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Abstract

Recently, categorical grammar has been focusedasvarful grammar. This paper aims to develop a éwork for automatic CG
tagging for Thai. We investigated two main algari) CRF and Statistical alignment model based omnretion theory (SAM). We
found that SAM gives the best results both in wexe| and sentence level. We got the accuracy 88i25wvord level and 82.49% in
sentence level. SAM is better than CRF in known wend the other hand, CRF is better than SAM when vpdiexpfor unknown
word. Combining both methods can be suited for kathwn and unknown word.

_ Noisy channel model. It focuses on CG pattern aagsn
1. Introduction between word and CG sequentially.

Thai language resources [Asanee et al. 2002, Chai & . ) ] )
Sadaoki 2007] are gradually developed. Howevery onl This paper is organized as follows. Section 2 drpla
few of them are practical and provided. There axesl Thai CG dictionary and Treebank. Section 3 illustsghe
researches focusing on developing practical languag Overview of our system work flow. Section 4 expki
resources in Thai, such as, BEST [BEST Corpus zoog]two methodologies which are applied in this work.
which develops a 7-million word corpus for word Section 5 shows experiments which compare between
segmentation.  Asian Wordnet, which focuses on WO main algorithms. Finally discussion, conclusamd
developing an infrastructure in terms of word cquice future work are explained in section 6.
Orchid corpus [Thatsanee 1997], a POS tagging sorpu )
contains 36,457 sentences with 43 POS types iretags 2. Thai CG
There are several dependencies Treebank undefCategorial Grammar (CG) is a formalism which focuse
developing step [Vee & Asanee 2004]. BEST is amnly on principle of syntactic behavior. It can be aeglito
corpus which distributes to various researchersh wit solve word order issues in Thai. To apply CG fochiae
enough amounts of data. The most effective word learning and statistical based approach, CG Tréehbsn
segmentation using BEST is around 97% based oninitially required. There are two main resourcesT i
F-measure. Others are inadequate for developimnaplel CG, CG dictionary and CG Treebank.
NLP applications for Thai.
CG dictionary presently contains 70,441 lexicalriest
Categorial Grammar (CG) [Bob 1992, Kazimierz 1935] with 89 CG syntactic categories. For Thai languaie,
and Combinatorial Categorial Grammar (CCG) [Mark argument syntactic categories are determined. Thai
2000] are formalisms in natural language syntaxctvhi arguments are listed with definition and examples i
focuses on compositional principle of syntactic Table 1. Additionally, np, num, and spnum are TG&
constituents. There are several researches on atitom arguments that can directly tag to a word, but otz
CCG tagging [James et al, 2007, Stephen 2002]ofAll only be used as a combination for other arguments.
them are originated from CCG bank [Mark 2000, J&lia
Mark 2002] which is developed from Penn Treebank. Recently, CG Treebank has been developed. Currently
Recently, CG dictionary [Taneth et al 2007] and CG there are 20,824 sentences in our Treebank. I may
Treebank [Taneth et al 2009] are developed in Thai. important role as a fundamental resource for offfai
NLP processing, such as automatic CG tagging, ahgnk
With limited time and human resources, it is neapso and parsing. Figure 1 shows an example of CG tree.
develop a framework for implementing an automati& C
tagging. We investigate two main algorithms. Gn€RF
which becomes a well-known algorithm for sequence
labelling problem. Another is a statistical aligemb
model based on information theory, which adaptedfr

971



Thai
argument definition example
category
n a noun phrase # (elephant)
P P wy (1, me)
aum A both digit and worc| wils (one),
cardinal numbg 2 (two)
a number which i
succeeding to -
spnum classifier instead of | %' ((Zgﬁ()a’}
proceeding classifier]
like ordinary numbe
a prepositiona Tuso (in car)
PP phras wuldy (on table
H1aRundae
S a sentence (elephant eats
banana
a specificcategory
for Thai which is
assigned to a * Juviezinae 2
ws sentence that beging ‘that he will come
with Thai word+ late'
(that : sub-ordinate
clause marker
Table 1: primitive CG in Thai
root
|
S
_/A\\
np s\np
npf(T\np) s\np (s\n||3)fnp np
s (s\m|))lnp n|p il npf(T\np) s\rp
an \&a s HRQIAE

Figure 1: An example of CG tree

3. AutoTagTCG:
An automatic Thai CG tagging

AutoTagTCG is an automatic Thai CG tagging. FigRire
illustrates the flow of our system. Given a rawagat is
necessary to segmented in to word. We apply asStai
approach for Word Segmentation Tool (SWS) [14hiss t
task. The output from SWS is constructed based @n C
dictionary in order to obtain words with all podsilCG
information. The remaining words which are not ir=d

in CG dictionary will be recognized as unknown word
After we get a segmented corpus, we apply CG taggin
process. This process is composed of two proce€ses,
tagging and CG tag prediction for unknown word

1 This spnum category has a different usage fromeroth
numerical use, e.gi[noun,'horse'f[classifier]ds[spnum,'one’]
'lit: one horse'. This case is different from normamerical
usage, e.gh[noun,'horselils [num,'one'lw[classifier] 'lit: one
horse'

2 This example is a part of a sententeeiuvnznmo lit; |
believe that he will come late'
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algorithm. CG tree bank is applied to generate &lthe
possible tagged sentences. Tagged sentences vadirie
to CG tag verification to check the correctnessagfed
results. Finally CG tagged corpus are constructed.

Raw data CG
tagged corpus
Word
T Segmentation CGTag
Ve verification

Dictionary

CG alternatives
tagged corpus

Segmented
Corpus

e
CG
Treebank

CG tag
prediction
for unknown

Figure 2: An AutoTagTCG system work flow

4. Tagging Methodology

We apply two methodologies, Conditional Randomdriel
(CRF) [Lafferty 2001] and Statistical alignment
modelling based on information theory (SAM).

4.1 Conditional Random fields (CRF)

CRF is an undirected graph model in which eachexert
represents a random variable whose distributico ise
inferred, and edge represents a dependency between
random variables. CRF is widely used in sequential
learning task. CRF are probabilistic models for
computing the probability p (y|x) of a possible mutt

y = (y1, ..., yn)e Y" given the input x = (x1,...,xny X"
which is also called observation. The general rhode
formulation of CRF is derived as follow:

plalxi=
Z( X) cel

welxs, 1ol

4.2 Satistical alignment model based on

information theory

This model is developed based on Channel model.
We compute two parameters.

- Language model which represents the sequence of
CG pattern

- Alignment Model which stands for the pairing of
word and CG in both phrase level and sentence.level

The equation can be represented as follow:

thest= argmax Pa.(t) * Puw (1)

Language Model
PLM (t) = P(tlt'l,t'Z)



Alignment Model
Pac (tlw)= P(tlw) when i=1,2,3,4
when t,;t represents tag.;vepresent theé"iword.

5. Experiment Setting and Results

We evaluate the results using 10-fold cross vabdat
Table 2 shows the output result comparing betwegh C
and SAM in terms of word and sentence. It is obsipu
seen that SAM model gives the better results (89.8%
word level and 75.69% for sentence level tagginggmv

We apply CG dictionary and CG Treebank to compare compare with CRF (87.61% for word level and 74.61%
between CRF and SAM. In CRF model, we apply word as for sentence level tagging).

a feature set. 4-gram word is trained for taggimmgds.
Example of CRF data is illustrated as follows

Sample of Input data in CRF

Word CGtag

Aavod np/pp

i pp/(s\np)
s\np)/pp

(aad

In SAM model, bigram word is used in language model
and 4-gram word aligns with CG tag is used in atignt
model. Examples of SAM data are illustrated apfed.
Pipe represents a word boundary.

Sample of Input data in SAM

Alignment Model

4-gram word: 4-gram CG tag

np/pp |pp/(s\np)|
(s\np)/pp | pp/np

np |(s\np)/pp|

Favoalii| uaaa [lu

1 |vedea 1] Fu

pp/s | np
Word based level
Training Set SAM CRF
1 88.53 87.10
2 89.10 87.65
3 90.00 87.82
4 89.33 87.77
5 89.07 87.20
6 89.86 87.68
7 88.96 87.66
8 89.65 87.87
9 88.70 87.93
10 89.26 87.40
Average 89.25 87.61
Sentence based level
SAM CRF
1 74.41 72.95
2 75.22 75.17
3 77.00 75.07
4 76.00 75.41
5 75.79 74.96
6 76.56 74.58
7 75.26 74.63
8 76.61 75.30
9 74.11 75.06
10 75.94 72.95
Average 75.69 74.61

Table 2: primitive CG in Thai
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SAM
85.75
84.39
82.72
82.19
85.35
81.56
80.06
80.26
80.64
81.99
82.49

Training Set

O O|N|O|O|DWIN|F-

10
Average

Table 3: Accuracy based on Best alternatives list

We investigate the potential to increase the acgucd
automatic CG tagging by analyzing output results
(sentence level) of SAM in alternatives (vary frarto n)
list. Table 3 Shows the output results based oold-f
cross validation.

We analyze the accuracy based on the correct attees.
We found that 90.00% is founded at the first akitire,
7.50% is founded at the second alternative, 1.75% i
founded at the third alternative and 0.75% for othe
alternatives, respectively.

Focusing on unknown word, as shown in table 4, we
found that CRF gives the better result than SAMisTh
shows evidence that SAM produce better solution for
known data, but CRF give a better results for umkmo
data.

6. Discussion

There are three major issues for the incorrecttreSiost,
most of Thai vocabularies have various usages. W0
possibly designed into ten categories.

For instance, Thai worddie" can perform as
"s\np”,

“(s\np)/pp",

"np\np"”,

“(np\np)/pp",

"(s\np)\(s\np)",
"((s\np)/pP)\((s\np)/pp)",
"(np\np)\(np\np)”,
"((np\np)/pp)\((np\np)/pp)”,
"((s\np)\(s\np)\((s\np)\(s\np))",
"((np\np)\(np\np))\((Np\np)\(np\np))".
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