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Abstract
We present a study that compares data-driven dependency parsers obtained by means of annotation projection between language pairs
of varying structural similarity. We show how the partial dependency trees projected from English to Dutch, Italian andGerman can be
exploited to train parsers for the target languages. We evaluate the parsers against manual gold standard annotations and find that the
projected parsers substantially outperform our heuristicbaseline by 9–25% UAS, which corresponds to a 21–43% reduction in error rate.
A comparative error analysis focuses on how the projected target language parsers handle subjects, which is especiallyinteresting for
Italian as an instance of a pro-drop language. For Dutch, we further present experiments with German as an alternative source language.
In both source languages, we contrast standard baseline parsers with parsers that are enhanced with the predictions from large-scale LFG
grammars through a technique of parser stacking, and show that improvements of the source language parser can directly lead to similar
improvements of the projected target language parser.

1 Introduction
Annotation projection on parallel corpora has received con-
siderable attention in NLP, as it can reduce the resource
bottleneck for lesser studied languages. For syntactic pars-
ing, dependency structures can in principle be projected in
a straightforward way given a word alignment, even if there
are structural differences between the source language (SL)
and target language (TL). For instance, word order dif-
ferences (within verbal phrases or in the relative order of
adjectives and nouns) cause no harm under perfect word
alignment. More critical are cases where single tokens in
one language correspond to syntactic combinations in the
other language.
In order to assess the practical usefulness of this approach
under realistic circumstances, i.e., with automatic parser
output as the projection source and a statistical word align-
ment, systematic comparisons are needed. We present a
study that compares a particular projection approach, com-
bined with a strategy for exploiting partially labeled sen-
tences, for three languages of varying structural similar-
ity with the SL: We project English dependency parses to
Dutch, Italian, and German (Section 2).
Projected trees tend to be incomplete in the sense that edges
may be missing, due to missing word alignments or non-
parallelism of the translations. We use fMalt (Spreyer and
Kuhn, 2009) to train TL parsers despite this fragmentation.
fMalt is a variation of MaltParser (Nivre et al., 2006) mod-
ified to handle incomplete training data (Section 3).
We evaluate the parsers against gold standard treebank data
and find that the projected parsers reduce the baseline error
by 21–43% (Section 4). The error analysis focuses on how
the projected TL parsers handle subjects by comparing their

distribution at various stages of the projection and parsing
procedure (Section 5).
For Dutch, we further present experiments with German
as an alternative source language. In both SLs, we con-
trast standard baseline parsers with parsers that are en-
hanced with the predictions from large-scale LFG gram-
mars through a technique of parser stacking, inspired by the
work on combining dependency parsers in Nivre and Mc-
Donald (2008). Our experiments show that improvements
thus obtained in the source parser can directly lead to sim-
ilar improvements of the projected TL parser (Section 6).
We compare our approach to related work in Section 7 and
conclude in Section 8.

2 Projection of Dependency Trees
Most state-of-the-art parsers for natural languages are data-
driven and depend on labeled training data, but manual tree-
bank creation is expensive. It can be avoided by labeling the
data automatically usingannotation projection(Yarowsky
et al., 2001): Given a dependency parser for SL, and a
word-aligned parallel corpus of SL and TL, we parse the SL
portion of the corpus and copy (orproject) the dependen-
cies to the corresponding (i.e., aligned) TL elements. This
is illustrated in Figure 1 with English as the SL and Dutch,
German and Italian as TLs. The links between SL and TL
indicate the word alignment. We project the English trees
to the TL by postulating edges between TL words (e.g.,de
andnotulenin Figure 1a) if there is an edge between their
respective English counterparts (theandminutes).
Annotation projection assumesdirect correspondence
(Hwa et al., 2005), which holds in many cases (e.g., Figure
1a), but not in general: non-parallelism between SL and TL
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a. b. c.

the minutes of the sitting the minutes of the sitting the minutes of the sitting

de notulen van de vergadering das Protokoll der Sitzung il processo verbale della seduta

Figure 1:Dependency tree projection from English to a. Dutch, b. German, and c. Italian.

lang. words/sent words/frag frags/sent
nl 24.92 1.81 13.74
de 25.27 1.83 13.78
it 27.11 2.07 13.13

Table 1: Fragmentation in the projected dependencies.

expressions causes errors or gaps in the target annotations.
In Figure 1b, for instance, the possessive relation between
minutesandsitting is expressed analytically with a preposi-
tion in English, but by way of genitive case marking on the
NPder Sitzungin German. As a result, the projected struc-
ture is fragmented. The automatic alignment constitutes a
further error source, as witnessed in Figure 1c: The nominal
compoundprocesso verbale(lit.: spoken proceedings) is
misaligned under the intersective alignment, with the mod-
ifier verbalerather than the headprocessoaligned to the
Englishminutes. This results not only in a fragmented, but
an incorrect parse.
Note that we neither attempt to amend imperfect corre-
spondences, nor do we discard fragmented parses. This
is in contrast to related approaches to annotation projec-
tion which resort to heuristics to enforce coherence in the
projected structures (cf. Section 7). We show in Section
3 that even partial annotations constitute valuable training
data. Moreover, the absence of language-specific patches
facilitates the analysis of the plain projections from a cross-
linguistic perspective.
We use Europarl as the parallel corpus, word-aligned with
GIZA ++ (Och and Ney, 2003).1 The TL texts were lem-
matized and POS-tagged with TreeTagger (Schmid, 1994)
The English text was processed with TreeTagger and then
parsed with the baseline MaltParser of Øvrelid et al. (2009),
which is trained on the dependency-converted WSJ part
of the Penn Treebank (Marcus et al., 1993). The parser
achieves 92% UAS (89% LAS) when gold POS-tags are
used in training and testing, and 91% (88%) with automat-
ically assigned tags.2

Table 1 provides summary statistics that describe the
amount of fragmentation in the projected dependencies.
Contrary to our expectations, the degree of fragmentation

1As the asymmetry of the IBM translation models only al-
lows for 1–n alignments for a given language pair, we followed
standard practice and computed alignments in both directions
(SL→TL and TL→SL) which were then intersected.

2See also Section 6.

is hardly correlated with the increasing distance of the TLs
from English: The Italian and German trees are more con-
nected than the Dutch trees. While the growth of fragment
size (words/frag) is explained by its correlation with sen-
tence length, the simultaneous decrease in the number of
fragments per sentence is astonishing: It means that more
edges can be projected to Italian than to the more similar
Dutch or German.
We conjecture that this may be due to more literal trans-
lations, which in turn allow for better alignments. As it
stands, however, these are purely quantitative properties
which do not guarantee qualitative equivalents.

3 Parsing with Fragments
Our parser, fMalt, is a variant of the transition-based Malt-
Parser (Nivre et al., 2006). Transition-based parsers con-
struct trees in a stepwise fashion: At each point, the lo-
cally optimal parser action (transition) t∗ is determined on
the basis of the current configurationc (previous transitions
plus local features):

t∗ = argmax
t∈T

s(c, t)

whereT is the set of possible transitions. MaltParser imple-
ments an incremental, deterministic parsing algorithm and
learns the transition scoress by means of support vector
machines (SVMs).
What distinguishes fMalt from the original MaltParser is
that it demotes unattached words to serve as mere context
rather than headed nodes. It achieves this by eliminating
their effect on the margin learned by the SVMs. Since Malt-
Parser scores local decisions, this amounts to suppressing
SVM training instances for those words. That is, fragment
roots provide context, but no indication of where they are
attached themselves. Thus, fMalt can be trained on arbi-
trarily sparse dependencies. But we do want to exclude un-
informative analyses, so we limit the admissible fragmenta-
tion to three fragments per sentence and discard sentences
that exceed this threshold.3 Table 2 describes the effect of
this filter.

4 Experimental Results
We evaluate fMalt against excerpts from manually anno-
tated treebanks of the three languages.4 For Dutch and Ger-

3This parameter was fixed after preliminary tests on automat-
ically labeled development data for Dutch. It was then assumed
for German and Italian without further tuning. The same is true
for various fMalt parameters (cf. Spreyer and Kuhn (2009)).

4We replaced the gold POS tags in the test data by the tags as-
signed automatically by the TreeTagger. This was done in order to
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lang. words/sent words/frag frags/sent
nl 9.45 4.31 2.20
de 9.07 4.06 2.23
it 9.85 4.44 2.22

Table 2: Fragmentation in the training samples.

lang. baselineunsup baselinepos fMalt
nl 27.63 41.52 66.58
de 7.13 39.21 61.67
it 50.06 57.72 66.40

Table 3: UAS of baselines and fMalt.

man, these are the test sets used in the CoNLL shared tasks
(Buchholz and Marsi, 2006): 5,000 words each from the
Dutch Alpino Treebank (van der Beek et al., 2002) and the
German Tiger Treebank (Brants et al., 2002) For Italian,
we use 6,000 words of newspaper text from the Turin Uni-
versity Treebank5. The data sets are largely comparable in
terms of size and genre (newpaper, out-of-domain). How-
ever, a comparison of parser accuracies across languages
can only be tentative since the annotation schemes are not
immediately compatible. For evaluation purposes, we elim-
inated some obvious differences,6 but some errors can still
be traced back to such discrepancies (see Section 5).

4.1 Baselines

Along with the unlabeled attachment scores (UAS) of fMalt
trained on 100,000 words, Table 3 reports the scores ob-
tained by two heuristic baselines. The first strategy is en-
tirely unsupervised and simply attaches each word to the
preceding word (Italian), the following word (Dutch), or
the root node (German).
The second baseline attaches words on the basis of their
POS tag. The attachment direction for a given tag is esti-
mated from a small set of 10 annotated sentences (excluded
from the test set for their evaluation); alternatively, thedi-
rection could be provided by a native speaker. If a tag has
not been encountered in the training sentences, the direc-
tion is assigned by baselineunsup.

4.2 Discussion

While we do not offer a comparative interpretation of the
results here due to the test set heterogeneity described
above, we can contrast the intra-language scores and sit-
uate our fMalt systems relative to the baselines. As shown

establish the conditions encountered in the training phase, where
no gold standard tags are available.

5http://www.di.unito.it/ ˜ tutreeb
6Specifically, we performedad hoctree transformations to ob-

tain unified analyses of NPs (nominal head rather than DP), PPs
(embedded NP rather than flat), coordination (right-branching)
and subordination (subordinate clause headed by complementizer
rather than verb). In contrast to the transformations reported in
Hwa et al. (2005), the changes we make to the trees are mere re-
formulations of the structure that is already encoded in theoriginal
trees. We do not build additional structure.

in Table 3, all fMalt parsers achieve scores well above their
baselines (+8–25%). The baseline performance itself varies
immensely: The unsupervised left-attachment strategy for
Italian is already relatively successful (50.06%), and–
unsurprisingly–the POS-based baseline comes compara-
tively close to the fMalt system (∆8.68%). The flat baseline
structure built for German proves inadequate (7.13%), but
outperforms both left- and right-attachment (not shown).
This is probably an artifact of the flat Tiger annotation
scheme. Again, the supervised baselinepos provides a con-

baselineunsup baselinepos fMalt
nl noun 77.44 75.92 33.46

verb 93.03 58.50 38.45
prep 100.00 38.18 34.44
det 27.23 27.23 7.44
adj 31.70 31.29 27.38
adv 70.56 70.83 59.39
comp 98.18 98.15 63.27
other 100.00 98.03 67.89

de noun 97.58 68.77 35.47
verb 57.90 66.16 34.19
prep 98.96 67.96 47.79
det 100.00 35.64 23.98
adj 99.54 30.28 20.66
adv 100.00 61.98 61.20
comp 95.07 54.59 43.60
other 96.53 81.29 69.38

it noun 46.34 46.03 34.65
verb 48.07 47.98 35.55
prep 34.63 35.05 30.53
det 95.52 18.84 13.29
adj 31.36 31.67 29.19
adv 73.38 73.36 52.59
comp 78.30 65.71 54.06
other 69.08 68.97 68.60

Table 4: Error rates across word classes.

siderable improvement (+32.08%) over baselineunsup, but
clearly lags behind fMalt (∆22.46%). Baselineunsup for
Dutch (right-attachment) suggests an intermediate stage be-
tween head-initial and head-final constructions (type or to-
ken). Accordingly, baselinepos achieves further improve-
ment (+13.89%), but is still outperformed by fMalt by
∆25.06%.
Note that both baselines construct only local dependencies,
so their performance also reflects the degree of non-locality
in the three languages.

5 Analysis
Table 4 shows error rates (ER) per word class. The fMalt
parsers outperform both baselines across all classes, even
those that the baseline is already handling well, such as de-
terminers. This confirms that the parsers indeed learn more
than just the simplest attachments. Looking at individual
classes, we first notice a comparatively low ER for deter-
miners in all languages. This is especially clear in Dutch
(7% ER), and suggests it is no coincidence that the attach-
right baseline strategy performs best here. It might be ex-
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nl de it
precision 73.00 79.17 34.27
recall 75.21 79.16 14.20

Table 5: Precision and recall for subjects.

data set en nl de it
original 8.39
projected 7.47 7.19 5.50
training 12.04 12.58 8.87
application (test) 6.81 8.03 3.96
gold (test) 6.04 7.96 6.14

Table 6: Proportion of subjects at various stages.

plained by an interaction of a predominance of determiners
in the test set and their consistent NP-initial realization.
Similarly, adjectives are attached with relative accuracyin
all languages because there is little variation in their posi-
tioning with respect to the head (left in Dutch and German;
right in Italian).
The projection of the subject dependency relation from En-
glish to Italian is an interesting test case for the ability to
deal with syntactic differences that go along with a (moder-
ate) divergence in the token distribution. As is well-known,
Italian is a pro-drop language, i.e., pronominal subjects
can be left unrealized. Under perfect alignment, project-
ing from English to Italian is unproblematic, since the En-
glish pronominal subject has no Italian correspondence, so
the subject arc is correctly deleted in the projected depen-
dency tree. However, statistical word alignment is known
to be error-prone for closed class words such as pronouns.
So the English pronoun is occasionally incorrectly aligned
with other material.
A further complication comes from the fact that overt Ital-
ian subjects can appear in two alternative positions: the
standard preverbal position and the sentence-final focus po-
sition. Combined with the pro-drop issue, this may give rise
to both a relatively high proportion of false positives among
the projected subjects, and false negatives of unrecognized
Italian subjects. As the precision and recall figures in Table
5 show, the training of the subject dependency relation in
Italian is indeed substantially harder than for German and
Dutch, even though the basic word order of Italian is more
similar to English. Table 6 shows the proportion of sub-
jects among all relations at various stages of the projection
procedure. We see that almost three times as many sub-
ject edges are lost during projection to Italian as for Ger-
man or Dutch. Subjects are more frequent in the training
sets, where the fragmentation restriction favors shorter sen-
tences. Consequently, we observe overgeneration of sub-
jects by the Dutch and German parsers on the test data
(+0.77/0.07%). In contrast, the Italian parser is reluctant
to predict subjects (-2.18%).
In Figure 2 fMalt correctly recognizes a subject in non-
standard position (loro), but we see how two other edges
are considered incorrect in the evaluation because the WSJ

gold:

Erano loroquelli che in citta guadagnavano di piu

fMalt:

Figure 2: Sentence with a postverbal subject (lit.: ‘were
they those that in city earned of more’,It was them who
earned more in the city).

en de
baseline 91.67 87.13
combined 91.88 88.27

Table 7: UAS of source language parsers, on automatically
assigned POS tags.

annotation scheme that fMalt is trained on chooses the rel-
ativizer cheas the head of the relative clause, while it is
headed by the verbguadagnavanoaccording to the Italian
scheme.

6 Impact of Source Parser Quality
So far, we have varied only the target language. But the
choice of the source language is at least as important,
because it determines the range and quality of resources
that can form the basis of projection. In this section, we
present experiments with German as an alternative source
language, and we investigate the extent to which improve-
ments of the SL parser carry over to the projected TL parser.
Like the English parser used in the experiments above, the
German parser is a MaltParser, trained on the German Tiger
Treebank (Brants et al., 2002). The performance of both
parsers is given in Table 7 (labeled ‘baseline’). Note that
the parsers are trained and tested with POS tags assigned
automatically by the TreeTagger, since that is the setting
we face when parsing the Europarl source data.
Øvrelid et al. (2009) present a technique for enhanc-
ing data-driven dependency parsers with information from
large-scale broad-coverage LFG grammars (Kaplan et al.,
2004; Forst et al., 2004). They show that for English, the
parser can benefit significantly from knowing the depen-
dency structure proposed by the deep grammar. For Ger-
man, including a variety of grammar-derived morphologi-
cal, syntactic and semantic features in addition to the de-
pendency structure yields even bigger improvements. The
performance of these enhanced parsers is shown in Table
7 (labeled ‘combined’). For both languages, the improve-
ment is significant (en: p<0.01, de: p<<0.01) according to
Dan Bikel’s randomized parsing evaluation comparator.7

Section 6.1 describes the combined source parsers in more
detail. We then present projection experiments based on
these source parsers in section 6.2.

7http://www.cis.upenn.edu/ ˜ dbikel/
software.html#comparator
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Ich halte das damalige Verhalten für richtig.
1sg pred. acc nosem
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NK
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NK

Figure 3: Treebank enrichment with LFG output for German example sentenceIch halte das damalige Verhalten für richtig
‘I consider the past behavior (to be) correct’.

ID FORM POS FEATS HEAD DEPREL XHEAD XDEP XPOS
1 Ich PPER pers:1|num:sg|ntype:pron pers|case:nom 2 SB 2 SUBJ PPRO
2 halte VVFIN mood:indicative|passive:-|vtype:main|ten se:pres 0 ROOT 0 ROOT V
3 das ART 5 NK 5 SPEC ART
4 damalige ADJA atype:attributive|degree:positive 5 NK 5 ADJUNCT ADJ
5 Verhalten NN count:+|num:sg|pers:3|gend:neut|case:ac c|def:+|ntype:common 2 OA 7 SUBJ-OBJ NN
6 für APPR psem:nosem 2 MO 2 XCOMP-PRED PREP
7 richtig ADJD atype:predicative|degree:positive|case: acc 6 NK 6 OBJ ADJ

Table 8: Enhanced treebank version of the German sentenceIch halte das damalige Verhalten für richtig.

6.1 Improved SL Parsers: Parser Stacking

We boost the performance of our source parsers by means
of a technique ofparser stackingvery similar to the work
on combination of dependency parsers in Nivre and Mc-
Donald (2008). Parser stacking enables one parser to learn
from the output of another parser, in addition to the gold
standard treebank annotations. In our case, the data-driven
parser is supplemented by the output of a large-scale LFG
grammar. In order to include the additional information in
the training data, the treebank employed for training of the
data-driven baseline parser is parsed with the XLE platform
(Crouch et al., 2008), and the output f-structures (shown
on the left of Figure 3) are subsequently converted to de-
pendency structures, so that we have two parallel versions
of the treebank – one gold standard and one with LFG-
annotation (right side of Figure 3, bottom resp. top). We
extend the gold standard treebank with the additional infor-
mation from the corresponding LFG analysis and train the
data-driven parser on the enhanced data set. For a detailed
description, the reader is referred to Øvrelid et al. (2010).

Treebank representation. Table 8 shows the enhanced
treebank version of the example sentence. For each to-
ken, the treebank contains information on the word form
(FORM), POS tag (POS), as well as the head and depen-
dency relation (HEAD, DEPREL). The added LFG infor-
mation resides in theFEATS-column and in the additional
columns labeledXHEADandXDEP.

Different annotation schemes. There are interesting dif-
ferences between the LFG and treebank annotations. Most
notably, LFG grammars allow for structure sharing. This
can be seen in the f-structure in Figure 3, where the sub-
structure forVerhalten‘behavior’ is the object of the verb
halte ‘consider’ as well as the subject of the predicative
adjectiverichtig ‘correct’. Since multiple heads cannot be
represented in a conventional dependency tree, we resolve
shared dependents to the closest head but mark the depen-
dence on another head in a complex label (here, SUBJ-OBJ).

Another difference (not evident from the example) arises
from the treatment of auxiliary verbs. The treebank anno-
tations always treat the finite verb as the matrix verb, hence
the lexical verb in an auxiliary construction is a dependent
of the auxiliary. This stands in sharp contrast to the anal-
ysis of the grammars, which do not represent the auxiliary
explicitly, but rather encode its contribution in the form of
features of the main verb. Subjects and certain modifiers
are consequently attached to different nodes in the two an-
notation schemes.
There is of course also a difference in quality, since the
grammar output has not been manually corrected. It is thus
bound to contain errors, which will certainly add noise to
the training data provided for the data-driven parser. That
being said, we may also expect that the errors made by the
two parsers are qualitatively different due to the fundamen-
tal differences in the parser – the grammar-driven parser
will typically suffer from missing rules or lexical entries,
whereas the data-driven parser will be constrained by the
types of structures found in the training data.

Feature model. Finally, in order for the data-driven
parser to make use of the grammar-driven analyses both
during learning and parsing, we make some modifications
to the standard feature model. We extend the feature model
of the baseline parsers using the technique employed in
Nivre and McDonald (2008) which allows us to add the
predictions of another parser as features for the current
parser. In this case we want to add the dependency structure
proposed by the LFG grammar as a feature for our data-
driven parser. The extended treebank representation (Table
8) readily allows us to refer to the head (XHEAD) and de-
pendency relation (XDEP). Thus, in each parse configura-
tion, we add the proposed dependency relation for the token
on top of the stack and for the next input token as features
for the parser. We furthermore add a feature which indi-
cates whether there is an arc between these two tokens in
the dependency structure (Left, Right, or None).
In order to incorporate further information supplied by the
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SL SL parser TL: nl
en baseline 63.33

combined 63.34
de baseline 67.49

combined 68.20

Table 9: Impact of SL parse quality on projected Dutch
parsers.

LFG grammars we extend the feature models with an ad-
ditional, static attribute which reads the range of additional
linguistic features (FEATS). In addition, the German model
refers to the POS tag assigned by the grammar (XPOS).

Parser Accuracy. As mentioned above, the combined
parsers produce significantly more accurate analyses. The
English parser is improved by 0.21%, the German one by
1.14% UAS (Table 7). In the following, we assess the im-
pact of these improvements on the projected parsers.

6.2 Experiments

For each source language (English and German), we parsed
sentences with both the baseline parser and the improved
combined parser, and then projected the resulting parse
trees to Dutch. Table 9 shows the UAS of Dutch fMalt
parsers trained on 50,000 words of the respective projec-
tions. Comparing first the SLs, irrespective of the particu-
lar parser used, we find that we obtain better results with the
German source parsers than with the English ones, despite
the fact that the latter achieves a substantially higher attach-
ment score (cf. Table 7). This apparent discrepancy can be
explained by the relation of SL and TL translations, which
may simply be closer between German and Dutch. In ad-
dition, it is well known that German is generally tough to
parse (Kübler et al., 2006), but error-prone attachment de-
cisions may be resolved or eliminated in the Dutch transla-
tions. We conclude from our results that “closeness” of SL
and TL translations is likely to outweigh potential perfor-
mance deficits of the particular SL parser.
However, when the SL is fixed we see that performance
improvements of the source parser can carry over to the
projected TL parser. While the difference between fMalt
projected from the baseline vs. the combined parser is not
significant8 for English (∆0.01% UAS), we observe a sig-
nificant (p<0.05) difference of∆0.71% for German.
Table 10 breaks the results down by word class. The over-
all trends observed in Table 9 are confirmed here, namely
that German appears to be a more suitable source for pro-

8A cross-validation scheme is not applicable with a monolin-
gual test set. Further complication arises from the fact that the
underlying source language parsers differ not only in termsof ac-
curacy, but indirectly lead to projected training sets thatdo not
necessarily contain the same sentences. This is because different
parse trees may be fragmented differently when projected tothe
target language, and fragmentation is the criterion for thetraining
data selection. We therefore perform significance testing using the
t-test over the results of training on 10 random samples fromthe
respective training data. We report the mean of these results.

en de
baseline combined baseline combined

noun 37.91 37.61 32.51 31.63
verb 39.12 39.06 37.25 37.45
prep 33.87 35.45 37.89 36.48
det 7.15 7.02 6.38 6.63
adj 28.51 28.36 26.13 24.83
adv 63.65 62.34 52.84 51.57
comp 63.82 62.82 69.09 67.00
other 97.93 98.26 58.31 57.28

Table 10: Error rates of Dutch fMalt parsers, projected from
various source parsers, across word classes.

jection to Dutch than English, and that better source parsers
give rise to more accurate projected parsers, for most word
classes. Especially for the parser projected from Ger-
man, we find significant improvements for nouns, adjec-
tives and complementizers, and notable (albeit not signifi-
cant) changes for prepositions and adverbials. In fact, these
are the same types of improvements revealed in an error
analysis of the parser stacking for German (Øvrelid et al.,
2010): Whereas we observe a general improvement for ar-
gument relations, such as subjects and objects in both com-
bined parsers, we find that the analysis of adverbials to a
larger extent improves for German. The modifier relation
MO which is employed largely for prepositional phrases at
the sentence level, as well as some adjectives and adver-
bials is one of the relations for which parser performance
improves the most in the German combined parser.

7 Related Work
Annotation projection has been applied to many differ-
ent NLP tasks. On the word or phrase level, these in-
clude morphological analysis, part-of-speech tagging and
NP-bracketing (Yarowsky et al., 2001), temporal analy-
sis (Spreyer and Frank, 2008), semantic lexicon induction
(Padó and Lapata, 2005), or semantic role labeling (Padó
and Lapata, 2006). In the word level tasks, labels can
technically be introduced in isolation, without reference
to the rest of the annotation. This means that unreliable
data points can be discarded by aggressive filters, and con-
versely, that gaps in the projection (e.g., due to missing
alignments) do not affect the wellformedness of other pro-
jected material in the same sentence. The annotation of
NP brackets, temporal expressions or semantic roles, on the
other hand, is more constrained in that the target structures
may encompass multiple words, and the plain projections
are typically completed to form contiguous spans.
On the sentence level, Hwa et al. (2005) were the first to
project dependency trees from English to Spanish and Chi-
nese. They identify unreliable target parses (as a whole)
on the basis of the number of unaligned or over-aligned
words. In addition, they manipulate the trees by insert-
ing extra nodes to accommodate for non-isomorphic sen-
tences. Systematic non-parallelisms between source and
target language are then addressed by hand-crafted rules in
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a post-projection step. These rules correct projected depen-
dencies and introduce new ones so as to build a connected
tree. The manually designed transformations account for
an enormous increase in the unlabeled f-score of the direct
projections, from 33.9 to 65.7 for Spanish and from 26.3 to
52.4 for Chinese. But they need to be designed anew for
every target language, which is time-consuming and, more
importantly, requires knowledge of that language. By con-
trast, our approach of training directly on fragmented de-
pendency trees allows us to remain agnostic about depen-
dencies that cannot be transfered reliably from the source
language. While fMalt itself is not capable of inducing
structure that has never been observed in the training ex-
amples, it should be straightforward to combine fMalt with
machine learning schemes of various degrees of supervi-
sion that are suited to discover additional language-specific
knowledge automatically, or learn it from minimal amounts
of annotated data.

8 Conclusion
We have shown that training on tree fragments is an inex-
pensive and effective way to obtain parsers for a diverse
range of languages. Analysis of the annotations projected
from English reveals that the distance between SL and TL
has little influence on fragmentation. Of course, this de-
pends crucially on the word alignment, which ideally en-
capsulates language-specific traits such as word order dif-
ferences, allowing them to be recovered under projection.
We have also demonstrated that improvements of the source
language parser, e.g., by means of parser stacking, directly
carry over to the projected target language parser. This
means that projection approaches can benefit immediately
from current advances in monolingual dependency parsing.
Although the projected parsers cannot close the gap to
state-of-the-art supervised treebank parsers in terms of ac-
curacy, they clearly outperform the POS-based baseline. In
other words, while parser projection cannot fully replace
manual annotation, it does provide a cheap and efficient ba-
sis for manual or (semi-)automatic correction. This, in turn,
promotes substantial speed-ups for the creation of large-
scale annotated resources.
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