KYOTO WP2. 2009. Database models and data for-
mats deliverable nr. 1wp nr. 2. KYOTO project
document published on the project Web Page:
http://www2.let.vu.nl/twiki/pub/Kyoto/WP02:
SystemDesignD2.1_Database_Models_and_Data_
Formats_v3.1.pdf, October.

Dekang Lin. 1993. Principle-based parsing without over-
generation. In Annual Meeting of the ACL. Proceedings
of the 31st annual meeting on Association for Computa-
tional Linguistics, pages 112-120.

K. Lund and C. Burgess. 1996. Producing high-
dimensional semantic spaces from lexical co-occurence.
Behavior Research Methods, Instrumentation, and Com-
puters, 28:203-208.

Adam Pawtowski, Maciej Piasecki, and Bartosz Broda.
2009. Automatic extraction of word-profiles from text
corpora. on the example of polish collective symbols.
In Reinhard Kohler, editor, Issues in Quantitative Lin-

guistics, volume 5 of Studies in Quantitative Linguistics,
pages 88—105. RAM-Verlag.

Maciej Piasecki, Stanistaw Szpakowicz, and Bartosz
Broda. 2009. A Wordnet from the Ground Up. Oficyna
Wydawnicza Politechniki Wroctawskiej, Wroctaw.

Adam Przepiérkowski, Rafal L. Gorski, Barbara
Lewandowska-Tomaszyk, and Marek Lazinski. 2008.
Towards the national corpus of polish. In N. Calzolari
et. al., editor, Proceedings of the Sixth International
Language Resources and Evaluation (LREC’0S),
Marrakech, Morocco, May. ELRA. http://www.lrec-
conf.org/proceedings/lrec2008/.

Adam Przepioérkowski. 2004. The IPI PAN Corpus, Pre-
liminary Version. Institute of Computer Science PAS.
RACAIL 2009. RACAI Web Services. Web Page of
RACAI Web Services, WWW: http://www.racai.

ro/webservices/, March.

Dan Tufiz, Radu Ion, Alexandru CeauZu, and Dan ttefa-
nescu. 2008. Racai’s linguistic web services. In Pro-
ceedings of the 6th Language Resources and Evaluation
Conference - LREC 2008. ELRA - European Language
Resources Association, May.

Tamds Vdradi, Steven Krauwer, Peter Wittenburg, Mar-
tin Wynne, and Kimmo Koskenniemi. 2008. Clarin:
Common language resources and technology infras-
tructure. In Nicoletta Calzolari, Khalid Choukri,
Bente Maegaard, Joseph Mariani, Jan Odjik, Stelios
Piperidis, and Daniel Tapias, editors, Proceedings of the
Sixth International Language Resources and Evaluation
(LREC’08), Marrakech, Morocco, May. European Lan-
guage Resources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2008/.

Marcin Wolinski. 2006. Morfeusz — a practical tool for
the morphological analysis of Polish. In M. A. Klopotek,
S. T. Wierzchon, and K. Trojanowski, editors, Proceed-
ings of the International IIS: IIPWM’06 Conference,
Wista, Poland, June, 2006, pages 511-520.

943

