
English-Hindi Transliteration using Multiple Similarity Metrics

Niraj Aswani, Robert Gaizauskas

Department of Computer Science
University of Sheffield

Regent Court, Sheffield, S1 4DP, UK
n.aswani@dcs.shef.ac.uk, r.gaizauskas@dcs.shef.ac.uk

Abstract
In this paper, we present an approach to measure the transliteration similarity of English-Hindi word pairs. Our approach has two
components. First we propose a bi-directional mapping between one or more characters in the Devanagari script and one or more
characters in the Roman script (pronounced as in English). This allows a given Hindi word written in Devanagari to be transliterated
into the Roman script and vice-versa. Second, we present an algorithm for computing a similarity measure that is a variant of Dice’s
coefficient measure and the LCSR measure and which also takes into account the constraints needed to match English-Hindi transliterated
words. Finally, by evaluating various similarity metrics individually and together under a multiple measure agreement scenario, we show
that it is possible to achieve a 0.92 f-measure in identifying English-Hindi word pairs that are transliterations. In order to assess the
portability of our approach to other similar languages we adapt our system to the Gujarati language.

1. Introduction
Transliteration is defined as the task of transcribing a word
or text from one writing system into the another writing sys-
tem such that the pronunciation of the word remains same
and a person reading the transcribed word can read it in the
original language. Cognates (the words derived from an-
other language) and Named Entities (NE) such as the per-
son names, names of places, organizations are the types of
words that need transcribing into the another writing sys-
tem. In India, English is one of the most popular foreign
languages. Following this trend, it is becoming very pop-
ular for people to use words from both, the English and
the Hindi vocabulary in the same sentence. According to
Clair (2002), use of such a mixed language, also known as
Hinglish, is said to have prestige, as the amount of mixing
corresponds with the level of education and is an indicator
of membership in the elite group.
Although the use of such a mixed code language is becom-
ing very common, the English and the Hindi languages re-
main widely different in both the structure and the style.
According to Rao et al. (2000) these differences can be cat-
egorized in two broad categories namely structural differ-
ences and style differences. These include differences such
as the difference in word order, placements of modifiers,
absence of articles and different types of genders in Hindi.
For example, in Hindi most of the times verbs are placed
at the end of a sentence and postposition are used instead
of prepositions. Similarly, whilst the modifiers of an object
can occur both before and after the object in English, mod-
ifiers only occur before the object they modify in Hindi. In
contrast to the English language where there are three gen-
ders: masculine, feminine and neuter for pronouns, Hindi
has only two: masculine and feminine.
Apart from these structural differences there are several
other differences in the alphabets of the two languages. For
example, the English alphabet has five vowels whereas in
Devanagari there are thirteen. The English alphabet has
twenty one consonants and the Devanagari has thirty three.
There are three compound letters in Devanagari for which

there is no equivalent sound in English. There are certain
sounds in English (for example s in pleasure), which are
not present in Hindi. It is common to have consonants clus-
ters at the beginning or end of words in English than Hindi
which leads to errors in the pronunciation of words such
as straight into istraight, fly into faly and film into filam.
Such differences can result into an inaccurate translitera-
tion. Fortunately, unlike the Chinese language which has
an ideographic writing system where each symbol is equiv-
alent to a concept rather than to a sound (e.g. Beethoven
in english is represented in Pinyin (Swofford, 2005) as bej-
do-fen, Hindi does not have an ideographic writing system
(Pouliquen et al., 2005). Therefore, it is possible to come
up with a list of possible phonetic mappings in English for
each sound in Hindi. Using these phonetic mappings, one
can transcribe a given Hindi word into one or more English
words or vice-versa and then compare the strings using var-
ious string similarity metrics.

In this paper, we present a Transliteration Similarity metric
(TSM) that is based on the letter correspondences between
the writing systems of the English and the Hindi languages.
It is a part of our effort to develop a general framework for
text alignment (Aswani and Gaizauskas, 2009) where it is
currently used in an English-Hindi word alignment system
for aligning words such as proper names and cognates. We
give a mapping for one or more characters in the Devana-
gari script into one or more characters in the Roman script.
Given a Hindi word, this mapping allows one or more can-
didate transliterated forms in the Roman script to be ob-
tained. To choose which of these candidates most closely
matches a candidate target word requires a string similarity
measure. We review some of the well known string sim-
ilarity metrics and propose an algorithm for computing a
similarity measure. We evaluate the performance of these
similarity metrics individually and in various combinations
to discover the best combination of similarity metrics and
a threshold value that can be used to maintain the optimal
balance between accuracy and coverage. To test the porta-
bility of our approach to other similar languages we adapt

1786

our system to the Gujarati language.

2. Related Work
Sinha and Thakur (2005) discuss the mixed usage of the
English and the Hindi languages. They provide various ex-
amples of mixed usage of the two languages and present
an MT system that is capable of dealing with text written
in such a mixed code language. They show that although
there are certain constraints that should be imposed on the
usage of the Hinglish language, people do not follow them
strictly. Giving more details on the same, they explain that
there are three type of constraints that are mentioned in the
literature and should be imposed on the usage the Hinglish
language: the free morpheme constraint1; the closed class
constraint2; and finally the principle of the dual structure3.
They show by examples that out of the three constraints
the morpheme constraint does not hold true and there are
a large number of English words that are used in Hindi
sentences according to the grammar rules of the Hindi lan-
guage. For example computer[on] (where the english noun
is computer and [on] is used for indicating more than one
computer). Similarly [barati]es (where [barati] means a
marriage guest and es is to indicate plural of the Hindi
noun [barati]). The latter example shows that although the
TS approaches can match first parts of these words, special
mappings are needed to match the suffixes (such as [on] in
computer[on] and es in [barati]es). They also discuss the
situation whereby their system has to deal with sentences
in which the Devanagari script is used for writing english
words.
TS approaches can be very helpful in identifying named
entities and cognates. Kondrak et al. (2003) show that the
cognates not only help in improving results in word align-
ment but they can be very useful when machine-readable
bilingual dictionaries are not available. To locate cognates
in the text, they experimented with three similarity met-
rics: Simards condition, Dices coefficient and LCSR. They
create a file with all possible one-to-one translation pairs
from each aligned sentence pair and calculate similarity be-
tween each pair. The pairs above the certain threshhold are
then considered as possible cognates and aligned with each
other. They report 10% reduction in the error-rate as a re-
sult of injecting cognate pairs into their alignment system.
One approach to identify NEs is to use precompiled lists of
named entities (H.Cunningham et al., 2002). However, pre-
compiled lists might not work on unseen new documents
and therefore locating named entities need more than just
using precompiled lists. Huang et al. (2003) suggest that
equivalent NE pairs in bilingual texts can be found by a

1Morpheme constraint means that the words from one lan-
guage cannot be inflected according to the grammar rules of the
other language.

2Closed class constraint means that the words categorized as
closed class of grammar such as possessives, ordinals, determin-
ers, pronouns etc. are not used from the English when the head
noun used in sentence is in Hindi.

3Principle of the dual structure means that the internal struc-
ture of the English constituent need not conform to the constituent
structure rules of the Hindi language provided the placement of
the English phrase obeys the rules of the Hindi language

way of surface string transliteration. Similarly Bikel et al.
(1997) explain that it is possible to detect source language
named entities by projecting target language named entities
cross-lingually if their phonetic similarity or transliteration
cost are obtained. Similar to this, Kumar and Bhattacharyya
(2006) describe an approach that identifies named enti-
ties in the Hindi text using the Maximum Entropy Markov
model. The features they use for training a model can also
be trained using the TS approach. To learn a model they
define a boolean function that captures various labels from
the annotated named entities. These labels contain infor-
mation such as their position in the context and prefix or
suffix of the annotated named entities. For example, a word
is a name of a person if it is preceded by a hindi word [shri]
or [shirimati] (i.e. Mr or mrs). They use various features
including word features (i.e. if a NE starts or ends with a
specific affix), context features (i.e. common words in the
context), dictionary features (e.g. if it appears to be a proper
noun in the dictionary) and compound features (i.e. if the
next word is a proper noun). Since TS approaches, given
a bilingual text, can identify possible candidates for named
entities, these approaches can be used, in a fully automatic
or a semi automatic way, to gather the training data (e.g.
the words in context, common suffixes, their POS tags and
compound features etc.). Having obtained this information
a model can be trained and used on a monolingual corpus.
Huang et al. (2003) derive a transliteration model between
the Romanized Hindi and the English letters. They apply
this model to a parallel corpora and extract Hindi-English
named entity pairs based on their similarities in written
form. They achieved 91.8% accuracy in identifying named
entities across the parallel texts. Another use of a TS is ex-
plained by Balajapally et al. (2008). They describe a book
reader tool that allows people to read books in different lan-
guages. In order to achieve this, they use sentence, phrase,
word-to-word and phonetic dictionaries. In case when they
cannot find a match in any of the sentence, phrase or word-
to-word dictionaries they use the phonetic dictionary to ob-
tain a phonetic transliteration. Their transliteration system
(known as OM), given words in one language, provides
their equivalent transliterations in a language that the user
has requested to read the book in. The OM transliteration
system gives a unified presentation for Indian languages
which is similar to the ITRANS encoding4. OM exploits
the commonality of the alphabet of Indian languages and
therefore the representation of a letter is same across the
many languages. Since the phonetic mappings are based
on the sound each letter produces, if their search fails in
locating a mapping for a specific character, they consider
another character that sounds similar to the original charac-
ter.
Pouliquen et al. (2005) highlight various approaches that
have been employed by researchers to recognize NEs in the
text (Kumar and Bhattacharyya, 2006). These approaches
include a lookup procedure in a list of known names, anal-
ysis of local lexical contexts, use of a well known word
which is part of the named entity and a part of speech tags
which suggest that the words might be forming a NE. They

4http://www.aczoom.com/itrans/

1787

mention that the existing transliteration systems either use
hand-crafted linguistic rules, or they use machine learning
methods, or a combination of both. Similar to the Kumar
and Bhattacharyya (2006), they collect trigger words from
various open source systems and write simple local patterns
in PERL that recognize names in the text. Once obtained
these data, they analyze the words in left and right contexts
of found NEs and collect the frequently occurring words
to be used for identifying NEs in the unseen data. Before
they match strings in two different languages, they perform
a normalization process on one of the two words. For this
they use a set of approximately 30 substitution rules such
as replacing accented character with non-accented equiva-
lents, double consonants with single consonant, wl (at the
beginning of the word) with vl, ph with f, and so on. All
possible strings obtained as a result of this process are then
compared with the source string and if any of them has a
similarity above a specified threshold, it is considered as
a possible match. To calculate a similarity score, they use
three different similarity measures and the average of the
three is considered as a similarity score. These measures
are based on letter n-gram similarity, where the first two
measures are the cosine of bigrams and trigrams and the
third measure is the cosine of bigrams with no vowels in
the text. In the following section, we give details of some
of the popular string similarity metrics and how they are
calculated.

3. String Similarity Metrics
In this section we look at some of the various methods
that have been employed by researchers to compare strings.
These include methods such as Dice’s Coefficient, Match-
ing Coefficient, Overlap Coefficient, Lavenshtein distance
(Levenshtein, 1996), Needleman-Wunch distance or Sellers
Algorithm, Longest Common Subsequence Ratio (LCSR),
Soundex distance metric, Jaro-Winkler metric (Jaro, ; Win-
kler, 1999) and n-gram metric. There are several variants of
these methods or combinations of variants of these meth-
ods that are mentioned in the literature. For example, the
similarity metric used in the Pouliquen et al. (2005) is an
example of a combinations of three variants of the n-gram
metric.
Matching coefficient is the simplest of all where only the
count of characters that match is considered as a similar-
ity measure. Higher the score, more the strings are similar.
However, this approach is typically used for same length
strings. An immediate variant of the matching coefficient
is the dices coefficient. It allows comparing variable length
strings. The similarity is defined as twice the number of
matching characters divided by the total number of char-
acters in the two strings. Another variant of the matching
coefficient is the overlap coefficient where the similarity is
calculated as the number of identical characters in the two
strings divided by the minimum length of the two strings.
It is based on the assumption that if a string s1 is a subset
of the string s2 or a converse then the similarity is a full
match. LCSR is an another variant of the dice-coefficient
algorithm where the ratio of two words is computed by di-
viding the length of their longest common subsequence by
the length of the longer word. For example LCSR (colour,

couleur) = 5/7 as their longest common subsequence is c-
o-l-u-r. Such approaches, where the number of matching
characters is more important, positions of the characters is
not taken into consideration and therefore they can wrongly
identify words such as teacher and cheater.
Gravano et al. (2001) explain an approach which is based
on the n-grams similarity metric. For example while com-
paring the two strings teacher and cheater, a window of 2
characters can be considered and all possible bigrams can
be collected for the two strings. For example, te, ea, ac,
ch, he, er and ch, he, ea, at, te, er. In this case the five
bigrams te, ea, ch, and he and er are found to be identical
giving result of 2*5 / 12 = 0.83. Even though the strings are
different, because they use same characters, the similarity
figure is high. One can change the windows size to higher
values. For example by changing the window size to 3, we
get a similarity of 0.1 only. Experiments carried out by Na-
trajan et al. (1997) on a Hindi song database show that the
window size of 3 is the optimum value for the n-gram algo-
rithm. In their experiments, users submitted their query in
Romanized Hindi script which were then matched with the
hindi database.
The basic Lavenshtein edit distance algorithm was intro-
duced by Levenshtein (1996). It is used for calculating the
minimum cost of transforming one string into the other.
The cost of deleting one character, inserting a new one,
or cost of substituting one character for another is 1. The
distance is measured between 0 and 1, 0 equating to the
identical strings and 1 being no match. For each charac-
ter, the operation with minimum cost is considered among
all other possibilities. The advantage of this method is that
it also takes into account the positions of characters and re-
turns the minimum cost that is required to change one string
into the other. One of the variants of the Lavenshteins edit
distance algorithm is Needleman-Wunch distance or sellers
algorithm. It allows adding a variable cost adjustment to
the cost of insertion and deletion.
Jaro-Winkler metric is a measure of similarity between two
strings. The metric is seen more suitable for short string
names. The score is normalized such that 0 means no sim-
ilarity and 1 means the equal strings. Given two strings s1
and s2, their distance is calculated as d(s1,s2) = 1/3 (m / |s1|
+ m / |s2| + (m t)/m) where m is the number of characters
that are common in two strings. To be considered as a com-
mon character a character at position i in the string s1 has
to be within the H window of the equivalent jth character
in the string s2. Here H = max(|s1|, |s2|)/2 1. Similarly t is
equals to the number of characters matched from window
but not at the same index divided by 2.
Soundex is the algorithm that groups consonants according
to their sound similarity. It is a phonetic algorithm which
is used for indexing names by sound as pronounced in En-
glish. The basic idea here is to encode the words that are
pronounced in a similar way with the same code. Each
word is given a code that consists of a letter and three num-
bers between 0 and 6, e.g. Aswani is A215. The first step
in the algorithm is to preserve the first letter of the word
and remove all the vowels and consonants (h, w and y) un-
less they appear at the beginning of a word. Also the con-
secutive letters that belong to the same group are removed

1788

except the first letter. Letters B, F, P and V belong to the
group 1, C, G, J, K, Q, S, X and Z to the group 2, D and T to
the group 3, L to the group 4, M and N to the group 5 and
the letter R belongs to the group 6. In a standard soundex
algorithm, only the first letter and three following numbers
are used for indexing. If there are less than three number,
the remaining places are filled with zeros and otherwise
only the first three numbers are considered for indexing.
There are several other implementations of the soundex al-
gorithm. Although it is very helpful for fuzzy searching,
there are certain limitations of the algorithm such as the
higher number of false positives due to its reliance on con-
sonant grouping and inaccurate handling of words that start
with silent letters.

4. Our Approach
Figure 1 lists letter correspondences between the writing
systems of the two languages where one or more Hindi
characters are associated with one or more English char-
acters. For example [f] can be f, or ph (e.g. frame, photo).
This transliteration mapping (TM) was derived manually
and provides a two way lookup facility. The following il-
lustration explains how to use the TM to obtain possible
transliterations for the Hindi word [kensar] which means
cancer in English. For Hindi letter at the ith position in
the Hindi word HW (where i = 1..n and n = |HW | (i.e.
the length of HW)), we define a set TSi that contains all
possible phonetic mappings for that letter.
In order to optimize the process, we remove from the TSi

all mapped characters that do not exist in the candidate tar-
get string. Below, we list mappings for the letters of the
word [kensar]. The mappings which need to be removed
from the TSi are enclosed in round brackets: [k] = [c, (k),
(ch)]; [e] = [e, a, (ai)]; [n] = [n]; [s] = [c,(s)]; [r] = [r].
From these mappings we define a set TS of n-tuples such
that TS = TS1 × TS2 × ... × TSn (i.e. TS is a Carte-
sian product of all the previously defined sets (TSi=1..n)
for each letter in the Hindi word). Each n-tuple in TS is one
possible transliteration of the original Hindi word. In total
there are |TS| transliterated strings. In the above example
the value of |TS| is 2 (1 x 2 x 1 x 1 x 1) (i.e. Cencr and
Cancr). Each transliterated string (Sj=1..|TS|∈TS) is com-
pared with the English word using one of the string similar-
ity metrics (explained in the next subsection). If the English
word and any of the transliterated strings has a similarity
score above a specified threshold, the strings are deemed to
be transliterations.

4.1. String Similarity Metrics
In the case of English-Hindi strings it was observed during
our experiments that for the two strings to be similar the
first and the last characters from both the strings - the En-
glish word (E) and the transliterated string (T), must match.
This ensures that the words have same phonetic starting
and same ending. However some English words start or
end with silent vowels (e.g. p in psychology and e in pro-
gramme). Therefore in such cases the first character of the
transliterated string should be compared with second char-
acter of the E and similarly the last character of the translit-
erated string should be compared with the second last char-

acter of the E. Our experiments show that unless the length
of the shorter string is at least 65% of the length of the other
string, they are unlikely to be phonetically similar.
The similarity algorithm (see table 1) takes two strings, S
and T, as input where Si=1..n and Tj=1..m refer to char-
acters at position i and position j in the two strings with
lengths n and m respectively. Starting with i = 1 and
j = 1, character Si is compared with characters Tj , Tj+1

and Tj+2. If Si matches with one of the Tj , Tj+1 and Tj+2,
the pointer i advances one position and the pointer j is set to
one position after the letter that matches with Si. If there is
no match, the pointer i advances and j does not. We award
every match a score of 2 and calculate similarity using the
matchScore/(f(s) + f(t)) where f(x) = number of letters in
the x string.

4.2. Experiments
We compare our similarity metric TSM with other string
similarity metrics such as the standard DC metric, LSCR
metric, JW metric, n-gram metric and LD metric. In or-
der to perform this comparison we manually obtained 1000
unique words pairs from the EMILLE corpus. Out of the
1000 words pairs collected, 732 pairs were correct translit-
erations of each other and 268 pairs were not. We obtained
a set of transliterations (using the TMs) for each Hindi word
in the collected sample data. For each similarity metric the
task was to identify correct transliteration pairs and avoid
recognizing incorrect pairs by giving them a very low simi-
larity score. The following procedure was repeated for each
similarity metric. For each Hindi word in these test pairs
we obtained a transliteration with highest score. Then, we
clustered the results in six predefined groups: >= 0.95,
>= 0.90, >= 0.85, >= 0.80, >= 0.75, and >= 0.70
where, the group >= Sim contains pairs with similarity
greater than or equal to Sim.
Here, the group >= 95 means that the pairs with sim-
ilarity greater than or equal to 95. For each group, we
calculated the precision, recall and f-measure. Precision
was calculated as the ratio of the correctly identified pairs
divided by the number of pairs identified by the system.
Recall was calculated as the ratio of correctly identified
pairs divided by the total number of pairs in the sample
data (i.e. 1000). The f-measure was calculated to obtain
the weighted harmonic mean of precision and recall. The
weight was equally distributed and therefore the equation
used was F-measure = 2 ∗ P ∗R/(P + R).

DC precision recall F-measure
>= 95 0.967 0.263 0.414
>= 90 0.932 0.454 0.611
>= 85 0.901 0.585 0.710
>= 80 0.822 0.732 0.775
>= 75 0.772 0.732 0.752
>= 70 0.732 0.732 0.732

Table 2: Experiments with Dice Coefficient Metric

The best performance each metric gave is highlighted in
each table. For example, in the case of Dice’s coefficient,
the best output can be obtained when the threshold is set to

1789

Figure 1: English-Hindi Transliteration mapping

READ E, T //source and target strings
SET i=1, j=1, n=|E|, m=|T|, matches=0 //initialize variables

// if the shorter string is at least 65% of the length of the longer string
IF (|S|/|T|) >= 0.65 || (|S|/|T|) >= 0.65 THEN

// check start and end constraints
IF (S[1] == T[1] || S[2] == T[1] || S[1] == T[2]) &

(S[n] == T[m] || S[n-1] == T[m] || S[n] == T[m-1]) THEN

WHILE i <= n & j <= m //comparing characters one by one
FOR k = j to j+2

IF S[i] == T[k] THEN
INCREMENT matches, i
SET j to k + 1
CONTINUE WHILE

ENDIF
ENDFOR
INCREMENT i //character at position i in S does not exist in T

ENDWHILE
ENDIF

ENDIF
COMPUTE sim = matches*2/(|S|+|T|) //computing similarity
RETURN sim

Table 1: Similarity Algorithm

TSM precision recall F-measure
>= 95 0.994 0.170 0.290
>= 90 0.970 0.327 0.489
>= 85 0.953 0.511 0.665
>= 80 0.921 0.605 0.730
>= 75 0.809 0.732 0.769
>= 70 0.732 0.732 0.732

Table 3: Experiments with Transliteration Similarity Metric

>= 80% similarity. Similarly, in case of the TSM, the best
result can be obtained when the threshold is set to >= 75%
and so on. It must be noted that the DC metric does not take
positions of characters into account where as the TSM does.
Although the F-measure figures for these two metrics are

LCSR precision recall F-measure
>= 95 0.917 0.321 0.476
>= 90 0.917 0.341 0.497
>= 85 0.917 0.407 0.564
>= 80 0.871 0.479 0.618
>= 75 0.861 0.508 0.639
>= 70 0.846 0.550 0.667

Table 4: Experiments with LCSR Metric

similar, this is because our dataset does not have examples
such as teacher vs [cheater] which according to the DC is a
correct transliteration pair (even with threashold set to 100).
The Levenshtein’s distance algorithm does not return a sim-
ilarity measure but a distance or a cost in number of charac-

1790

JW precision recall F-measure
>= 95 0.989 0.184 0.310
>= 90 0.953 0.325 0.485
>= 85 0.927 0.459 0.614
>= 80 0.856 0.575 0.688
>= 75 0.829 0.621 0.710
>= 70 0.798 0.680 0.734

Table 5: Experiments with Jaro-Winkler Metric

NG(3) precision recall F-measure
>= 95 0.994 0.153 0.265
>= 90 0.994 0.153 0.265
>= 85 0.994 0.159 0.274
>= 80 0.988 0.171 0.292
>= 75 0.990 0.203 0.337
>= 70 0.988 0.241 0.387

Table 6: Experiments with N-gram(3) Metric

ters that need to be either replaced, deleted or inserted into
the target word. In order to compare it with other similar-
ity metrics, we use the distance of two strings in the fol-
lowing equation to obtain the similarity between the source
and the target string. [Sim(s,t) = 1 - (d(s,t)/max(|s|,|t|))]
where, d(s, t) is the distance returned by the Levenshtein’s
distance algorithm.
Since the Soundex algorithm is a boolean function that re-
turns only true or false based on the exact match of the two
hash codes, we could not cluster the results into different
groups as defined above. The algorithm was able to iden-
tify 747 word pairs out of which 86 word pairs were incor-
rectly identified. Similarly out of 253 word pairs which the
algorithm could not identify as the transliterated pairs, 71
pairs were the transliterated strings in the gold standard.
Given the different criteria that these similarity metrics
work on, it is possible that given a pair of strings one metric
gives it a very high score where as the others very low. In
order to exploit the multiple measure agreement strategy5,
we conducted a further experiment, whereby we recorded
top combination of metrics that performed best (f-measure)
given different threshold values. We found that the com-
bination of DC, TSM and the JW metrics works best with
threshold value set between 0.79 and 0.81.
In order to experiment with these threshold values, we used
2500 English-Hindi sentence pairs (different from the test-
data), which were translation of each other. We used a part-
of-speech tagger to tag the English words. Considering one
sentence pair at a time, we compared each noun word from
the source sentence with the every word in the target sen-
tence. We used 79% as the similarity threshold and asked
the three methods (DC, TSM and JW metrics) to cast their
votes on each word pair. If a word pair received atleast
two positive votes, the pair was considered to be a correct
alignment. As a result of this excercise, the system returned
1078 unique word pairs. We checked these word pairs
manually and found that the system had correctly identi-

5A word pair is a valid transliterated pair only if it receives
majority vote from the members of the similarity metrics group.

LD precision recall F-measure
>= 95 0.994 0.153 0.265
>= 90 0.995 0.188 0.316
>= 85 0.972 0.317 0.478
>= 80 0.925 0.471 0.624
>= 75 0.900 0.577 0.703
>= 70 0.880 0.636 0.738

Table 7: Experiments with Levenshtein’s Edit Distance
Metric

Similarity Metrics Threshold F-Measure
DC + TSM + JW >= 0.75 0.85
DC + TSM + JW >= 0.78 0.86
DC + TSM + JW >= 0.79 0.92
DC + TSM + JW >= 0.80 0.92
DC + TSM + JW >= 0.81 0.91
DC + TSM + JW >= 0.85 0.78
DC + TSM + LCSR >= 0.90 0.62
DC + LCSR + JW >= 0.95 0.4

Table 8: Multiple Measure Agreement Strategy Results

fied 1021 word pairs giving an accuracy of 94.71%. This
indicates that the method works reasonably good and can
be used in real time applications. Since the performance of
this method depends on the threshold value, it could be set
to higher value should one wants to concentrate on higher
precision.

5. Experiments With the Gujarati Language
Balajapally et al. (2008) have suggested that alphabet of the
Indian languages are similar and therefore it is possible to
exploit the commonality among them. The Gujarati and the
Devanagari alphabet are very similar. Although the scripts
used by Gujarati and Hindi are different, the consonants
and vowels in their scripts are similar and pronounced the
same way. With the help of a native Gujarati speaker, we
replaced the Hindi letters in our mappings table with their
corresponding Gujarati letters. The figure 2 lists letter cor-
respondences between the writing systems of the Gujarati
and the English languages.
In order to experiment with the English-Gujarati mappings,
we used 500 sentence pairs, randonmly taken from the
EMILLE corpus. The sentences in each pair were trans-
lation of each other. Considering one sentence pair at a
time, we compared each word from the source sentence
with every word in the target sentence. We used 79% as
the similarity threshold and asked the three methods (DC,
TSM and JW metrics) to cast their votes. If a word pair
received atleast two positive votes, the words in that pair
were marked as transliteration of each other. The system re-
turned 450 word pairs, out of which 172 pairs were unique.
We checked these word pairs manually and found that the
system had correctly identified 156 word pairs giving an
accuracy of 90.70%.

6. Conclusion
In this paper, we presented an approach to measure the
transliteration similarity of English-Hindi word pairs. First

1791

Figure 2: English-Gujarati Transliteration Mappings

we proposed a bi-directional mapping between one or more
characters in the Devanagari script and one or more charac-
ters in the Roman script (pronounced as in English). Sec-
ond, we presented an algorithm for computing a similar-
ity measure. Finally, by evaluating various similarity met-
rics individually and together under a multiple measure
agreement scenario, we showed that it is possible to iden-
tify English-Hindi word pairs that are transliterations with
fairly high accuracy. By adapting our system to the Gujarati
language, we showed that our system is portable. In future,
we plan to adapt our system to other similar languages such
as the Bengali, Rajasthani and Marathi.

7. References
N. Aswani and R. Gaizauskas. 2009. Evolving a general

framework for text alignment: Case studies with two
south asian languages. In Proceedings of the Interna-
tional Conference on Machine Translation: Twenty-Five
Years On, Cranfield, Bedfordshire, UK, November.

P. Balajapally, P. Pydimarri, M. Ganapathiraju, N. Balakr-
ishnan, and Raj Reddy. 2008. Multilingual book reader:
Transliteration, word-to-word translation and full-text
translation. In Proceedings of the 13th Biennial Con-
ference and Exhibition, Crown Tower, Melbourne, Aus-
tralia, February.

D. Bikel, S. Miller, R. Schwarz, and R. Weischedel. 1997.
Nymble: A high-performance learning name-finder. In
Proceedings of the Conference on Applied Natural Lan-
guage Processing-97, pages 194–201, Washington DC.

St. R.N. Clair. 2002. Managing multilingualism in india:

Political and linguistic manifestations. volume 26, pages
336–339. John Benjamins Publishing Company.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, L. Pietarinen, and D. Srivastava.
2001. Using q-grams in a dbms for approximate string
processing. IEEE Data Eng. Bull., 24(4):28–34.

H.Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. Gate: A framework and graphical development
environment for robust nlp tools and applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics, July.

F. Huang, S. Vogel, and A. Waibel. 2003. Extracting
named entity translingual equivalence with limited re-
sources. ACM Transactions on Asian Language Infor-
mation Processing, 2(2):124–129, June.

M. A. Jaro. Advances in record-linkage methodology as
applied to matching the 1985 census of tampa. In Jour-
nal of the American Statistical Association, volume 84,
pages 414–420. Florida.

G. Kondrak, D. Marcu, and K. Knight. 2003. Cognates
can improve statistical machine translation models. In
Human Language Technology (NAACL).

N. Kumar and P. Bhattacharyya. 2006. Named entity
recognition in hindi using memm. Technical report, In-
dian Institute of Technology, Bombay, India.

V. I. Levenshtein. 1996. Binary codes capable of correct-
ing deletions, insertions, and reversals. In Proceedings
of the Soviet Physics Doklady 10, pages 707–710.

A. Natrajan, A. L. Powell, and J. C. French. 1997. Us-
ing n-grams to process hindi queries with transliteration

1792

variations. Technical Report Technical Report CS-97-
17, Dept. of Computer Science, Univ. of Virginia, July.

B. Pouliquen, R. Steinberger, C. Ignat, I. Temnikova,
A. Widiger, W. Zaghouant, and J. Zizka. 2005. Multi-
lingual person name recognition and transliteration. In
Proceedings of the CORELA - COgnition, REpresenta-
tion, LAnguage, volume 3/3, pages 115–123, Poitiers,
France.

D. Rao, K. Mohanraj, J. Hegde, V. Mehta, and P. Ma-
hadane. 2000. A practical framework for syntactic trans-
fer. In Proceedings of Knowledge Based Computer Sys-
tems (KBCS), Mumbai, India, December.

R.M.K. Sinha and A. Thakur. 2005. Machine translation of
bi-lingual hindi-english (hinglish) text. In Proceedings
of the 10th Machine Translation summit (MT Summit X),
Phuket, Thailand, September.

M. Swofford. 2005. A guide to the writing of mandarin
chinese in romanization (accessed on 01/02/2008).

W. E. Winkler. 1999. The state of record linkage and cur-
rent research problems. In Statistics of Income Division.
Internal Revenue Service Publication R99/04.

1793

