
STeP-1: A Set of Fundamental Tools for Persian Text Processing
Mehrnoush Shamsfard, Hoda Sadat Jafari, Mahdi Ilbeygi

NLP Research Laboratory, Faculty of Electrical and Computer Engineering, Shahid Beheshti University
Tehran, Iran

E-mail: m-shams@sbu.ac.ir, hodasj@yahoo.ca, ilbeygi_mahdi@yahoo.com

Abstract
Many NLP applications need fundamental tools to convert the input text into appropriate form or format and extract the primary
linguistic knowledge of words and sentences. These tools perform segmentation of text into sentences, words and phrases, checking
and correcting the spellings, doing lexical and morphological analysis, POS tagging and so on.
Persian is among languages with complex preprocessing tasks. Having different writing prescriptions, spacings between or within
words, character codings and spellings are some of the difficulties and challenges in converting various texts into a standard one. The
lack of fundamental text processing tools such as morphological analyser (especially for derivational morphology) and POS tagger is
another problem in Persian text processing.
This paper introduces a set of fundamental tools for Persian text processing in STeP-1 package. STeP-1 (Standard Text Preparation for
Persian language) performs a combination of tokenization, spell checking, morphological analysis and POS tagging. It also turns all
Persian texts with different prescribed forms of writing to a series of tokens in the standard style introduced by Academy of Persian
Language and Literature (APLL). Experimental results show high performance.

1. Introduction
There are many NLP primary tools developed for
languages such as English to perform tokenization,
morphological analysis, POS tagging, spell checking,
chunking and so on. Processing texts for less resourced
languages such as Persian which suffers from the lack of
such tools, is more complicated and time consuming. All
researchers who work on different aspects and levels of
Persian text processing have to develop their own primary
tools for a limited domain, task or application. There is no
general wide-spread covering, available tool for doing
primary NLP tasks for Persian.
This paper introduces a Persian text preprocessing toolkit
called STeP-1. STeP-1 is the first step in processing
Persian language written texts. It performs tokenization,
morphological analysis, POS tagging and optional spell
checking. Users can select arbitrary combination of these
services in different depths for their own task and
application.
In this paper after reviewing the problems and challenges
of Persian text preprocessing, we will introduce STeP-1 as
a solution. We will discuss tokenizer, morphological
analyser and POS tagger as the main parts of STeP-1 in
more details and show the experimental results.

2. Problems and challenges
Persian is among the languages with complex and
challenging preprocessing tasks. Some of these
challenges are listed below.
Imported letters from Arabic: Persian has 32 letters in its
alphabet which cover 28 Arabic letters. In addition, there
are some imported sounds such as ‘Tanwin’ and ‘Hamza”
from Arabic which we use in some imported words in
Persian. These words may be written in some different
forms. For example ‘ مسأله‘, ’مسئله ’ and ‘مساله’ are all forms
of writing the word ‘problem’.
Unicode ambiguity: there are some letters such as ‘ی’ (i)

and ‘ک’ (k) for which we have two Unicodes (one for
Persian and one for Arabic). As some applications use the
first and some the second one we have to unify their
occurrences be-fore processing the text.
Different spellings: some words may be written with
different letters such as ‘ يتبل ’ and ‘ يطبل ’ for ‘ticket’.
Different spacing: In Persian, Space is not a deterministic
delimiter and boundary sign. It may appear within a word
or between words. On the other hand there may be no
space between two words. In these situations Persian will
be similar to some Asian languages such as Chinese with
no space between words. There are many words which
can be written with space, short space or no space. For
example ‘ رفت¬یم‘, ’يرفتم ‘,’ رفتیم ’ are all forms of
‘was going’.
Different writing prescriptions: APLL (2006) announces
the rules and prescription for writing in Persian.
Unfortunately these rules vary every few years and have a
lot of exceptions. So NLP systems may receive texts with
different styles. In some cases recognizing the correct
style is not a straight forward task. Different prescriptions
differ in the style of writing words, using or elimination of
spaces within or between words, using various forms of
characters and so on.
Transliterations: Writing foreign words (e.g. English) in
Persian may result in some ambiguities in selection of
letters. On the other hand as these words are not in the
lexicons, tokenization and spell checking are not easy.
New words: Persian is a derivative and generative
language in which many new words may be built by
concatenating words and affixes. So the possibility of
encountering a new word that is not available in the
system’s lexicon is high.
Irregular and compound verbs: In Persian Verb
constructions are mostly irregular. Many compound verbs
can be derived from nouns and adjectives and in many
cases the parts of these verbs have long distance
dependencies.
Ezafe Construction: Ezafe construction is a special

859

construction in Persian which attaches nouns to their
modifiers. Ezafe is a vowel which is pronounced but not
written (in most cases). Non-written ezafe usually makes
problems in chunking and syntactic and semantic
processing of sentences while different forms of writing
Ezafe makes ambiguities in tokenization and stemming.

3. Related Work
STeP-1 is a package that contains tokenizer,
morphological analyzer and POS tagger. There is no other
integrated package, so we refer to individual works on
each part as related work.
For tokenizer part, the only main work is (Megerdoomian
& Zajac, 2000) which was used as part of Shiraz project.
This tokenizer has two phases. Splitting the input text into
basic tokens is done in low-level tokenizer. The output of
this phase goes to post-tokenizer for reattaching some
specific suffixes. Our algorithm is more general and
covers different type of acronyms and abbreviations, date,
time, numbers and handles different styles of spellings.
Also, in case of ambiguity, it shows all alternatives.
There are also different morphological analyzers that are
proposed for Persian language. (Megerdoomian, 2004)
uses a two-level morphological analyzer based on Xerox
finite-state technology. In this work, if words like “dr” (in)
or “v” (and) appears without space from their following
words, they are considered as prefix. We take care of these
kinds of attachments in tokenizer. Also we cover
accusative pronominal clitics and many derivational
affixes.
As another work we can mention Perstem (Dehdari,
Lonsdale, 2008) written in perl language which was
developed for inflectional morphology.
In compare with these morphological analyzers, our
system has increased coverage and performance.
For Part of speech (POS) tagger part, we put an option in
the system that user can choose between different POS
taggers depends on percentage of unknown words in the
input text. There are two POS tagger that are used in the
system: TnT and Persian POS tagger. TnT (Brants, 2000)
is a trainable POS tagger that uses trigrams and different
approaches for handling unknown words. Persian POS
tagger exploits a hybrid approach which is a combination
of statistical and rule-based methods to tag Persian
sentences (Fadaie & Shamsfard , 2009).

4. Solution: STeP-1
STeP-1 (Standard Text Preparation for Persian language)
is designed to solve some of the above problems in an
integrated package. In general it proposes the following
activities for normalization and conversion of texts into a
standard one.
1. Defining a computational standard script:

a) Adding short-spaces between different parts of
a word (or a compound word).

b) Adding Spaces between words and phrases
c) Introducing the spacing rules between

punctuations, numbers and special cases (ex.
date)

d) Creating a lexicon with different spellings of
words.

2. Converting texts to the standard script
a) Looking up in a dictionary
b) Checking the spelling
c) Correcting the spacing

i. replace white spaces with short spaces
ii. Add white spaces (unknown words)

It then performs tokenization of the standard text and
applies morphological analysis on the tokens to find the
stems and tag the text by part of speech tags. Besides
running a complete task for style correction and text
preprocessing, user can choose each of the primary tasks
in this toolkit to be ran separately.
In the rest of this section we will describe the tokenizer,
morphological analyser and POS tagger as the three main
modules of STeP-1.

4.1 Tokenization and Style Correction
Word Segmentation also known as tokenization focuses
on recognizing word boundaries exploiting orthographic
word boundary delimiters, punctuation marks, written
forms of alphabet and affixes (Kiani & Shamsfard, 2008).
Our proposed approach combines dictionary based and
rule based methods and converts various prescribed forms
of writing to a unique standard one. The developed
tokenizer determines the words boundaries, recognizes
multi part verbs, numbers, dates, abbreviations and some
proper nouns. It employs a data base that contains 57284
entries including nouns, adjective, verbs, Prefixes and
suffixes organized in different tables.
To describe the tokenization steps, let’s follow an example.
Consider the following sentence1:

 . مسافرت رفته استيقه،بهدق٢:٣٠ساعت(march13)اوازشنبه
“OoAzShanbe(13march)Sa’at2:30Daghighe,beh
mosaferat rafteh ast.”
(heFromSaturday(march13)hour2:30minute,to trip he is
gone.)
‘he has gone to a trip from Saturday (march 13th) at 2:30.’
As it can be seen in this sentence some alphabetical
strings (words) are concatenated to some other words or
numerical strings. People can read this easily according to
their knowledge about the language but computer should
separate and tokenize the whole string to be able to
process it. We thus expect the output to be as follows:
He | From | Saturday | (| march | 13|) | hour | 2:30 | minute|,
| to | trip | HeIsGone |.
To create such results, the tokenizer goes through the
following steps (in each case we show the string resulted
by the step):
• Unify character coding: some Persian letters may be

coded in Persian or Arabic unicodes. In such cases at
the first step we convert all Arabic unicodes to their

1 Throughout the paper we show the Persian examples with their
pronunciations between double quotes (“), the word by word
translations to English between parentheses and the
translation of the whole sentence in italic between quotes
(‘).

860

equivalent Persian ones.
• Split input text due to the position of white spaces

and punctuation marks
• Separates numbers (integer or float), dates and

English letters from their surrounding text by space.
Numbers and English words should be written with a
space with their surrounding word although this
space can be deleted with-out making any ambiguity.
For example in the above sample we will have:
march13 � march | 13
hour2 � hour | 2
30minute � 30 | minute

• Adjust the spaces around punctuation marks. For this
purpose, we should consider three different types of
tags as follows:

a) startDelim: It is used for punctuation marks such as
“(”, “[” that should be written in the following pattern:
<exp+space+startDelim+exp>

b) endDelim: It is used for punctuation marks such as

“)”, “]”, “!” that should be written in this pattern:
<exp+endDelim+space+exp>

c) betwDelim: It is used for punctuation marks such as

“/”, “-” that should be written like:
<exp+betwDelim+exp>

For “.” and “:” that can be written in different forms, first
we set their tag to “endDelim”. Later on depending on
their surrounding words tags, we change their tag to
“endDelim” or “betwDelim” if needed.
Other patterns used to adjust the spaces around the
delimeters are following:

<number+“:”+number>
<exp+“:”+space+exp>
<abbreviation+“.”+abbreviation>
<exp+“.”+space+exp>

Applying this step on the above example will result in:
…Saturday(march| 13)hour |2:30| minute,to trip…
�…Saturday | (|march | 13|) |hour |2:30| minute|,| to…

• Recognize Verbs, nouns and adjectives. In this step

we look the token in the lexicon. If it is not present
there, then we should apply some stemming methods
to remove affixes and check the stem in the lexicon

The person and number suffixes from verbs, plural signs
from nouns and comparative markers from adjectives are
some of the popular affixes to be removed.
• Recognize Abbreviation. Single letters in Persian (آ,

 or in English (A, B...) and name of English (…ب
characters that are written in Persian (یپ : pi, یت : ti…)
are recognized as abbreviations.

• Recognize Numbers and English words. At this
stage we just recognize and tag words written in
English and other languages with similar

alphabet (Latin based) but the module should be
enhanced to recognize other foreign languages
such as Arabic, Chinese, etc. we have introduced
the tag ‘englishWord’ to tag these words and the
tag ‘number’ for numerical strings. Recognize
affixes and prepositions. For other words the program
finds the correct tag for each word by looking at the
data base. System uses 4 other tags which are shown
in table 1.

Tag Example
Postfix est, er
Prefix dis,un
verbPrefix ing(coming before verb in

Persian)
preposition at, of

Table 1: 4 different tags that are used in the system

• Process undefined words
There may be still words not recognized by the previous
modules. In these cases there are two alternative solutions;
stemming and space insertion.
a) Stemming
The tokenizer just eliminates some specifics limited
affixes. For more complex words the system uses the
stemmer. The stemmer not only removes the affixes but
also considers the orthographic changes during the
inflection or derivation. For example in word “ ”يمهرگانب
(invertebrata) the stemmer finds “مهره” (vertebra) as the
stem by removing the negation affix (“بی”/ bi) and replace
the letter “گ”(g) by “ه”(h) after removing the plural sign
 .(An)”ان“
b) Space insertion
Some unknown strings may be converted to a sequence of
known words by inserting spaces in appropriate places
right in the boundary of words. for example strings like
 in which (day and night) ”روزوشب“ or (from you) ”ازتو“
no space is present, should be splitted from the word
boundaries. In these cases we insert spaces after
characters that just have a single form
(alef(a),dal(d),zal(z),re(r),ze(z),zhe(j),vav(v))(Shamsfard,
et al., 2009).
This is done by the segmenter. This function returns all
possible forms of segmenting a phrase. Then each form
goes to tokenizer again. Those forms that tokenizer can
find tags for all their parts will be accepted. In some cases
that we find more than one correct form, we show all
possibilities in a square bracket. For example the string:

 يگشتيمازکاربرم
“AzKarBarMigashtim”
Can be splitted to

]گشتيم ی از کاربر مگشتيم، یاز کار بر م [گشتيم یاز کار برم
Which mean either ‘we were returning from work’ or
‘from user we were searching’ or ‘from work on we were
searching’
• Rewrite the words with different spellings or styles

into a unique, standard writing.
It changes ‘ۀ’ (Ezafe Construction) to “ی(y) + half space”.

861

Table 2 shows some examples of the words with “hamza”
that the program rewrites them into a standard writing.

Input Output
سئولانم مسؤولان

يکائیآمر يکايیآمر
 مؤثر موثر

Table 2: Some examples of words with “hamza”

• Converts the spaces between parts of a word into a

short space (or nothing) to concatenate separated
parts of a single word.

For Compound words like “روز نامه” (news paper), the
program writes its part with no space or with half space
based on data base.
• Multi-Part Verb recognizer
For Verbs like “رفته است” (he/she is gone), that although
we don’t need to write its parts with half space, we need to
take them as one token. So the program returns both part
as one token.
• Handling ambiguity
 can be verb prefix or noun (means wine). If the (mi) ”می“
next word has tag verb and the verb doesn’t have any
other prefixes, “mi” is considered as verb prefix otherwise
we sets its tag to noun. Table 3 shows some examples.

Input Output explanation

 . يافتاد بیجام م
“jam mi
bioftad”
‘wine cup fall
down.’

 .يافتاد بیجام م
“jam mi
bioftad”

“bioftad”�verb
has prefix ‘bi’
“mi”�noun

 .يدم دی را میعل
“Ali ra mi
didam.”
‘I was seeing
Ali.’

 .ديدم ی را میعل
“Ali ra
mididam”

“didam”�verb
“mi’�verb
prefix

Table 3: Handling ambiguity in “می”

 :can have four different meaning (I or A) ”ای“
I) Name of English character ‘A’ that is written in Persian.
If the previous word has noun tag and next word is dot,
 is considered as abbreviation. Table 4 shows an ”ای“
example.

Input Output
 سی. یب . یکتاب ا

book A .B. C
 یس.یب.کتاب ای

book A.B.C

Table 4: “ای” as abbreviation in the text

II) Suffix denoting second person
If the previous word has verb tag and it is ended with ‘ه’(h)
and the next word is noun, “ای” can be written with half
space or one space with previous word. Table 5 shows an
example.

Input Output

 !بچهکجا رفته ای
“koja rafte I bache !
‘where he is gone hey kid!’
or
“koja rafteh A bache!”
‘where have you gone kid!’

 !بچه] رفته ای[ای کجا رفته
“koja rafteI [rafteh A]
bache!”

Table 5: “ای” as verb prefix or interjection

III) Interjection
If the previous word has verb tag and it is not ended with
“ ,and the next word is not dot (h)’ه‘ is written with one ”یا
space with previous word. An example is represented in
table 6.

Input Output

 ! ؟ پسر ی ايخوریچه م
“che mikhori A pesar ? !”
‘what are you eating o ye
boy?’

 ! ؟پسر ی اخوری یچه م
“che mikhori A pesar?!”

Table 6: “ای” as interjection

IV) Indefinite article
If the previous word is noun that ended with ‘ه’ (h), and
next word is not dot, “ای” is written with half space from
previous word.

Input Output

 .خانه ای خريدم
“khaneh I kharidam.”
‘I bought a house.’

 .ای خريدم خانه
“khanehI kharidam.”

Table 7: “ای” as indefinite article

 .can be abbreviation or preposition (v: and) ”و“
If the next or pervious word is dot it is considered as an
abbreviation otherwise it is preposition.

In case of ambiguity in segmenter function, it shows all
alternative tokenization solutions. Table 5 shows an
example.

Input Output

 دربرابرباد
AgainstTheWind

]در برابر باد[در بر ابر باد
to against cloud wind
[against wind]

Table 8: different alternative in “دربرابرباد”

4.2 Morphological Analyzer
The morphological analysis subsystem of STeP-1 extracts
stems and affixes using inflectional and some derivational
morphological rules in Persian. This analysis uses POS
tags of the stem and the whole word to find the best
stemming path. The algorithm uses a Finite State
Automation (FSA), a data base consisting of words and

862

their Part Of Speech (POS) tags, a structure for keeping
stem and its expected tags, two lists for keeping prefixes
and postfixes which were eliminated from word and some
rules for morphological analysis.
The data base contains 54347 Entries (Eslami, et al.,
2004). Figure 1 shows part of this data base.

Figure 1: part of data base

The data base contains 33 different tags (Eslami, et al.,
2004) that are used in stemmer. Table 9 shows some of the
tags.

Tag Description

A0 Adjective

Ab Abbreviation

Ad Adverb

N1 Noun

V1 Present verb

V2 Past verb

VPr Verb prefix

Table 9: some of the tags that are used in stemmer

There are two FSAs, one for recognizing prefixes in the
word and the other for recognizing suffixes.
Figure 2 shows part of postfix FSA. “ha” is plural sign,
“shv” is verb and “y” is indefinite article.

 Figure 2: part of postfix FSA

After eliminating each affix from the word if we find the
remaining in the lexicon with the expected POS tag, we
accept it as a stem. Like, in word “ When .(cleaner) ” ترتميز

 (clean) ”تميز“ is eliminated, the remaining part (er) ”تر“
has an adjective tag; therefore it is accepted as a valid
stem. But in the word “کتاب تر” (booker), after eliminating
 has noun tag, we don’t accept it (book) ”کتاب“ as ,(er) ”تر“
as a stem.
Sometime we need to eliminate more than one affix to
find the stem. In these cases, the system keeps the
expecting tags for resulting words in a list. At the end, if
the stem had one of the tags in the list, we accept this stem
as a valid stem. This technique is used to prevent
producing invalid stems for words.
There are special cases that even when the input is correct,
the stemmer can not find any stem for the word. Like in
the compound word “دانش آموزان” (students) that after
eliminating “ان” (an: plural sign), program can not find
the remaining, “دانش آموز” (student) in the data base. This
is because there is space between two parts of the
component word and we have this word with half space in
the data base. In these cases we replace the space with half
space and send the word to stemmer again.Table 3 shows
some rules that are used in the morphological analyzer.
Words in square bracket are optional.

Rule Example
past person identifier +
past root + mi +
[accusative pronominal
clitics]

 می خوردم
“mi khordam”
‘I was eating’

past root + mi + past
person identifier + dasht

 داشت می رفت
“dasht mi raft”
‘he/she was going’

noun + plural sign کتاب ها
“ketab ha”
‘books'

Table 10: some rules in morphological analyzer

Checking all possible styles and forms of writing before
applying the stemmer or morphological analyzer is
essential to prevent mismatches.
Table 11 shows some examples of morphological
analysis.

4.3 POS Tagger
The implemented POS tagger exploits a hybrid approach
which is a combination of statistical and rule-based
methods to tag Persian sentences. The proposed tagger
uses a novel probabilistic morphological analysis to tag
unknown words. In other words it is a bigram tagger
improved by probabilistic morphological analysis (Fadaie
& Shamsfard, 2009).It tags the unknown words according
to their internal structure in addition to their context and
external environment. Besides, it learns new words and
adds them to the lexicon for further use. In the proposed
system a tagged corpus is needed for calculating the
probabilities of morphological rules which are used in the
process of tagging. The output of the tagger can be used to
learn new words and enrich a lexicon. Table 12 shows
some examples of the Persian POS tagger.

a
90 96

sh

h

189 v
163

y

85

0

863

Input Stems Morphology
 دان
Dan (know)

 هايم+ کده + ش + دان
present stem + sh +
kade + hayam

 دانش
Danesh
(knowledge)

 هايم+ کده + دانش
noun + kade + hayam

 دانشکده هايم
(my
faculties)

 دانشکده
daneshkade
(faculty)

 هايم+ دانشکده
noun + hayam

 خواند
khand
(read past
tense)

 ماضی استمراری: زمان
tense: past progressive

 سوم شخص مفرد: نوع
type: third person
singular

خواند+ می
mi + past root

 می خواند
(He is
reading/He
was
reading)

 خوان
khan
(read peresent
tense)

 حال اخباری: زمان
tense: present
progressive

 سوم شخص مفرد: نوع
type: third person
singular

 د+ خوان + می
mi + present root +
third person identifier

Table 11: An example of inputs and outputs

Input POS tag
 اين
“in”
‘these’

Adjective

ها ساختمان
“rekhteman-ha”
‘buildings’

Noun

 را
“ra”
‘This is sign of object’

Preposition

 ما
“ma”
‘we’

Pronoun

ايم نساخته
 “nasakhteh-im”
‘we have not build them’

Verb, Adjective

Table 12: Tagging results of Persian POS tagger

5. Experimental results
To test the different parts of STeP-1 we use a lexicon
(Zaya) (Eslami, et al., 2004) containing about 57,000
Entries with their POS tags. In the first series of testing
the tokenizer an input text with 400 words involving 115

errors was given to tokenizer. The performance was about
87%. The main source of errors was in segmenting
unknown words to find their parts. In another test the
tokenizer was applied on a text which contained 100
sentences. This text has 80 derivative affixes, 61 verb
prefixes, 15 verb postfixes, 10 acronyms and
abbreviations, 34 dates and numbers and 16 concatenated
words. The performance of the system was 86.6%. The
main sources of error has been long distance
dependencies between parts of compound verbs, the lack
of lexicon and considered heuristics.
The morphological analyser, with 600 input words, we got
about 98% recall and 93% precision. Over-stemming is
the main source of errors in this part. In this program, we
cover all kinds of verbs in Persian and all the inflectional
forms of words. Also we cover 45 derivational affixes.
The prefix FSA has 68 nodes that 43 are finals. The
postfix FSA has 184 nodes that 126 nodes are finals.
Morphology contains 38 rules.
The POS tagger was tested by a 10-fold cross validation
method on 2,700,000 tokens of Bijankhan corpus
containing 12% unknown words. The overall precision of
this tagger is 90.9% which is 11% better than the baseline
(simple bigram tagger).

6. Conclusion
In this paper, we presented STeP-1, the first Persian
standard text preparation system. STeP-1 receives an
input Persian text and converts it into series of corrected
standard tokens and their morphological stems and POS
tags. STeP-1 can be used both as a style corrector and as
the preprocessor in many NLP applications. The output of
STeP-1 can be used in complex NLP systems for Persian
language with good performance.

7. References
APLL, (2006). Academy of Persian language and literate,

Persian writing style, Asar publication , Iran.
Brants, T. (2000). TnT-a statistical part-of-speech tagger.

In Proceeding of the sixth conference on applied
natural language processing ANLP-2000. Seattle, WA.

Dehdari, J., Lonsdale, D. (2008).A link grammar parser
for Persian. In Simin Karimi,Vida Samiian, and Don
Stilo, editors, Aspects of Iranian Linguistics, volume 1.
Cambridge Scholars Press.

Eslami M., Sharifi, M., Alizadeh, S., Zandi, T. (2004).
Persian ZAYA Lexicon, 1st Workshop on Persian
Language and Computer, Tehran, Iran.

Fadaie, H., Shamsfard, M. (2009). Persian POS Tagging
Using Probabilistic Morphological Analysis, to appear
at International Journal of Computer Applications in
Technology (IJCAT), Special Issue on: "Intelligent Text
Processing with its Applications and Computational
Linguistics".

Kiani, S., Shamsfard, M., (2008). Word and Phrase
Boundary detection in Persian Texts, 14th CSI
Computer Conf., Tehran, Iran.

Megerdoomian, K. (2004). “Finite-state morphological
analysis of Persian”. In Proceedings of the 25th
International Conference on Computational
Linguistics (COLING), University of Geneva.

864

Megerdoomian, K., Zajac, R. (2000). “Tokenization in the
Shiraz project”, technical report, NMSU, CRL,
Memoranda in Computer and Cognitive Science.

Shamsfard, M., Kiani, S., Shahedi, Y. (2009). STeP-1:
standard text preparation for Persian language.
CAASL-3 – Third Workshop on Computational
Approaches to Arabic Script-based Languages [at] MT
Summit XII, Ottawa, Ontario, Canada.

865

