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Abstract

We present a study that compares data-driven dependersgrpabtained by means of annotation projection betweeuée pairs
of varying structural similarity. We show how the partiap@adency trees projected from English to Dutch, Italian@edman can be
exploited to train parsers for the target languages. Weuat@lthe parsers against manual gold standard annotatidnignd that the
projected parsers substantially outperform our heurggeline by 9-25% UAS, which corresponds to a 21-43% remtuitierror rate.
A comparative error analysis focuses on how the projectepbtdanguage parsers handle subjects, which is espetigdhesting for
Italian as an instance of a pro-drop language. For Dutchwbdr present experiments with German as an alternativesdanguage.
In both source languages, we contrast standard baseliserpavith parsers that are enhanced with the predictions lame-scale LFG
grammars through a technique of parser stacking, and staivintprovements of the source language parser can direettytb similar
improvements of the projected target language parser.

1 Introduction distribution at various stages of the projection and parsin

Annotation projection on parallel corpora has received conProcedure (Section 5). _ _

siderable attention in NLP, as it can reduce the resourcECr Dutch, we further present experiments with German
bottleneck for lesser studied languages. For syntactiepar @S an alternative source language. In both SLs, we con-
ing, dependency structures can in principle be projected iifast standard baseline parsers with parsers that are en-
a straightforward way given a word alignment, even if thereh@nced with the predictions from large-scale LFG gram-

are structural differences between the source language (Sfnars through a technique of parser stacking, inspired by the
and target language (TL). For instance, word order dif-Work on combining dependency parsers in Nivre and Mc-

ferences (within verbal phrases or in the relative order o20nald (2008). Our experiments show that improvements
adjectives and nouns) cause no harm under perfect worﬁ]‘us_ obtained in the source parser can directly Iead_to sim-
alignment. More critical are cases where single tokens ifl@" improvements of the projected TL parser (Section 6).

one language correspond to syntactic combinations in th¥/€ compare our approach to related work in Section 7 and
other language. conclude in Section 8.

In order to assess the practical usefulness of this approa? Proiecti D d T
under realistic circumstances, i.e., with automatic parse rojection ot bepenadency lrees

output as the projection source and a statistical word alignMost state-of-the-art parsers for natural languages dee da
ment, systematic comparisons are needed. We presentdgiven and depend on labeled training data, but manual tree-
study that compares a particular projection approach, conbank creation is expensive. It can be avoided by labeling the
bined with a strategy for exploiting partially labeled sen- data automatically usingnnotation projectior(Yarowsky
tences, for three languages of varying structural similaret al., 2001): Given a dependency parser for SL, and a
ity with the SL: We project English dependency parses tovord-aligned parallel corpus of SL and TL, we parse the SL
Dutch, Italian, and German (Section 2). portion of the corpus and copy (project the dependen-
Projected trees tend to be incomplete in the sense that edgeies to the corresponding (i.e., aligned) TL elements. This
may be missing, due to missing word alignments or nonis illustrated in Figure 1 with English as the SL and Dutch,
parallelism of the translations. We use fMalt (Spreyer andserman and Italian as TLs. The links between SL and TL
Kuhn, 2009) to train TL parsers despite this fragmentationindicate the word alignment. We project the English trees
fMalt is a variation of MaltParser (Nivre et al., 2006) mod- to the TL by postulating edges between TL words (alg.,
ified to handle incomplete training data (Section 3). andnotulenin Figure 1a) if there is an edge between their
We evaluate the parsers against gold standard treebank dagspective English counterparte¢ andminutes.

and find that the projected parsers reduce the baseline errnnotation projection assumeslirect correspondence

by 21-43% (Section 4). The error analysis focuses on howHwa et al., 2005), which holds in many cases (e.g., Figure
the projected TL parsers handle subjects by comparing theita), but notin general: non-parallelism between SL and TL
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démtén véld/e ver’adering ' das Lrotokal der/Sitzung /oiiegssckrtgdelb\seduta
NISA S e

Figure 1:Dependency tree projection from English to a. Dutch, b. Gernand c. Italian.

lang. words/sent words/frag frags/sent is hardly correlated with the increasing distance of the TLs
nl 24.92 1.81 13.74 from English: The Italian and German trees are more con-
de 25.27 1.83 13.78 nected than the Dutch trees. While the growth of fragment
it 27.11 2.07 13.13 size (words/frag) is explained by its correlation with sen-

tence length, the simultaneous decrease in the number of
Table 1: Fragmentation in the projected dependencies. fragments per sentence is astonishing: It means that more
edges can be projected to Italian than to the more similar
Dutch or German.
We conjecture that this may be due to more literal trans-
lations, which in turn allow for better alignments. As it
expressions causes errors or gaps in the target annotatiossands, however, these are purely quantitative properties
In Figure 1b, for instance, the possessive relation betweewhich do not guarantee qualitative equivalents.
minutesandsittingis expressed analytically with a preposi- . )
tion in English, but by way of genitive case marking onthe3 ~ Parsing with Fragments
NP der Sitzungn German. As a result, the projected struc- Qur parser, fMalt, is a variant of the transition-based Malt
ture is fragmented. The automatic alignment constitutes ®@arser (Nivre et al., 2006). Transition-based parsers con-
further error source, as witnessed in Figure 1c: The nominadtruct trees in a stepwise fashion: At each point, the lo-
compoundprocesso verbalglit.: spoken proceedinyss  cally optimal parser actiortrénsitior) ¢* is determined on
misaligned under the intersective alignment, with the modthe basis of the current configuratie(previous transitions
ifier verbalerather than the heaprocessaaligned to the  plus local features):
Englishminutes This results not only in a fragmented, but .
an incorrect parse. t* = argmax s(c, t)
Note that we neither attempt to amend imperfect COMevhereT is the set of possible transitions. MaltParser imple-
spondences, nor do we discard fragmented parses. T

. . . Ments an incremental, deterministic parsing algorithm and
is in contrast to related approaches to annotation Proj€Gaarns the transition scorasby means of support vector
tion which resort to heuristics to enforce coherence in th

. . . Nenachines (SVMs).
projected structures (cf. S_ectlon 7). _We show in Se(_:t'_or\Nhat distinguishes fMalt from the original MaltParser is
3 that even partial annotations constitute valuable tngini

data. M the ab £l i t hthat it demotes unattached words to serve as mere context
ata. Vioréover, the absence of language-Specilic palchzy, o than headed nodes. It achieves this by eliminating
facilitates the analysis of the plain projections from assro their effect on the margin learned by the SVMs. Since Malt-

linguistic perspective. Parser scores local decisions, this amounts to suppressing

\éVe ui‘i EgrohparI:sNthe gggzlll)el_r%orr_)ruLs,tW(t)rd-allgnled WltkEVM training instances for those words. That is, fragment
iza++ (Och and Ney, -1ne XIS were 'em- qnts provide context, but no indication of where they are

matized ‘?”d POS-tagged with TregTagger (Schmid, 1994e§ttached themselves. Thus, fMalt can be trained on arbi-
The Engl.|sh text was processed with TreeT_agger and the{?arily sparse dependencies. But we do want to exclude un-
parsed with the baseline MaltParser of @vrelid et al. (zoog)informative analyses, so we limit the admissible fragmenta
which is trained on the dependency-converted WSJ pa ’

rtﬁon to three fragments per sentence and discard sentences
of the Penn Treebank (Marcus et al., 1993). The pars 9 b

h his threshofdTable 2 ibes the effect of
achieves 92% UAS (89% LAS) when gold POS-tags ar;{hf‘stfﬁi(ecfedt 's threshotdTable 2 describes the effect o

used in training and testing, and 91% (88%) with automat-
ically assigned tags. 4 Experimental Results

Table 1 provides summary statistics that describe th‘?/\/e evaluate fMalt against excerpts from manually anno-

amount of fragmentatlor_l in the projected dependenm_es,[ated treebanks of the three languaty&sr Dutch and Ger-
Contrary to our expectations, the degree of fragmentation

. ) 3This parameter was fixed after preliminary tests on automat-
As the asymmetry of the IBM translation models only al- 41y |abeled development data for Dutch. It was then agslim
lows for 1-n alignments for a given language pair, we followed ¢, German and Italian without further tuning. The same i tr
standard practice and cpmputed aligr]ments in both dimlEtio tor various fMalt parameters (cf. Spreyer and Kuhn (2009)).
(SL?TL and TL—SL) which were then intersected. “We replaced the gold POS tags in the test data by the tags as-
See also Section 6. signed automatically by the TreeTagger. This was done iardrd
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lang. words/sent words/frag frags/sent in Table 3, all fMalt parsers achieve scores well above their

nl 9.45 4.31 2.20 baselines (+8—-25%). The baseline performance itselfsarie
de 9.07 4.06 2.23 immensely: The unsupervised left-attachment strategy for
it 9.85 4.44 2.22 Italian is already relatively successful (50.06%), and-—
o o unsurprisingly-the POS-based baseline comes compara-
Table 2: Fragmentation in the training samples. tively close to the fMalt system8.68%). The flat baseline

structure built for German proves inadequate (7.13%), but

lang. baseling.., baseling., fMalt outperforms both left- and right-attachment (not shown).

nl 27.63 41.52 66.58 This is probably an artifact of the flat Tiger annotation
ge 50701: 53797221 gé% scheme. Again, the supervised baselig@rovides a con-
. : baseling,s., baseling,s fMalt
Table 3: UAS of baselines and fMalt. T houn =744 507 3346
verb 93.03 58.50 38.45
prep 100.00 38.18 34.44
det 27.23 27.23 7.44
man, these are the test sets used in the CoNLL shared tasks Zgj\/ %gg %ég g;gg
(Buchholz and Marsi, 2006): 5,000 words each from the comp 98.18 98.15 63.27
Dutch Alpino Treebank (van der Beek et al., 2002) and the other 100‘ 00 98.03 67.89
German Tiger Treebank (Brants et al., 2002) For Italian, : . .
. . de noun 97.58 68.77 35.47
we use 6,000 words of newspaper text from the Turin Uni-
versity Treebank The data sets are largely comparable in verb g;gg ggég i‘;%g
terms of size and genre (nhewpaper, out-of-domain). How- g(r;p 100‘ 00 35.64 23.98
ever, a comparison of parser accuracies across languages . : ' '
can only be tentative since the annotation schemes are not adj 99.54 30.28  20.66
immediately compatible. For evaluation purposes, we elim- adv 100.00 61.98  61.20
inated some obvious differencésut some errors can still g(t)hrzrr) ggg; gigg gggg
be traced back to such discrepancies (see Section 5). T Toun 1634 7603 3465
4.1 Baselines verb 48.07 47.98 35.55
Along with the unlabeled attachment scores (UAS) of fMalt prep 34.63 35.05  30.53
trained on 100,000 words, Table 3 reports the scores ob- deF 95.52 18.84  13.29
tained by two heuristic baselines. The first strategy is en- adj 31.36 3167 29.19
tirely unsupervised and simply attaches each word to the adv 73.38 7336 52.59
preceding word (Italian), the following word (Dutch), or comp 78.30 65.71  54.06
other 69.08 68.97 68.60

the root node (German).
The second baseline attaches words on the basis of their
POS tag. The attachment direction for a given tag is esti-

mated from a small set of 10 annotated sentences (exclude§herable improvement (+32.08%) over baseling,, but
from the test set for their evaluation); alternatively, the  ¢learly lags behind fMalt £22.46%). Baseling,sup for
rection could be provided by a native speaker. If a tag hagtch (right-attachment) suggests an intermediate stage b
not been encountered in the training sentences, the dirégyeen head-initial and head-final constructions (type or to

Table 4: Error rates across word classes.

tion is assigned by baselifgup. ken). Accordingly, baselings achieves further improve-
: : ment (+13.89%), but is still outperformed by fMalt by
4.2 Discussion A25.06%.

While we do not offer a comparative interpretation of the \qte that hoth baselines construct only local dependencies

results here due to the test set heterogeneity described y,qir performance also reflects the degree of non-lgcalit
above, we can contrast the intra-language scores and sj; the three languages.

uate our fMalt systems relative to the baselines. As shown

. — , . 5 Analysis
establish the conditions encountered in the training phakere
no gold standard tags are available. Table 4 shows error rates (ER) per word class. The fMalt
Shttp://www.di.unito.it/ ~tutreeb parsers outperform both baselines across all classes, even

bSpecifically, we performedd hoctree transformations to ob-  those that the baseline is already handling well, such as de-
tain unified analyses of NPs (nominal head rather than DR, PPterminers. This confirms that the parsers indeed learn more
(embedded NP rather than flat), coordination (right-brangh  than just the simplest attachments. Looking at individual
and subordination (subordinate clause headed by comptereen classes, we first notice a comparatively low ER for deter-
rather than verb). In contrast to the transformations ftédoin  miners in all languages. This is especially clear in Dutch
Hwa et al. (2005), the changes we make to the trees are mere 8706 ER), and suggests it is no coincidence that the attach-

formulations of the s.tructur.e' that is already encoded irotfgnal right baseline strategy performs best here. It might be ex-
trees. We do not build additional structure.
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nl de it gold:
precision  73.00 79.17 34.27 m ~

S

Table 5: Precision and recall for subjects.

fMalt:
d"’?t"’.‘ selt 3 3egn ni de It Figure 2: Sentence with a postverbal subject (lit.: ‘were
ongina : they those that in city earned of mordt, was them who
prqje_cted 747 7.19 550 earned more in the ci}y
training 12.04 1258 8.87
application (test) 6.81 8.03 3.96 en de
gOld (test) 6.04 7.96 6.14 baseline 91.67 87.13

combined 91.88 88.27

Table 6: Proportion of subjects at various stages.

Table 7: UAS of source language parsers, on automatically
assigned POS tags.

plained by an interaction of a predominance of determiners
in the test set and their consistent NP-initial realization

Similarly, adjectives are attached with relative accuracy  annotation scheme that fMalt is trained on chooses the rel-
all languages because there is little variation in theii-pos atjvizer che as the head of the relative clause, while it is
tioning with respect to the head (left in Dutch and Germanieaded by the verguadagnavanaccording to the Italian

rightin Italian). scheme.
The projection of the subject dependency relation from En-

glish t(_) Italian is_an_interesting test case for t_he abildy t 6 Impact of Source Parser Quality
deal with syntactic differences that go along with a(moder-SO far, we have varied only the target language. But the
ate) divergence in the token distribution. As is well-kngwn choice, of the source language is at least as i.mportant
Italian is a pro-drpp language, i.e., propommal SUbl.eCt%ecause it determines the range and quality of resources
can be left unrealized. Under perfect alignment, projec

ing from English to Italian is unproblematic, since the En-that can form the basis of projection. In this section, we

; . ) . resent experiments with German as an alternative source
glish pronominal subject has no Italian correspondence, SE . : S
anguage, and we investigate the extent to which improve-

the subject arc is correctly_ dfeleted n th(_a prolectgd deloenr'nents of the SL parser carry over to the projected TL parser.
dency tree. However, statistical word alignment is known

10 be error-prone for closed class words such as ronounLike the English parser used in the experiments above, the
b P Berman parser is a MaltParser, trained on the German Tiger

So the English pronoun is occasionally incorrectly a"gnedTreebank (Brants et al., 2002). The performance of both

with other material. parsers is given in Table 7 (labeled ‘baseline’). Note that

A further complication comes from the fact that overt Ital- . : .
. . . . . the parsers are trained and tested with POS tags assigned
ian subjects can appear in two alternative positions: the . ; . ;
. . automatically by the TreeTagger, since that is the setting
standard preverbal position and the sentence-final focus po .
o . ; . ; -~~~ we face when parsing the Europarl source data.
sition. Combined with the pro-drop issue, this may give rise

. . . . @vrelid et al. (2009) present a technique for enhanc-
to both a reIanver high proportion of fal_se positives argon ing data-driven dependency parsers with information from
the projected subjects, and false negatives of unreco@mz‘?arge-scale broad-coverage LFG grammars (Kaplan et al
Italian subjects. As the precision and recall figures in &abl "

5 show, the training of the subject dependency relation in2004; Forst et al., 2004). They show that for English, the

Italian is indeed substantially harder than for German an<§)arser can benefit significantly from knowing the depen-
dency structure proposed by the deep grammar. For Ger-

Dutch, even though the basic word order of Italian is more 1 including a variety of arammar-derived morphologi-
similar to English. Table 6 shows the proportion of sub- ' g yorg P 9

. . ) .~ cal, syntactic and semantic features in addition to the de-
jects among all relations at various stages of the projectio . . .

) endency structure yields even bigger improvements. The
procedure. We see that almost three times as many sub-

; . o : ‘performance of these enhanced parsers is shown in Table
Ject edges are lost during projection to ltalian as for Qgr 7 (labeled ‘combined’). For both languages, the improve-

sets, where the fragmentation restriction favors shoeter s nent o S|gn|f|cant (gn: 90'01.’ de: p:<O.Q1) according to
Dan Bikel's randomized parsing evaluation comparator.

tences. Consequently, we observe overgeneration of sul:_ . . . .
. ection 6.1 describes the combined source parsers in more
jects by the Dutch and German parsers on the test dat

(+0.77/0.07%). In contrast, the Italian parser is relut:tanieetg!'S:x(:c;hsgrsgfjfnntsgégi)encgozn experiments based on
to predict subjects (-2.18%). o

In Figure 2 fMalt correctly recognizes a subject in non-
standard positionlgro), but we see how two other edges
are considered incorrect in the evaluation because the W

"http://www.cis.upenn.edu/ ~dbikel/
§j‘>ftware.html#comparator
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converted: -

["PRED ‘halte(. . .)’ T e XCOMF\LI\:’RED
VTYPE predicative -
SuBJ “pro” SUBJ-0BJ
PRED “Verhalten’ " L \ \
CASE acc |- i N . i
083 S qydast - Ich halte das damalige Verhalten fur richtig.
ADJUNCT {m“damalige\"} 1sg  pred. ! acc nosem
f: N
PRED ‘fir (. ..)’ 7 g . N
PTYPE nosem R K K
XCOMP-PRED - S~
PRED ‘richtig’ - .S
08y SuBJ
nk 4 .

Figure 3: Treebank enrichment with LFG output for Germamepla sentenckh halte das damalige Verhalteirfrichtig
‘| consider the past behavior (to be) correct’.

ID FORM POS  FEATS HEAD DEPREL XHEAD XDEP XPOS
1 Ich PPER pers:1|num:sg|ntype:pron _pers|case:nom 2 SB 2 SUBJ PPRO

2 halte VVFIN mood:indicative|passive:-|vtype:main|ten se:pres 0 ROOT O ROOT \

3 das ART  _ 5 NK 5 SPEC ART

4 damalige ADJA atype:attributive|degree:positive 5 NK 5 ADJUNCT ADJ

5 Verhalten NN count:+|num:sg|pers:3|gend:neut|case:ac c|def:+|ntype:common 2 OA 7 SUBJ-OBJ NN

6 fir APPR psem:nosem 2 MO 2 XCOMP-PRED PREP
7 richtig ADJD atype:predicative|degree:positive|case: acc 6 NK 6 OBJ ADJ

Table 8: Enhanced treebank version of the German sentelntmlte das damalige Verhalteiirfrichtig.

6.1 Improved SL Parsers: Parser Stacking Another difference (not evident from the example) arises

We boost the performance of our source parsers by mear€Pm the treatment of auxiliary verbs. The treebank anno-
of a technique oparser stackingrery similar to the work ~ tations always treat the finite verb as the matrix verb, hence
on combination of dependency parsers in Nivre and Mcihe lexical verb in an auxiliary construction is a dependent
Donald (2008). Parser stacking enables one parser to leaf the auxiliary. This stands in sharp contrast to the anal-
from the output of another parser, in addition to the goldysis of the grammars, which do not represent the auxiliary
standard treebank annotations. In our case, the datandriv&Xplicitly, but rather encode its contribution in the forr o
parser is supplemented by the output of a large-scale LEdeatures of the main verb. Subjects and certain modifiers
grammar. In order to include the additional information in @re consequently attached to different nodes in the two an-
the training data, the treebank employed for training of thehotation schemes.

data-driven baseline parser is parsed with the XLE platformi here is of course also a difference in quality, since the
(Crouch et al., 2008), and the output f-structures (showrgrammar output has not been manually corrected. It is thus
on the left of Figure 3) are Subsequenﬂy converted to debound to contain errors, which will Cel’tainly add noise to
pendency structures, so that we have two parallel version§€ training data provided for the data-driven parser. That
of the treebank — one gold standard and one with LFGPeing said, we may also expect that the errors made by the
annotation (right side of Figure 3, bottom resp. top). WefWo parsers are qualitatively different due to the fundamen
extend the gold standard treebank with the additional infortal differences in the parser — the grammar-driven parser
mation from the corresponding LFG analysis and train thewill typically suffer from missing rules or lexical entries
data-driven parser on the enhanced data set. For a detailédfhereas the data-driven parser will be constrained by the
description, the reader is referred to @vrelid et al. (2010) types of structures found in the training data.

Treebank representation. Table 8 shows the enhanced Feature model. Finally, in order for the data-driven
treebank version of the example sentence. For each tqarser to make use of the grammar-driven analyses both
ken, the treebank contains information on the word formduring learning and parsing, we make some modifications
(FORN| POS tag POS9, as well as the head and depen-t0 the standard feature model. We extend the feature model
dency relation HEAD, DEPREL. The added LFG infor- ©Of the baseline parsers using the technique employed in
mation resides in thEEATScolumn and in the additional Nivre and McDonald (2008) which allows us to add the
columns labeleXHEADandXDEP predictions of another parser as features for the current
Different annotation schemes. There are interesting dif- parser. In this case we wantto add the dependency structure
' . oposed by the LFG grammar as a feature for our data-
ferences between the LFG and treebank annotations. Mo { .
notably, LFG grammars allow for structure sharing Thisgnven parser. The extended treebank representationg Tabl
' : 8) readily allows us to refer to the heax’{EAD) and de-

can be seen in the f-structure in Figure 3, where the sub- . . .
) L ; pendency relationXpeP). Thus, in each parse configura-
structure forVerhalten'behavior’ is the object of the verb .. ;
) o : .~ tion, we add the proposed dependency relation for the token
halte ‘consider’ as well as the subject of the predicative .
adjectiverichtig ‘correct’. Since multiple heads cannot be on top of the stack and for the next input token as features
J 9 ' P for the parser. We furthermore add a feature which indi-

represented in a conventional dependency tree, we reso"é%tes whether there is an arc between these two tokens in
shared dependents to the closest head but mark the dep

. Re dependency structure (Left, Right, or None).
dence on another head in a complex label (heosJ$08.). In order to incorporate further information supplied by the
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SL SL parser TL:nl en de

en baseline 63.33 baseline combined baseline combined
combined 63.34 noun 37.91 37.61 3251 31.63
de baseline 67.49 verb 39.12 39.06 37.25 37.45
combined 68.20 prep 33.87 35.45 37.89 36.48
det 7.15 7.02 6.38 6.63
Table 9: Impact of SL parse quality on projected Dutch g 28.51 28.36 26.13 24.83
parsers. adv 63.65 62.34 52.84 51.57

comp  63.82 62.82 69.09 67.00
other  97.93 98.26 58.31 57.28

Table 10: Error rates of Dutch fMalt parsers, projected from

LFG grammars we extend the feature models with an advarious source parsers, across word classes.
ditional, static attribute which reads the range of addiio

linguistic featuresgeATS). In addition, the German model

refers to the POS tag assigned by the grammmro§).

Parser Accuracy. As mentioned above, the combined )
parsers produce significantly more accurate analyses. THECton to Dutch than English, and that better source parser

English parser is improved by 0.21%, the German one b\ygive rise to more .accurate projected parsers, for most word
1.14% UAS (Table 7). In the following, we assess the im-classes. Especially for the parser projected from Ger-

pact of these improvements on the projected parsers. man, we find significant improvements for nouns, adjec-
tives and complementizers, and notable (albeit not signifi-
6.2 Experiments cant) changes for prepositions and adverbials. In factgthe

For each source language (English and German), we pars@de the same types of improvements revealed in an error
sentences with both the baseline parser and the improvetnalysis of the parser stacking for German (Qvrelid et al.,
combined parser, and then projected the resulting pars€010): Whereas we observe a general improvement for ar-
trees to Dutch. Table 9 shows the UAS of Dutch fMalt gumentrelations, such as subjects and objects in both com-
parsers trained on 50,000 words of the respective projeddined parsers, we find that the analysis of adverbials to a
tions. Comparing first the SLs, irrespective of the particu-larger extent improves for German. The modifier relation
lar parser used, we find that we obtain better results with th&10 which is employed largely for prepositional phrases at
German source parsers than with the English ones, despitBe sentence level, as well as some adjectives and adver-
the fact that the latter achieves a substantially highachtt ~ bials is one of the relations for which parser performance
ment score (cf. Table 7). This apparent discrepancy can biEproves the most in the German combined parser.
explained by the relation of SL and TL translations, which
may simply be closer between German and Dutch. In ad/ ~Related Work
dition, it is well known that German is generally tough to Annotation projection has been applied to many differ-
parse (Kubler et al., 2006), but error-prone attachment deent NLP tasks. On the word or phrase level, these in-
cisions may be resolved or eliminated in the Dutch translaelude morphological analysis, part-of-speech tagging and
tions. We conclude from our results that “closeness” of SLNP-bracketing (Yarowsky et al., 2001), temporal analy-
and TL translations is likely to outweigh potential perfor- sis (Spreyer and Frank, 2008), semantic lexicon induction
mance deficits of the particular SL parser. (Padb6 and Lapata, 2005), or semantic role labeling (Pado
However, when the SL is fixed we see that performancend Lapata, 2006). In the word level tasks, labels can
improvements of the source parser can carry over to theechnically be introduced in isolation, without reference
projected TL parser. While the difference between fMaltto the rest of the annotation. This means that unreliable
projected from the baseline vs. the combined parser is natata points can be discarded by aggressive filters, and con
significan® for English (A0.01% UAS), we observe a sig- versely, that gaps in the projection (e.g., due to missing
nificant (p<0.05) difference ofA0.71% for German. alignments) do not affect the wellformedness of other pro-
Table 10 breaks the results down by word class. The oveljected material in the same sentence. The annotation of
all trends observed in Table 9 are confirmed here, nameliNP brackets, temporal expressions or semantic roles, on the
that German appears to be a more suitable source for pr@ther hand, is more constrained in that the target strusture
may encompass multiple words, and the plain projections
8A cross-validation scheme is not applicable with a monolin- are typically completed to form contiguous spans.

gual test set. Further complication arises from the factth@  On the sentence level, Hwa et al. (2005) were the first to
underlying source language parsers differ not only in tesf&-  project dependency trees from English to Spanish and Chi-
curacy, byt indiref:tly lead to projected traini.ng. sets tdj\atnot. nese. They identify unreliable target parses (as a whole)
necessarily contain the same sentences. This is bec_afrmenhf on the basis of the number of unaligned or over-aligned
parse trees may be fragmented differently when projectétido 45 1 addition, they manipulate the trees by insert-
target language, and fragmentation is the criterion fottithi@ing . . .

ing extra nodes to accommodate for non-isomorphic sen-

data selection. We therefore perform significance testsiggthe . .
t-test over the results of training on 10 random samples fien  (€NCeS. Systematic non-parallelisms between source and

respective training data. We report the mean of these esult ~ target language are then addressed by hand-crafted rules in
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a post-projection step. These rules correct projectedrdepeDick Crouch, Mary Dalrymple, Ron Kaplan, Tracy King,
dencies and introduce new ones so as to build a connectedJohn Maxwell, and Paula Newman. 2008. XLE docu-
tree. The manually designed transformations account for mentation. Palo Alto Research Center (PARC), available
an enormous increase in the unlabeled f-score of the direct Online.

projections, from 33.9 to 65.7 for Spanish and from 26.3 toMartin Forst, Berthold Crysmann, Frederik Fouvry, Sil-
52.4 for Chinese. But they need to be designed anew for via Hansen-Schirra, and Valia Kordoni. 2004. Towards
every target language, which is time-consuming and, more a dependency-based gold standard for German parsers
importantly, requires knowledge of that language. By con- — The TiGer Dependency Bank. Proceedings of the
trast, our approach of training directly on fragmented de- Workshop on Linguistically Interpreted Corpora
pendency trees allows us to remain agnostic about depeRebecca Hwa, Philip Resnik, Amy Weinberg, Clara
dencies that cannot be transfered reliably from the source Cabezas, and Okan Kolak. 2005. Bootstrapping parsers
language. While fMalt itself is not capable of inducing via syntactic projection across parallel textslatural
structure that has never been observed in the training ex- Language Engineerind.1(3):311-325.

amples, it should be straightforward to combine fMalt with Ron Kaplan, Stefan Riezler, Tracy King, John Maxwell,
machine learning schemes of various degrees of supervi- Alexander Vasserman, and Richard Crouch. 2004.
sion that are suited to discover additional language-fipeci  Speed and Accuracy in Shallow and Deep Stochastic
knowledge automatically, or learn it from minimal amounts  Parsing. InProceedings of HLT-NAACL 2004

of annotated data. Sandra Kiibler, Erhard W. Hinrichs, and Wolfgang Maier.
. 2006. Is it really that difficult to parse German? Rro-
8 Conclusion ceedings of EMNLP 2006

We have shown that training on tree fragments is an inexMitchell P. Marcus, Beatrice Santorini, and Mary Ann
pensive and effective way to obtain parsers for a diverse Marcinkiewicz. 1993. Building a large annotated corpus
range of languages. Analysis of the annotations projected of English: the Penn Treeban&omputational Linguis-
from English reveals that the distance between SL and TL tics, 19(2):313-330.

has little influence on fragmentation. Of course, this de-Joakim Nivre and Ryan McDonald. 2008. Integrating
pends crucially on the word alignment, which ideally en- graph-based and transition-based dependency parsers. In
capsulates language-specific traits such as word order dif- Proceedings of ACL-HLT 2008ages 950-958, Colum-
ferences, allowing them to be recovered under projection.  bus, Ohio, June.

We have also demonstrated that improvements of the sourg®akim Nivre, Johan Hall, Jens Nilsson, Gillsen Eryigit,
language parser, e.g., by means of parser stacking, girectl and Svetoslav Marinov. 2006. Labeled pseudo-
carry over to the projected target language parser. This projective dependency parsing with support vector ma-
means that projection approaches can benefit inmediately chines. InProceedings of CoNLL-)pages 221-225.

from current advances in monolingual dependency parsingeranz Josef Och and Hermann Ney. 2003. A system-
Although the projected parsers cannot close the gap to atic comparison of various statistical alignment models.
state-of-the-art supervised treebank parsers in terms-of a Computational Linguistic29(1):19-51.

curacy, they clearly outperform the POS-based baseline. Ipjlja @vrelid, Jonas Kuhn, and Kathrin Spreyer. 2009.
other words, while parser projection cannot fully replace Improving data-driven dependency parsing using large-
manual annotation, it does provide a cheap and efficient ba- scale LEG grammars. |Proceedings of the Annual

sis for manual or (semi-)automatic correction. This, imtur Meeting for the Association for Computational Linguis-
promotes substantial speed-ups for the creation of large- tics (ACL) (Short Paper)

scale annotated resources. Lilja @vrelid, Jonas Kuhn, and Kathrin Spreyer. 2010.
Cross-framework parser stacking for data-driven depen-
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