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Abstract
The LTSE-VAD is one of the best known algorithms for voice activity detection. In this paper we present a modified version of this
algorithm, that makes the VAD decision not taking into account account the estimated background noise level, but the signal to noise
ratio (SNR). This makes the algorithm robust not only to noise level changes, but also to signal level changes. We comparethe modified
algorithm with the original one, and with three other standard VAD systems. The results show that the modified version gets the lowest
silence misclassification rate, while maintaining a reasonably low speech misclassification rate. As a result, this algorithm is more
suitable for identification tasks, such as speaker or emotion recognition, where silence misclassification can be very harmful. A series of
automatic emotion identification experiments are also carried out, proving that the modified version of the algorithm helps increasing the
correct emotion classification rate.

1. Introduction

One of the first steps in many speech processing systems is
usually the voice activity detection (VAD), which identifies
the time intervals with speech signal and those with only
background noise. The outcome from the VAD algorithm
allows discarding the silent frames from further processing,
as they carry no speech information, therefore improving
the performance of the rest of the system.
The quality of a VAD system is measured in terms of si-
lence frames detected as speech orsilence misclassification
rate (ER0) and speech frames detected as silence orspeech
misclassification rate(ER1). Given a certain algorithm,
both measures are somehow related, and reducing one of
them results in the increase of the other. Therefore, it is
necessary to reach a compromise with acceptable values in
both error rates.
VAD algorithms are usually designed to have a very low
ER1, at the cost of a higher ER0. In other words, they are
designed to misclassify as few speech frames as possible,
even though that means that a considerably large number
of silence frames enter into the system. However, this be-
haviour is not always the most desirable, and the optimum
working point depends on the application the VAD is used
for.
In applications in which preserving the linguistic message
of the speech is essential, a very low ER1 is required, since
classifying speech frames as silence would mean to loose
part of the message. This is the case of speech coding and
automatic speech recognition (ASR) systems. Speech cod-
ing algorithms can use the VAD outcome to efficiently en-
code silent frames and to reduce the required bandwidth,
as it is done in the EVRC (3GPP2, 2004), G.729 (ITU-T,
2007) and GSM (ETSI, 1997) systems. In ASR, the VAD
is used to discard the silent frames from further process-
ing, as they could confuse the recogniser and increase the
error rates. For example, theadvanced front-end for dis-
tributed speech recognition(AFE-DSR) defined by (ETSI,
2003) uses a VAD this way.

However, there are some applications that rely on the global
acoustic characteristics of the speech, and for which the ut-
tered message is not that important. Speaker, gender and
emotion recognition are examples of this kind of appli-
cations. In these systems, silence frames are discarded,
and all the rest are usually gathered in order to estimate a
speaker, gender or emotion model, assuming that all speech
frames come from the same distribution. Silent frames clas-
sified as speech corrupt the estimated distribution of the
features, providing unreliable and weak models. There-
fore, low ER0 is required. However, loosing some speech
frames is not critical. Furthermore, speech frames classi-
fied as silence probably have a very low energy or are cor-
rupted by noise, so discarding them and retaining the more
robust frames can be beneficial (Krishnakumar et al., 2003).
Therefore, in these applications a moderately higher ER1
can be bearable or even preferable.
Aside the already mentioned standard VAD implementa-
tions, a number of general-purpose algorithms have been
proposed. Among them the LTSE-VAD presented by
(Ramirez et al., 2004) stands out because of its simplic-
ity, adaptability and good results. It obtains a very low ER1
even in noisy signals while maintaining a rather acceptable
low ER0 in comparison with other algorithms. Neverthe-
less the achieved ER0 may still be too high for some appli-
cations.
In this work we propose a modification of the original
LTSE-VAD algorithm that leads to a better performance
when a low ER0 is required. The modified algorithm is
compared to the original one and to other standard algo-
rithms in terms of speech and silence frame errors (ER0
and ER1) as well as their detection error trade-off (DET)
curves (Martin et al., 1997). Finally an experiment on emo-
tion identification is carried out with both the original and
modified algorithms showing a better performance with the
proposed system.
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2. Original LTSE-VAD algorithm
In broad lines, the original LTSE-VAD algorithm presented
by (Ramirez et al., 2004) computes the divergence between
the long term spectral envelope (LTSE) of the current frame
and the mean spectrum of the noise in order to decide
whether the frame contains speech or not. A divergence
larger than a given threshold means that the spectral char-
acteristics of the frame and the noise are different enough
to classify it as speech. Otherwise, it is classified as silence.
When the noise level is low, the speech and silence parts are
easily distinguishable, but with a noisy signal the difference
is not so clear. Therefore the decision threshold is adaptive
and depends on the noise level, so that the algorithm gets
good results with different noise levels.
Let s[n] be the input signal, which is windowed with fixed-
length overlapping windows, resulting inL framesx(l)
with l = 1 . . . L. Let X(k, l) be the spectrum amplitude
for frequency bink in frame l, estimated with a discrete
Fourier transform (DFT), withk = 1 . . .K. The LTSE of
orderN for framex(l) is defined as:

LTSE(k, l) = max
−N≤j≤N

{X(k, l + j)} (1)

The LTSD between the frame and the estimated noise spec-
trumN(k) is defined as:

LTSD(l) = 10 · log10

(

1

K

K
∑

k=1

LTSE2(k, l)

N2(k)

)

(2)

Estimation of the noise spectrumN(k) and noise power
PN can be done during a short initialisation step averag-
ing T frames without vocal activity (and thus with only
background noise), if the initial silence is known to be long
enough.

N(k) =
1

T

T
∑

l=1

X(k, l) (3)

PN =
1

KT

T
∑

l=1

K
∑

k=1

X2(k, l) (4)

The LTSD value of each frame is compared to a given
thresholdγ. If the LTSD is larger than this threshold, it is
labelled as speech, otherwise it is labelled as silence. The
capability of the system to detect the vocal activity correctly
depends on the signal to noise ratio (SNR). With high SNR
the acoustic characteristics of speech and background noise
are clearly different, so the thresholdγ can be set at a fairly
large value. With lower SNR the power and spectrum of
frames with and without vocal activity are more similar,
and it is more difficult to distinguish them. That means that
for low SNRγ should be small in order to make the algo-
rithm more flexible.
Therefore, the value of the thresholdγ is set according to
the noise levelPN :

γ(l) =

8

>

>

<

>

>

:

γm PN(l) ≤ P m
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γM PN(l) ≥ P M

N

PN (l) − P
m

N

P
m

N − P
M

N

(γm
− γM ) + γm other

(5)

wherePN (l) is the estimated noise power for framel, and
Pm

N andPM
N are the minimum and maximum considered

values for the noise power, whileγm andγM are the prede-
fined thresholds for these extreme noise values respectively.
In order to make the algorithm adaptive to time-varying
noise levels, the estimated noise spectrumN(k) and noise
powerPN are updated with each frame classified as non-
speech using a factorαN :

N(k, l) =

(

αN · N(k, l − 1) + (1 − αN ) · X(k, l) if silence

N(k, l − 1) if speech
(6)

PN (l) =

(

αN · PN(l − 1) + (1 − αN ) · PX(l) if silence

PN (l − 1) if speech
(7)

with PX(l) the power of framel. The initial valuesN(k, 0)
andPN (k, 0) are obtained during the initialisation step us-
ing equations (3) and (4). This adaptive behaviour, together
with the use of a noise-level dependent threshold, are the
characteristics that give the algorithm its robustness and
great accuracy.
Finally, a hangover mechanism is implemented in order to
delay the speech to silence transitions duringHO frames.
This mechanism is turned off if the LTSD exceeds a given
thresholdLTSD0, as this would mean that the difference
is clear enough not to need the hangover at all.

3. Modified LTSE-VAD algorithm
Making the threshold depend only on the noise level means
that the speech level is considered to be the same in all
cases. The difference between the LTSE of the signal and
the noise spectrum does not depend on the noise level it-
self but on the SNR: the noise level may increase, but if the
speech level increases as well, the relation (and the LTSD)
may remain the same. It is expected that modifying the
original LTSE-VAD algorithm in order to make the thresh-
old dependent on the SNR instead of the noise level will
improve results under certain conditions.
Therefore, we propose to estimate the threshold value ac-
cording the the SNR level instead:

γ(l) =

8

>

>

<

>

>

:

γm SNR(l) ≤ SNRm

γM SNR(l) ≥ SNRM

SNR(l) − SNR
m

SNR
m

− SNR
M

(γm − γM) + γm other

(8)

with SNR(l) the SNR value for framel, andSNRm and
SNRM the minimum and maximum considered SNR val-
ues.
Using the SNR as a parameter to define the proper value
for γ involves having a mechanism to estimate the SNR
value for each frame. In addition to equations (6) and (7)
to estimate the noise spectrum and power for each frame
in an adaptive process, we also estimate the speech level
adaptively:

PS(l) =

(

αS · PS(l − 1) + (1 − αS) · PX(l) if speech

PS(l − 1) if silence
(9)

Finally the adapted SNR for framel is calculated as:

SNR(l) = 10 · log
10

(PS(l)) − 10 · log
10

(PN (l)) (10)

Also, the hangover mechanism is completely turned off, as
delaying the speech to silence transition may increase the
ER0 type of errors.
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4. Accuracy experiments
In order to check the effect of the applied changes a series
of accuracy experiments were carried out comparing the
original and modified LTSE-VAD algorithms. At the same
time, the performance of the VAD algorithms included
in ITU G.729 (ITU-T, 2007) and ETSI AFE-DSR (ETSI,
2003) standards are evaluated and compared. The AFE-
DSR standard uses two VAD algorithms, one for the noise-
reduction system and another one for the frame-dropping
mechanism. Both are evaluated.
For these experiments the Spanish SpeeCon database (Iskra
et al., 2002) was used. This database contains more than
1000 recordings in different environments (car, office and
public place). Each recording was done with four different
microphones: a close-talk headset (channelC0), a lavalier
(channelC1), a medium distance cardioid microphone (0.5-
1 meter, channelC2) and a far distance omnidirectional mi-
crophone (channelC3). Each of these channels represents
a different SNR,C0 being the cleanest (around 20 dB) and
C3 the noisiest (0 dB) scenarios.
The signals in the database were recorded in raw format at
16 kHz sample rate and 16 bit per sample. All recordings
were downsampled to 8 kHz prior to the experiments. The
reference speech and silence labelling was performed man-
ually.

4.1. VAD accuracy experiments

As a first experiment the considered algorithms were eval-
uated in terms of ER0 (silence frames detected as speech),
ER1 (speech frames detected as silence) and TER (total er-
ror rate). For these experiments G.729 and AFE algorithms
used their standard values, while the original LTSE algo-
rithm used the values proposed by (Ramirez et al., 2004):
N = 12, γm = 6, Pm

N = 30, γM = 2.5, PM
N = 50,

αN = 0.95, LTSD0 = 25, HO = 8. The modified
algorithm was implemented with:N = 12, γm = 8,
SNRm = 5, γM = 15, SNRM = 20, αN = 0.95,
αS = 0.95.
Table 1 shows the performance of these algorithms for each
of the scenarios in the database. Among the standard sys-
tems G.729 is the one with highest error rates both in terms
of ER0 and ER1. The AFE systems obtain a much better
result in terms of ER1, especially AFE-FD. Since this algo-
rithm is used to discard silence frames entering the ASR, it
is very conservative with speech frames and is adjusted to
loose as few speech samples as possible.
The original LTSE algorithm also performs significantly
well in terms of ER1, with results comparable to those ob-
tained by AFE-FD. But at the same time it manages to re-
duce the ER0 value, showing the benefits of the adaptive
algorithm. Accordingly, the TER is also reduced with re-
spect to the standard algorithms. Nevertheless, the ER0 is
over 30% in all scenarios, which may be fatal in some ap-
plications.
The proposed changes provide the best results in terms of
ER0, with values between 10% and 20%, depending on the
noise level. At the same time the ER1 level is kept under
7% in all cases, which makes this algorithm suitable also
for applications were ER0 type of errors is not critical but
may have some importance. In fact, looking at the total

G.729 AFE-FD AFE-NR LTSE Prop.

C0 3.63 0.03 0.62 0.05 0.78
C1 9.28 0.23 1.98 0.49 4.77
C2 18.19 0.48 4.83 0.53 6.75
C3 17.22 1.41 8.30 1.34 5.04

(a) Error rate in speech frames (ER1)

G.729 AFE-FD AFE-NR LTSE Prop.

C0 56.06 63.88 58.23 38.57 15.23
C1 70.23 54.75 55.96 33.04 8.62
C2 59.54 52.10 38.10 38.82 10.25
C3 70.49 50.10 47.65 34.88 22.55

(b) Error rate in silence frames (ER0)

G.729 AFE-FD AFE-NR LTSE Prop.

C0 28.98 30.49 28.11 18.68 7.77
C1 38.74 26.24 27.73 16.22 6.63
C2 38.16 25.09 20.69 19.02 8.44
C3 42.94 24.61 27.05 17.54 13.50

(c) Total error rate (TER)

Table 1: Comparison of ER0, ER1 and TER for the considered
algorithms.

error rate, the proposed algorithm gives the lowest errors,
with more than 90% of the frames correctly classified in
C0, C1 andC2 scenarios.

4.2. DET curves

The proposed algorithm gets a lower ER0 partly at the cost
of increasing the ER1 value. This same effect could be ob-
tained modifying the LTSD threshold to a higher value and
changing the working point of the algorithm. The key is to
reduce significantly ER0 while increasing ER1 only a little.
To see if the proposed changes really improve the perfor-
mance of the system at different working points, Figure 1
shows the DET curves of the original LTSE and the pro-
posed algorithms. The working points corresponding to the
values of Table 1 are also represented.
It can be seen that the convenience of the applied changes
depends on the selected working point. For low ER1 (un-
der 1% in clean speech and under 5% in noisy speech) the
original algorithm obtains the best performance, with the
lowest values of ER0. This result seems reasonable, as the
algorithm was developed precisely to give good results at
low ER1 values.
On the other hand, for low ER0 values (below 10%) the pro-
posed algorithm provides better results, with a lower corre-
sponding ER1. This means that the proposed algorithm is
more suitable for systems in which low ER0 is needed.

4.3. Automatic emotion identification experiments

As stated before, having a low ER0 value is especially im-
portant in speaker or emotion identification systems. Si-
lence frames provide no information about the speaker or
about the emotion, and they only increase the confusion in
the system. On the contrary, ER1 errors are not so harm-
ful, at least if they are kept below a reasonable level. Fur-
thermore, speech segments that are classified as silence are
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Figure 1: DET curves and working points of the considered algorithms for the four experimental scenarios.

likely to have low intensity or to be corrupted by the back-
ground noise. Therefore, discarding these frames can also
make the identification system more robust. Of course, if
the ER1 level increases too much, useful information will
be lost.
In order to confirm whether the proposed changes are ben-
eficial for this kind of systems or not, automatic emotion
identification experiments were carried out using theAIBO
emotional database (Batliner et al., 2006). This database
contains approximately 18,000 recordings of 51 children
while they were playing with the Sony-AIBO pet robot1.
The data was collected in two different schools,Mont and
Ohm, and the developers of the database suggest using the
recordings fromOhm for the training and the ones from
Mont for the testing phases. This way the speaker indepen-
dence of the results is guaranteed.
According to the description given in (Batliner et al., 2006),
five labellers assigned an emotional label to eachword in
the recordings. Afterwards, an heuristic algorithm was ap-
plied to these word-level annotations in order to obtain the
final label for each recording. The database also provides
a measure of the agreement among the labellers. Several
recordings have an agreement below 50%, which means
that less than 50% of the labels assigned to the words of
those recordings agree with the final label estimated by the
heuristic algorithm. We have considered that these sen-
tences have uncertain emotional content, as not even hu-
mans reached to an agreement about the conveyed emotion.

1http://support.sony-europe.com/aibo/

Anger Emphatic Neutral Positive Total

Train
424 630 5589 398

7041
(6,0%) (9,0%) (79,4%) (5,7%)

Test
292 371 5377 93

6133
(4,8%) (6,1%) (87,7%) (1,5%)

Table 2: Distribution of the recordings in theAIBOdatabase, once
items with uncertain emotion were discarded.

Therefore, we decided to discard them for this experiment.
At the end we got 13,174 recordings, representing four dif-
ferent emotional states: anger, emphatic, neutral and posi-
tive. The recordings are distributed as shown in Table 2.
Although prosodic parametrizations have been tradition-
ally used for the identification of emotions (Burkhardt and
Sendlmeier, 2000; Banse and Scherer, 1996; Paeschke,
2004), some studies show that spectral information can also
be useful for this task (Vlasenko et al., 2007; Kim et al.,
2007; Casale et al., 2007). Hence, we decided to use both
types of features and compare how the proposed changes
affect to them. Therefore, two different parametrizations
were defined:

• LFPC features (Nwe et al., 2003) and their first and
second derivatives, as representative of spectral enve-
lope information.

• Prosodic primitives, i.e., intonation and intensity
curves, together with their first and second derivatives.

In both cases a new feature vector was extracted every
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10 ms. As the value ofF0 is not defined for unvoiced
frames, prosodic primitives were divided into two distinct
streams, one for the voiced frames (parametrized with in-
tonation and intensity features) and another one for the un-
voiced frames (parametrized only with intensity features).
For comparison purposes, LFPC features were also divided
into voiced and unvoiced streams. 64 mixture Gaussian
mixture models (GMM) (Paalanen et al., 2006) were used
as classifiers in all cases.
As shown in Table 2, emotions are not balanced in the
database, with most of the recordings being labelled as neu-
tral. Therefore, the unweighted average recall (UAR) was
used to measure the correct identification rate, instead of
the more traditional weighted average recall (WAR) (i.e.,
accuracy).

UAR =
1

N

N
∑

i=1

Pi =
1

N

N
∑

i=1

Ai

Mi

(11)

WAR =

N
∑

i=1

Ai

N
∑

j=1

Mj

=

N
∑

i=1

Ai · Mi

Mi

N
∑

j=1

Mj

=

N
∑

i=1

Pi ·Pr{c = i}

(12)
with N the number of emotions,Pi the accuracy for emo-
tion i, Mi the number of test recordings for this emotion
andAi the number of test recordings for emotioni that are
correctly classified.Pr{c = i} = Mi

P

N
j=1

Mj
represents the

a priori probability that a test recording belongs to classi.
Therefore, WAR is equivalent to the weighted average of
the accuracies of each emotion, using thea priori proba-
bilities of the emotions as weighting factor. The measure
provided by the UAR is more meaningful when the test ex-
amples are unbalanced, as it takes into account the fact that
the most represented class is more likely to get higher ac-
curacy.
Table 3 shows the results of these experiments, both for
the original LTSE algorithm and for the modified version.
As it can be seen, the modified VAD algorithm helps in-
creasing the correct classification rate in all cases, but its
effect is more noticeable in the unvoiced streams. Obvi-
ously, silence frames are unvoiced, so when these frames
are detected as part of speech, they change the feature dis-
tribution of the unvoiced stream, increasing the confusion
in the classifier. The lower ER0 of our algorithm helps pre-
venting this effect, providing a higher identification rate.
The improvement in the emotion classification with voiced
frames can be due to the increase in the ER1. In most cases,
the speech frames that are discarded by the VAD algorithm
have a very low intensity, and are probably corrupted by
the background noise. Therefore, a moderate increase in
the ER1 also helps making the models more robust.

5. Conclusions
Usually, VAD algorithms are designed to have very low
ER1 errors, i.e., to misclassify as few speech frames as pos-
sible, even though that means that as much as 30% of the si-
lence frames are not detected. This design is the most suit-
able for applications in which the linguistic message should

LFPC-V LFPC-UV PP-V PP-UV

LTSE 57.7 50.2 49.4 42.1
Prop. 58.9 54.0 50.0 44.7

Table 3: Emotion identification results using the original and mod-
ified LTSE-VAD algorithms. Values represent UAR in percentage.

be kept at all costs (e.g., ASR). However, there are some
applications in which the important information is on the
acoustic characteristics, and not on the message. Speaker
recognition or emotion identification are good examples of
these. For this kind of applications, using silence frames
during the modelling and identification steps results in an
increase of the error rate. Therefore, achieving a low ER0
is necessary. Furthermore, a moderately higher ER1 may
also improve the results, as the speech frames that will be
detected as silence will probably have a very low intensity
or will be corrupted by noise.
We have proposed some changes to the LTSE-VAD algo-
rithm presented in (Ramirez et al., 2004), so that the VAD
decision takes into account the SNR of the signal, and not
only the background noise level. Silence and speech detec-
tion experiments have shown that the proposed algorithm
achieves a lower ER0, while maintaining a reasonably low
ER1 at the same time, even in noisy environments. Further-
more, taking into account both the speech and silence mis-
classification, the proposed algorithm gets the lowest TER
levels among all the algorithms considered.
In order to confirm that the modified algorithm does in-
deed provide a better framework for emotion or speaker
recognition tasks, a series of automatic emotion identifi-
cation experiments have been conducted. Results show a
significant increase in the correct classification rate when
unvoiced frames are used, and a moderate increase when
using voiced frames.
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