
Propbank Frameset Annotation Guidelines
Using a Dedicated Editor, Cornerstone

Jinho D. Choi, Claire Bonial, Martha Palmer

University of Colorado at Boulder
Boulder, CO 80302, USA

choijd@colorado.edu, bonial@colorado.edu, mpalmer@colorado.edu

Abstract
This paper gives guidelines of how to create and update Propbank frameset files using a dedicated editor, Cornerstone. Propbank is
a corpus in which the arguments of each verb predicate are annotated with their semantic roles in relation to the predicate. Propbank
annotation also requires the choice of a sense ID for each predicate. Thus, for each predicate in Propbank, there exists a corresponding
frameset file showing the expected predicate argument structure of each sense related to the predicate. Since most Propbank annotations
are based on the predicate argument structure defined in the frameset files, it is important to keep the files consistent, simple to read as
well as easy to update. The frameset files are written in XML, which can be difficult to edit when using a simple text editor. Therefore,
it is helpful to develop a user-friendly editor such as Cornerstone, specifically customized to create and edit frameset files. Cornerstone
runs platform independently, is light enough to run as an X11 application and supports multiple languages such as Arabic, Chinese,
English, Hindi and Korean.

1. Introduction

Cornerstone is a Propbank frameset editor developed at the
University of Colorado at Boulder. Propbank is a corpus
in which the arguments of each verb predicate are anno-
tated with their thematic roles (Palmer et al., 2005). For
each predicate in the Propbank, there exists a corresponding
frameset file encompassing one or more senses of the pred-
icate. For example, for a verb predicate ‘run’, there exists a
frameset file, run.xml, that describes verb-senses of the
predicate (e.g., run.01). Additional senses can be added
to the frameset file as they arise in the Propbank. For En-
glish, in addition to senses corresponding to the main pred-
icate lemma (e.g., ‘run’), a frameset file may also include
senses corresponding to any verb particle constructions as-
sociated with the predicate (e.g., ‘run out’, ‘run up’).

Each sense, alternately referred to as a roleset or a
frameset depending on the language, comes with a gener-
alized predicate argument structure of the sense as well as
annotated examples from the corpus. For example, a sense
run.02 (‘walk quickly, a course or contest’) lists three
roles represented by numbered arguments: ARG0 as a ‘run-
ner’, ARG1 as a ‘course, race or distance’, and ARG2 as an
‘opponent’. The frameset file is essential for Propbank an-
notation because it not only supplies semantic information
about each sense, but also defines the predicate argument
structure of the sense, providing guidelines as to how that
particular sense should be annotated. Since Propbank an-
notations are based on the argument structure outlined in
the frameset files, it is important to keep them consistent,
simple to read, and easy to update.

All frameset files are written in XML, which provides a
useful, hierarchical format suited to the project. However,
the format is somewhat complicated to read, especially for
the annotators and adjudicators who are not familiar with
it. Most importantly, it is difficult to edit XML files using
a simple text editor without making mistakes that could be
detrimental to the operation of the project. Therefore, it is

helpful to have a user-friendly editor to create, view, and
edit frameset files without knowing about XML. Although
many XML editors already exist, most of them require some
degree of knowledge of XML, and none of them are specif-
ically customized for frameset files. This motivated the de-
velopment of our own frameset editor, Cornerstone.

Cornerstone is developed in Java (JDK 6.0), so it runs
on any platform where a Java virtual machine is installed.
It is light enough to run as an X11 application. This as-
pect is important because frameset files are usually stored
in a server, so frame authors need to update the files re-
motely (via SSH). One of the biggest advantages of using
Cornerstone is that it accommodates several languages; in
fact, the tool has been used for Propbank projects in Ara-
bic (M.Diab et al., 2008), Chinese (Xue and Palmer, 2009),
English (Palmer et al., 2005) and Hindi, and has been tested
in Korean (Han et al., 2002).

This paper details how to create and update the frame-
set files using Cornerstone. There are two modes in which
to run Cornerstone: multi-lemma and uni-lemma mode. In
multi-lemma mode, a predicate can have multiple lemmas,
whereas a predicate can have only one lemma in uni-lemma
mode. Languages such as English and Hindi are expected
to run in multi-lemma mode, and languages such as Ara-
bic and Chinese are expected to run in uni-lemma mode.
Although there are two different modes, the interfaces are
very similar, so learning one mode effectively teaches the
other.

2. How to obtain Cornerstone
Cornerstone is available as an open source project on
Google code.1 The webpage gives detailed instructions of
how to download, install and launch the tool (Choi et al.,
2009).

1http://code.google.com/p/propbank/

3650



Figure 1: Open run.xml in multi-lemma mode

3. Cornerstone in multi-lemma mode

Languages such as English and Hindi are expected to run
in multi-lemma mode, due to the nature of their verb predi-
cates. In multi-lemma mode, a predicate can have multiple
lemmas (e.g., ‘run’, ‘run out’, ‘run up’). The XML structure
of the frameset files for such langauges is defined in a DTD
file, frameset.dtd.

Figure 1 (Page 2) shows what appears when you open a
frameset file, run.xml, in multi-lemma mode. The win-
dow consists of four panes: the frameset pane, predicate
pane, roleset pane and roles pane. The frameset pane con-
tains the predicate pane as well as a frameset note reserved
for information that pertains to all predicate lemmas and
rolesets within the frameset file.

The predicate pane contains one or more tabs titled by
predicate lemmas that may include verb particle construc-
tions. Each predicate tab contains a roleset pane as well as
a predicate note for optional information that pertains to all
rolesets encompassed by the predicate lemma.

The roleset pane contains tabs titled by roleset IDs (e.g.,
run.01, run.02) for the currently selected predicate
lemma (e.g., ‘run’). Each roleset tab contains a roleset note
for required information about the sense. This information
includes, but is not limited to, the corpus that is the source
of that roleset, the VerbNet class (Kipper et al., 2006) that
the predicate falls into (or a note that VerbNet does not in-
clude the particular predicate) and the author of the roleset.
Optional information may be a mention of other predicates
that were consulted in comparison to the current predicate
(especially in the absence of a VerbNet entry) or relevant

FrameNet information (Baker et al., 1998). 2 The role-
set pane also contains three attribute fields: name, vncls,
and framnet. The name attribute shows a brief definition
of the current roleset. The vncls and the framnet at-
tributes show which VerbNet and FrameNet class this role-
set is associated with, respectively. These vncls and the
framnet attributes are useful because PropBank’s verb
senses are very coarse-grained: a new sense is only added
when both the syntax and semantics of a new usage differ
from an existing roleset. Thus, the mappings to VerbNet
and FrameNet classes can be used to supplement informa-
tion about what finer-grained verb senses correspond to the
PropBank roleset. Additionally, the roleset pane contains a
roles pane.

The roles pane includes one or more verb-specific
roles, which represent arguments that the predicate re-
quires or commonly takes in usage. For example, a role-
set decrease.01 has roles representing five arguments:
ARG0 as a ‘causer of decline, agent’, ARG1 as a ‘thing
decreasing’, ARG2 as an ‘amount decreased by’, ARG3 a
‘starting point’ and ARG4 as an ‘ending point’. Each role
contains three attribute fields: n is an argument number, f
is a function tag and descr shows a description of the role.
The relationship between argument numbers, n, and the-
matic roles is intended to be somewhat flexible and can be
changed across different predicates. However, numbered
arguments generally correspond to the following thematic
roles in Table 1.

The function tag, f is available for each role. If the

2VerbNet and FrameNet information is not currently linked in
languages other than English.

3651



ARG0 agent ARG3 starting point
ARG1 patient ARG4 ending point

ARG2
instrument

ARGM modifierbenafactive
attribute

Table 1: List of arguments in Propbank

survey of a given predicate shows that a certain type of
modifier (e.g., locative, temporal) is commonly used with
the predicate, then the frame author can add a role labeled
ARGM with the appropriate function tag (e.g., loc, tmp;
see Palmer et al. (2005)) in place of a numbered argument.
The attribute field descr contains a description of the se-
mantic role, general enough to be applied to various syn-
tactic realizations of this role (e.g., ARG0 for run.02 is a
’runner’).

Each role can include vnrole (VerbNet role) informa-
tion. There are two attribute fields within vnrole: vncls
(VerbNet class) and vntheta (VerbNet thematic role).
If the predicate is a member of VerbNet, this information
should be supplied for each role compatible with the Verb-
Net information (for more details about VerbNet, see Kip-
per et al. (2006)). The VerbNet class is the larger group of
verbs of which the predicate in question is a member. These
classes are numbered, and also named, generally with a
verb that is a canonical member of this class. For exam-
ple, ‘run’ is a member of several VerbNet classes, including
BUMP-18.4, CARRY-11.4, MEANDER-47.7, RUN-51.3.2;
the earlier example run.02 is mapped only to the rele-
vant class RUN-51.3.2. The second attribute, vntheta
gives the VerbNet thematic role correlated with the Prop-
bank role. For example, the ARG0 of run.02 is correlated
with the vntheta ‘agent’.

Not only is the VerbNet information useful to annota-
tors who find it helpful to view the more canonical thematic
role associated with a numbered argument, this information
can also supplement potential weaknesses of PropBank’s
verb-specific arguments. Although PropBank’s ARG0 and
ARG1 consistently correspond to prototypical agents and
patients respectively, ARG2 through ARG5 are highly vari-
able. However, the mappings between PropBank’s num-
bered arguments and VerbNet thematic roles can be used to
provide consistent thematic role labels across several verbs.

Like other panes, the roles pane also contains a roles
note for optional information about the roles. This may
include information that will help annotators disambiguate
between roles and some syntactic information relevant to
the roles.

4. Cornerstone in uni-lemma mode
Languages such as Arabic and Chinese are expected to run
in uni-lemma mode. Unlike multi-lemma mode, which al-
lows a predicate to have multiple lemmas, uni-lemma mode
allows only one lemma for a predicate. The XML structure
of the frameset files for such langauges is defined in a DTD
file, verb.dtd.

Figure 2 (in page 4) shows what appears when you open
a frameset file, HAfaZ.xml, in uni-lemma mode. The

window consists of four panes: the verb pane, frameset
pane, frame pane and roles pane. The verb pane contains a
verb comment for helpful information about the verb, and
an attribute field, ID, indicating the predicate lemma of the
verb, which can be represented either in Roman alphabets
or characters in other languages. Additionally, the verb
pane contains the frameset pane.

The frameset pane contains several tabs titled by frame-
set IDs for the predicate. Note that the frameset in uni-
lemma mode is equivalent to the roleset in multi-lemma
mode. The frameset pane also contains a frameset com-
ment for required information about the currently selected
frameset as well as two attribute fields, edef and cdef,
which show the English and non-English (in this case, Ara-
bic) definitions of the frameset, respectively. In addition,
the frameset pane contains one or more frame panes and
the roles pane.

The frame pane contains a frame comment for optional
information about the frame and the mapping pane. In
turn, the mapping pane contains a comment used to de-
scribe mappings between syntactic and semantic arguments
associated with the currently selected frameset. The map-
ping pane also contains V, which is a placeholder indicat-
ing where the verb predicate should be located among the
other arguments, and a set of mappings between each syn-
tactic argument, src (e.g., subject, object) and a semantic
argument, trg (e.g., agent, patient). The syntactic argu-
ments are often provided in the Treebank (Xue and Palmer,
2009), in which case, these mappings can be used for auto-
matic extraction of semantic arguments from their syntactic
labels. Table 2 shows the full list of syntactic arguments.

Argument Description
sbj subject
npobj noun-phrase object
ipobj inflectional-phrase object
ext extent
dir direction
controlip ipobj that is a control clause
io indirect object
other other kind of syntactic arg.

Table 2: List of syntactic arguments

The roles pane consists of a set of arguments that the pred-
icate requires or commonly takes. Each argument has two
attribute fields: argnum is an argument number (Table 1)
and argrole shows a description of the semantic role.

5. Software demonstration
We will begin by demonstrating how to view frameset files
in both multi-lemma and uni-lemma mode. In each mode,
we will open an existing frameset file, compare its inter-
face with the actual XML file, and show how intuitive it is
to interact with the tool. Next, we will demonstrate how to
create and edit a new frameset file either from scratch or
by copying from a related frameset file. This demonstra-
tion will reflect several advantages of using the tool. First,
the XML structure is completely transparent to the frame

3652



Figure 2: Open HAfaZ.xml in uni-lemma mode

authors, so that no knowledge of XML is required to man-
age the frameset files. Second, the tool automates some
of the routine work for the frame authors (e.g., assigning
a new roleset/frameset ID) and gives lists of options to be
chosen (e.g., a list of function tags) so that frameset cre-
ation, and the entire annotation procedure in turn, become
much faster. Third, the tool checks for the completion of
required fields and formatting errors so that frame authors
do not have to check them manually. Finally, the tool auto-
matically saves the changes so the work is never lost.

6. Advantages and future work
Since Propbank annotations are based on the frameset files,
it is important to keep them consistent as well as easy to
update. The frameset files are written in XML, which is
difficult to edit using a simple text editor. By using Cor-
nerstone, you can view, create and edit frameset files with-
out knowing XML. Furthermore, the frameset files created
by Cornerstone are guaranteed to be free of the errors that
commonly occur when directly manipulating XML files.

Cornerstone has been successfully adapted to Prop-
bank projects in several universities such as the Univer-
sity of Colorado at Boulder and the University of Illinois
at Urbana- Champaign. We will continue to develop the
tool by improving its functionalities through user-testing,
and applying it to more languages.

Acknowledgments
We gratefully acknowledge the support of the National
Science Foundation Grants CISE-CRI-0551615, Towards
a Comprehensive Linguistic Annotation and CISE-CRI
0709167, Collaborative: A Multi-Representational and
Multi-Layered Treebank for Hindi/Urdu, and a grant
from the Defense Advanced Research Projects Agency
(DARPA/IPTO) under the GALE program, DARPA/CMO
Contract No. HR0011-06-C-0022, subcontract from BBN,

Inc. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation.

7. References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The berkeley framenet project. In Proceedings of
the 36th Annual Meeting of the Association for Computa-
tional Linguistics and the 17th International Conference
on Computational Linguistics.

Jinho D. Choi, Claire Bonial, and Martha Palmer. 2009.
Cornerstone: Propbank frameset editor guideline (ver-
sion 1.3). Technical report, Institute of Cognitive Sci-
ence, the University of Colorado at Boulder.

C. Han, N. Han, E. Ko, and M. Palmer. 2002. Korean
treebank: Development and evaluation. In Proceedings
of the 3rd International Conference on Language Re-
sources and Evaluation.

K. Kipper, A.Korhonen, N.Ryant, and M.Palmer. 2006.
Extending verbnet with novel verb classes. In Proceed-
ings of the 5th International Conference on Language
Resources and Evaluation.

M.Diab, A.Mansouri, M.Palmer, O.Babko-Malaya, W Za-
ghouani, A.Bies, and M.Maamouri. 2008. A pilot arabic
propbank. In Proceedings of the 7th International Con-
ference on Language Resources and Evaluation.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1):71–106.

Nianwen Xue and Martha Palmer. 2009. Adding semantic
roles to the chinese treebank. Natural Language Engi-
neering, 15(1):143–172.

3653


