Flexible Ontology Population from Text: The OwlExporter

René Witte, Ninus Khamis, and Juergen Rilling

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

Abstract

Ontology population from text is becoming increasingly important for NLP applications. Ontologies in OWL format provide for a
standardized means of modeling, querying, and reasoning over large knowledge bases. Populated from natural language texts, they offer
significant advantages over traditional export formats, such as plain XML. The development of text analysis systems has been greatly
facilitated by modern NLP frameworks, such as the General Architecture for Text Engineering (GATE). However, ontology population
is not currently supported by a standard component. We developed a GATE resource called the OwlExporter that allows to easily map
existing NLP analysis pipelines to OWL ontologies, thereby allowing language engineers to create ontology population systems without
requiring extensive knowledge of ontology APIs. A particular feature of our approach is the concurrent population and linking of a domain-
and NLP-ontology, including NLP-specific features such as safe reasoning over coreference chains.

1. Introduction

Ontologies have become a major tool for developing se-
mantically rich applications. Ontology models are capa-
ble of representing a large amount of information using
a small number of axioms (individuals and relationships).
The semantically rich models provide users with a high
level conceptualization of the information, while at the same
time enabling them to focus on specific parts of the model.
Web ontologies developed in the OWL-DL (W3C, 2004)
language also provide a standardized means for querying,
linking, and reasoning about knowledge.

As a majority of the world’s knowledge is encoded in nat-
ural language text, automating the population of these on-
tologies using results obtained from NLP analysis of docu-
ments (Cimiano, 2006) has recently become a major chal-
lenge for NLP applications (Figure 1).

Text Corpus Ontology

Figure 1: Populating Ontologies from Text

NLP application development has been greatly facilitated
by integrated frameworks such as GATE (Bontcheva et al.,
2004) or UIMA (Ferrucci and Lally, 2004). Standard tasks
such as tokenization, POS tagging, or chunking are sup-
ported by a large number of existing components that can be
easily assembled into more complex application pipelines.
However, exporting the results of these NLP analyses into an
ontology (ontology population) still requires large manual
efforts on part of the language engineer.

We have implemented a GATE processing resource called
the OwlExporter that allows to largely automate ontology

population from text for an existing application pipeline. In
addition to domain-specific concepts, it provides a number
of novel features that address the particularities of NLP pro-
cessing, such as exporting sentences, noun and verb phrase
chunks, and integrating reasoning support for coreference
chains. The component, as well as supporting resources, is
available under an open source license.'

2. Motivation

The GATE NLP framework (Bontcheva et al., 2004) already
provides means for working with ontologies using an inte-
grated ontology layer. However, our component significantly
enhances the state of the art by four important aspects:

Support for OWL-DL. GATE’s ontology layer is based
on OWLIM (Kiryakov et al., 2005), which only supports the
less semantically rich OWL-Lite language. Our component
enables populating OWL-DL ontologies, which is important
for users that need to create more expressive models, and
benefit from the inferences created by a description logic
reasoner such as Racer (Haarslev and Moller, 2001), Pel-
let (Sirin et al., 2007), or FaCT++ (Tsarkov and Horrocks,
2006).

Automated Ontology Export. While a standard task,
populating ontologies is not supported through a standard
component. Population of ontologies needs to be performed
using GATE’s ontology API by writing additional custom
code in Java. Language engineers need to have a good
knowledge of the OWL formalism, such as how to model
semantically rich axioms to create usable ontologies.

In contrast, our OwlExporter is a component that provides a
separation of concerns, where ontology population is largely
automated and can easily be added by a language engineer
without requiring extensive knowledge of programming or
ontology languages.

NLP Ontology Population. NLP pipelines typically
build annotations during processing that are not directly
related to the application domain, but can provide important
information during subsequent analysis. For example, a bio-
NLP pipeline would discover information about organisms,

'OwlExporter, http://www.semanticsoftware.info/owlexporter

3845

http://www.semanticsoftware.info/owlexporter

Thing w—— 1 J__

httpof feana ovel- ontalogies.comfunnamed. ow#Person

| http:d fwe owl-ontologies.comfunname d.ow @47 _Ninus

http:{ fwwwowe ow [-ontologies.comfunnamed. ow@&idProp Of 47

http:d e ovel -ontologies.comfunnamed. owl#hasGender male

httpef feova vl - ontalogies. comfunnamed. owlELocation

http:f Aoy avl-ontalogies. com/unnamed. owl#City

{ http:¢ A owl-ontologies. com/unnamed. ow#4 8_Oakvil e |

——_RTEp: [vy owel - antolagies.cam/L d. i

http:d feovwa. ovvl -ontalogies.comfunnamed. owRidPropof A8

Figure 2: Exported Domain Entities of a Corpus

Thing

htp:d vy aseg.cs.concordiacadjavadoc_ontologyidocument

http:f fvom aseq.cs concordiaca/javadoc_ontologyd#containssentence

http:/ fwivuw.aseg.cs.conc ordia. ca/javadoc_ontolo gyENF

http:fdww.aseq.c3.concordia.cafjavadoc_ontol

& hrtp:f fwnii. aseg.cs.concordiacadjavadoc_ontology#contains

[http:i fwww aseq.cs.concordia.ca/javadoc_ontelogykdeme _txt]

[ttp:/ fmvww aseg.cs.concordia.ca/javadoc_ontology@sentence 36

\(http:f . aseg.cs.(antordia.cafjavadot,omology#‘tﬁ,oaloti\le"f

[Ietp:7 P aseq.cs concardia cafjavadoc_ontology#45 _Hinus_lives |

Figure 3: Exported NLP Entities of a Corpus

drugs, proteins, etc., but also create structural information
like sentences, noun phrase chunks, or coreference chains.
We provide automated support for integrating these infor-
mation into the populated ontology and create the necessary
relations for safe reasoning on them.

Addressing these three factors enables the OwlExporter to
provide an automated, portable and simplified means of
representing the knowledge found in text as instances and
relationships within an ontology.

3. Related Work

We are unaware of any components designed to run within
GATE that provide generic ontology population support for
existing NLP pipelines. The efforts of (Chiarcos et al., 2008)
aims at 1) finding a common ground between annotations
and features created by different NLP tools 2) developing a
generic XML schema to represent the annotations 3) store
the marked up information in a database, and finally 2) use
a linguistic ontology to represent the POS and GLOSS an-
notations. The tool however is fully automated with limited
control from the user over what gets processed. Since the in-
formation found in text is completely arbitrary, introducing a
fully automated tool to process such information will prove
expensive. The OwlExporter gives the user full control over
what domain specific and NLP information from the corpus
get exported into the ontology.

The efforts of (Java et al., 2007) were geared towards cre-
ating OWL models from an existing “NLP-Oriented” (Java
et al., 2007) ontology called OntoSem using an extension
called OntoSem2OWL. Because OntoSem20OWL is tied to
a single source, the validity of the OWL models produced
by OntoSem2OWL rely solely on OntoSem.

Hayashi (Hayashi, 2007) proposed a taxonomic classifica-
tion of the various processing and language resources within
GATE. The works however does not attempt to implement
an automated means of populating the taxonomy. Klein
and Potter (Klein and Potter, 2004) also attempted an ontol-
ogy for NLP services, however; their work did not include
“detailed taxonomies” as described in (Hayashi, 2007).

4. Design and Implementation

GATE applications are assembled from individual compo-
nents, which all add information to the documents in a cor-
pus. For example, part-of-speech tags, noun phrase chunks,
or named entities are all recorded in individual annotations
attached to a document.

The core idea of our OwlExporter is to take the annotations
generated by an NLP pipeline and provide for a simple
means of establishing a mapping between NLP and domain
annotations on one hand and the concepts and relations of
an existing NLP and domain-specific ontology on the other
hand. The former can then be automatically exported to the
ontology in form of individuals and the latter as datatype or
object properties (Figure 2).

The resulting, populated ontology can then be used within
any ontology-enabled tool for further querying, reasoning,

visualization, or other processing (Figure 4).
| Annotated |
Corpus Corpus
OWL Exporter 4—/

Unpopulated Ontology

Populated Ontology

GATE
Pipeline

Protégé SPARQL

>| Grow Top Braid
Racer Pellet

Figure 4: General Workflow of the OwlExporter

The OwlExporter is able to populate already existing domain
specific ontologies in any OWL format, as well as NLP on-
tologies like the GOLD Ontology (Farrar and Langendoen,
2003) that model commonly used concepts in the language
engineering domain (Figure 3).

3846

4.1. Mapping NLP Annotations to OWL Concepts

The language engineer only needs to add two simple gram-
mar rules to allow ontology population from an existing
application. In essence, two new annotations need to be
created that declare the mapping between the NLP annota-
tions (created during processing) and the external NLP and
domain ontologies (created by an ontology engineer):

OwlExportClass: This annotation records which docu-
ment annotations need to be exported, and to which
ontology class. For example, an NE system might rec-
ognize entities such as a “Person” or “Company.” The
OwlExportClass annotation could then specify to
export Person — Person and Company — Organiza-
tion, i.e., each detected person will become an instance
of the ontology class Person and each company NE an
instance of Organization.

OwlExportRelation: This annotation defines the export
of relations between entities, which are recorded us-
ing OWL object properties. For example, an IE sys-
tem might additionally detect that a certain person
works_for a certain company. To export this as an
ontology relation between the Person and Organiza-
tion instances, each such relation is mapped using an
OwlExportRelation annotation.

For entities in a text corpus that need to be exported as
datatype relationships, an additional feature is required
in the OwlExportClass annotation that matches the
name of the property within the ontology (for example,
hasGender=Male). Our OwlExporter handles subsump-
tion required for attribute export; For example, consider the
following KB: Person, Male Person, Female _ Person,
hasName(Person,xsd: string). If we attempt to export
a Female name, the OwlExporter is able to process this ex-
pression, knowing that hasName (Person, xsd: string)
also applies to sub-concepts of Person.

These rules can be easily written in GATE’s JAPE lan-
guage (Cunningham et al., 2000). In Figure 5 we
show an example of a JAPE grammar that accepts the
Ment ion annotation as input, and creates the new annota-
tion OwlExportClass with the list of features such as
kind, className and corefchain.

4.2. Domain and NLP Ontologies

As discussed above, the OwlExporter uses two ontologies
for populating a text corpus. The first ontology is a domain
specific ontology that models concepts and relationships
that are relevant to the given domain (e.g., biology, archi-
tecture, software engineering); and the second ontology is a
domain independent NLP ontology that contains concepts
commonly used in language engineering. The NLP ontol-
ogy can contain concepts such as Document, Sentence, NP
and VP and the OwlExporter automatically populates the
NLP ontology with relationships such as hasEntity or con-
tainsSentence that associate the individuals from the domain
ontology to the individuals of the NLP ontology, as shown
in Figure 6. This provides for advanced queries and reason-
ing on the populated ontology, e.g., finding all entities of a
certain concept that appear in the same sentence as another
object, or which NPs exist in a given sentence.

Rule: mention_owl_class
(

{Mention}
):ann
-
{
try {
AnnotationSet as =
(gate.AnnotationSet)bindings.get("ann");
FeatureMap features =
Factory.newFeatureMap();
for(Annotation ann : as) {

String instanceName = doc.getContent().getContent(
ann.getStartNode().getOffset(),
ann.getEndNode().getOffset()).toString();

features.put("kind",ann.getFeatures().get("kind"));

features.put("className",ann.getFeatures().get("class"));
features.put("representationld",ann.getld());
features.put("id",ann.getld());
features.put("corefchain", null);
features.put("instanceName", instanceName);
}
outputAS.add(as.firstNode(), as.lastNode(),
"OwlExportClass" features);
catch(Exception e)
{
e.printStackTrace();
}
}

Figure 5: An Example of an OwlExportClass JAPE Gram-

AN

Oakwlle

P Gentence) Gorumer Cperzon)

‘Nlnus lives in Oakwlle‘

\hasGender

vk |

npEntityln

hasEntity

containsSentence

Figure 6: NLP and Domain Ontology Export Example

4.3. Coreference Chain Export and Reasoning

The OwlExporter also support modelling entities that reap-
pear in different parts of a corpus, and that are linked to-
gether using coreference chains. For example, an NE coref-
erencer such as the one in ANNIE (Cunningham et al., 2002)
can identify the nominal and pronominal coreferences be-
tween entities and create chains that link them together. Our
OwlExporter can use the identified coreferences to semanti-
cally enrich the populated ontology, so that a reasoner will
be aware of them.

When the coreferencer identifies entities of a corpus as being
part of the same referent or representative an annotation (for
example, NP Chain) is created that contains a list of enti-
ties that make up a coreference chain. The OwlExporter’s
OwlExportClass annotation accepts a corefChain
feature that contains the ID of the coreference chain annota-
tion. With the simple inclusion of the corefChain feature
(a run-time option) the OwlExporter:

Creates the corefSentenceWithld relationship: The
corefSentenceWithld relationship associates the

3847

Type Start End Id Features

Person 0 5 11 gender=male, rule=FirstName

OwlExportClass 0 5 15 representationld=11, Kind=Class, className=Person, instanceName="Ninus”, hasGender=male
Location 15 23 12 locType=city, rule=Location

OwlExportClass 0 5 15 representationld=12, Kind=Class, className=City, instanceName="Oakville”

Table 1: Mapping existing ANNIE annotations to OwlExportClass annotation

Type Start | End Id Features

Class 30 45 7991 class=Class, kind=Class, instanceName=FeatureRenderer

Interface 52 60 7992 class=Class, kind=Class, instanceName=Renderer

OwlExportRelation 3638 3651 11176 domainld=7991, propertyName=hasSuperClass rangeld=7992, Kind=Relation

Table 2: Mapping existing relationship annotations to the OwlExportRelation annotation

referent in a chain with the sentences containing the
occurrences of the coreferences.

Creates the corefStringWithld relationship: The coref-
StringWithld relationship ties the referent to it the mul-
tiple occurrences of its coreferences.

Creates the sameAs relationship: The OwlExporter es-
tablishes the links between the individuals in the
ontology using the symmetric owl:sameAs prop-
erty (Franz Baader et al., 2007). This allows the related
individuals to be classified by an OWL reasoner as
being equivalent.

In Figure 7 we show the corefSentenceWithld and coref-
StringWithld relationships created by the OwlExporter for a
coreference chain. Figure 10 shows how the OwlExporter
models coreference chains using the owl:sameAs property.

Name: =httpdwww owl-ontologies.comiunnamed. owl#283_0akville=

Annotations
Other Properties

corefSentenceWnthid =

=]|265_Ninus lives in Oakville and studies at Concordia University.
268_0akville is six hours from Montreal.

271 _0Dakville is nice place to live.

51274 _0akville is close to lake Ontario.

Cor

fStringWithld =
k=] 265 Oakville

S 268_0Oakville
271_0Qakville
272 _Qakville
= 274 Oakville

iy

Figure 7: Coreference Chain Relationships exported into an
OWL Ontology

Implementation. For implementing the OwlExporter we
use the Protégé 4 API for tasks such as creating concepts,
individuals, and relationships. We also use the GATE 5.1
API for processes such getting the values of run-time param-
eters, extracting content from the text corpus and getting the
annotation sets.

5. Application and Evaluation

In this section we briefly illustrate how the OwlExporter is
being used within different NLP applications, and bench-
mark how long it takes the OwlExporter to populate ontolo-
gies using corpora of different sizes.

5.1. General Workflow

Populating ontologies using the entities in a text corpus and
the OwlExporter is achieved by a few simple steps:

1. Creating a new or reusing an existing domain ontology
in association with a generic NLP ontology.

2. Using a GATE pipeline with its set of processing re-
sources, and the annotations created by it.

3. Creating the mappings between the pipeline’s existing
annotations and the annotations needed by the OwlEx-
porter:

(a) Map the pipeline’s annotations that are to be
exported as instances of the ontology to the
OwlExportClass annotation.

(b) Map the annotations that are to be ex-
ported as relationships in an ontology to the
OwlExportRelation annotation.

4. (optional) Mapping annotations created by a corefer-
encer to the OwlExportClass annotation using the
name of the coreference chain annotation, and the
corefChain feature.

5.2. Application Examples

In this section, we show how some existing applications
make use of the OwlExporter.

Information Extraction. ANNIE is an example informa-
tion extraction system distributed with the standard GATE
distribution (Cunningham et al., 2002). Using our OwWIEx-
porter, we can easily extend it into an ontology population
system.

Table 1 shows some example annotations created by the
ANNIE pipeline, followed by the OwlExportClass an-
notations needed by the OwlExporter to export individuals
to the ontology. In this example, we use an already existing
ontology “demo.owl”? that models commonly used concepts
in GATE such as Person, Place and Organization.

2demo.owl is bundled with GATE and can be accessed from the
GATE_HOME/plugins/Ontology/Tools/resources di-
rectory.

3848

GATE Application Number of Corpus Size Number of Number of Export Duration
Documents (words) Exported Individuals Exported Relationships (sec)
Software Miner 4 40,727 239 653 6.21
Organism Tagger 19 226,397 609 6,642 38.73
Durm Architecture 1 215,097 6791 416,936 1181.94
Table 3: OwlExporter Benchmarks
In Figure 8 we show the list of annotations created by the - SR
algorithmic processing resources of the ANNIE pipeline. R | eenveder Reluglopl | JSe! — — e
. SELECT ?Class] | @ <http:irwww.owl-ontologies comiunnamed.owl#14083_FeatureRenderer=
fs [[WHERE

GATE Davelopar 5.2-snapshat bulld 3450

File Opiions Toals Help

& vlxy 8- 4

. =
ATE 1| Messaues | [T
Applications N s 1
Al Lal Sels| A Lal List| | A Lal Stack
* ANNIE .
s Dak Hid
s bvas in Dakale it
Language Resources E " 2 g
A5 demo.a_ 00057 Her # o L | =) Mention
& Compus NowEqoncassu e |v | T Mentiontiass
- - _ MenuionRelation
i OnILaWL 00055 M e w [lives -|x iE
ik procossing Resources HEAD_END -1 -| % | % owibxpuenciass
T Jape Transducer_0006F : HEADLSTART - |8 - | X HIC DwiExpanCiasshiP
.] =T i| ¥ DwlExporiRelation
%, OwlExpusies bttt v > |1 =% H
| = Fenence
% JAPE MAIN EIEED hd At SpaceTaken
& ANME ormaMarcher '€ £ i £ 3| = Token
‘ R InstanceName = |Minus lives -|x :| ™ Orginal markups
A %5 Tagger
Kind - class - | X A
@i ANME Gazetieer - =
representationld |- (79 -| %
Hie ANMENE
: - -|%
0 ANKIE Sentence Splitier
S W Open Seasch & Annotate wol
P, ANNIE English Tokeniser |
o i Tl T
X3 i Type Set5tanEnd Il
[MimeType Temyp] -l owiEsponttiass | | 1% 23 80 [dasshame= Crty, caretcham=[nulll 1d=£2, instanceham
Nk anciass 05 BR (rlasshanie- Parsan, caretehain = nulll 14-81 Instanceh

|[packewtmeType ‘| oWiExponClasshLF| | & 1185 MCAD- lives, HEAD_END- L1, HEAD START =6, dassham

il had | OwICsp oriClasshLM 15 23 86 MEAD- Oakyille, HEAD END-23 HEAD START-13, das:
| elation & 14 90 [d Id= H1, i iLr= Ninus, kind=|APE, property b

[vanesourceune

[REN KR

Mt
|5 annatations (1 seleed) Selam

Edivos Initialisation P

Figure 8: Annotations created by the ANNIE Pipeline and
Annotation Features used for OWL export

The annotation set includes the OwlExportClass and OwlEx-
portClassNLP annotations that are exported to the ontology.
Also shown are the features that belong to the OwlExport-
ClassNLP annotation for an NP entity in the corpus.

In Figure 2 we show how entities of a corpus that have been
tagged as being Person, and Location are exported to the
domain ontology. And finally in Figure 3 we show how
the Document, Sentence, and NP entities from a corpus are
exported as instances of their related concepts in the NLP
ontology.

Software Engineering. In a software text mining appli-
cation (Witte et al., 2007), we detect relationships between
domain-specific concepts such as software classes and in-
terfaces. Exporting the NLP-detected relations, extracted
from software documentation, into an ontology allows soft-
ware engineers to run semantically-oriented queries on the
populated ontology to obtain information for software main-
tenance tasks (Witte et al., 2007). In Table 2 we show
an example of annotations created by the software miner
pipeline, followed by the OwlExportRelat ion annota-
tion needed by the OwlExporter to export relationships to
the ontology.

Figure 9 shows a SPARQL query applied to the populated
Software Miner ontology that extracts all the individuals
that are of type Class and that are specializations of a given
Interface.

[@ <nhitp/fwww.owl-ontologies.comiunnamed.owli#1 4086_WMCRenderer>
'i’CIass hasSuperclass ?Interface.

| @ <httpiraww.owl

miunnamed.owl#14089_RasterRenderer=

Figure 9: SPARQL Queries on populated Software Ontology

BioNLP. In this example from a bio-NLP applica-
tion (Witte and Baker, 2005) we illustrate the export of
a coreference chain into an ontology.

Organism

idPropOf.

106617 _Bacillus_circulans

145292 Bacillus_circulans =

idPropot

nebild 1387 nebild 106617
145292

organismiame Facillus cir organismiame

corefStringithid corefSentenceWithid

067368 0ir 106726_¢)-h

106697 _The m.

106617 _Bcir, 106718 _a)-(d...

106617 The ...
106697_B.cir.
L06632_In ad
106632_B.cir.

L06718_B.cir

Figure 10: Entities in a Coreference Chain linked together
using the owlSameAs property

Figure 10 shows an excerpt of the populated ontology;
note the “=" node indicating the equivalence between
the two Organisms Bacillus circulans detected in a text,
together with their individual occurrences in sentences

(corefSentenceWithld) and individuals (corefStringWithid).

5.3. OwlExporter Evaluation

In Table 3 we have summarized a set benchmarks that mea-
sure how long it takes the OwlExporter to export annotations.
We have included the size of the text corpus, the number of
created individuals and created relations. As can be seen
from the table, a large number of entities can be exported
without significant performance penalties.

6. Conclusion and Future Work

Within this work, we emphasized on the importance of the
Web Ontology Language (OWL) in language engineering.
We stressed the need of a simple and efficient solution that
enables the population of ontologies within existing NLP
frameworks, in particular GATE.

We introduced the OwlExporter processing resource, a tool
that is designed to automate the process of ontology export
from text. It has already been used for a number of real-
world applications in various domains, and is now made
generally available under an open source license.

3849

Acknowledgements. Qiangqgiang Li and Thomas Kappler
contributed to the design and implementation of the OwlEx-
porter.

7. References

K. Bontcheva, V. Tablan, D. Maynard, and H. Cunning-
ham. 2004. Evolving GATE to Meet New Challenges in
Language Engineering. Natural Language Engineering,
10(3/4):349—373.

Christian Chiarcos, Stefanie Dipper, Michael Goétze, Ulf
Leser, Anke Liideling, Julia Ritz, and Manfred Stede.
2008. A Flexible Framework for Integrating Annotations
from Different Tools and Tagsets. In Traitement Automa-
tique des Languages.

Philipp Cimiano. 2006. Ontology Learning and Popula-
tion from Text: Algorithms, Evaluation and Applications.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

H. Cunningham, D. Maynard, and V. Tablan. 2000. JAPE:
a Java Annotation Patterns Engine (Second Edition). Re-
search Memorandum CS-00-10, Department of Com-
puter Science, University of Sheffield, November.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: an Architecture for Development of Robust
HLT Applications. Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguistics
(ACL).

Scott Farrar and Terry Langendoen. 2003. A Linguistic
Ontology for the Semantic Web. GLOT International,
Volume 7.

David Ferrucci and Adam Lally. 2004. UIMA: an archi-
tectural approach to unstructured information processing
in the corporate research environment. Nat. Lang. Eng.,
10(3-4):327-348.

Diego Calvanese Franz Baader, Deborah L. McGuinness,
Daniele Nardi, and Peter F. Patel-Schneider. 2007. The
Description Logic Handbook: Theory, Implementation,
and Applications. Cambridge University Press.

V. Haarslev and R. Moller. 2001. Racer system descrip-
tion. In R. Goré, A. Leitsch, and T. Nipkow, editors,
International Joint Conference on Automated Reasoning,
IJCAR’2001, June 18-23, Siena, Italy, pages 701-705.
Springer-Verlag.

Yoshihiko Hayashi. 2007. A linguistic service ontology for
language infrastructures. In ACL ’07: Proceedings of the

45th Annual Meeting of the ACL on Interactive Poster and
Demonstration Sessions, pages 145-148, Morristown, NJ,
USA. Association for Computational Linguistics.

Akshay Java, Sergei Nirenburg, Marjorie McShane, Tim
Finin, Jesse English, and Anupam Joshi. 2007. Using a
Natural Language Understanding System to Generate Se-
mantic Web Content. International Journal on Semantic
Web and Information Systems, 3(4), November.

Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov.
2005. OWLIM - A Pragmatic Semantic Repository for
OWL. In Mike Dean, Yuanbo Guo, Woochun Jun, Roland
Kaschek, Shonali Krishnaswamy, Zhengxiang Pan, and
Quan Z. Sheng, editors, WISE Workshops, volume 3807
of Lecture Notes in Computer Science, pages 182—192.
Springer.

E. Klein and S. Potter. 2004. An Ontology for NLP Ser-
vices. In LREC ’04: Proceedings of Workshop on a Reg-
istry of Linguistic Data Categories within an Integrated
Language Resource Repository Area, May.

E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz.
2007. Pellet: A practical OWL-DL reasoner. Web Seman-
tics: Science, Services and Agents on the World Wide Web,
5(2):51-53, June.

Dmitry Tsarkov and Ian Horrocks. 2006. FaCT++ descrip-
tion logic reasoner: System description. In Proc. of the
Int. Joint Conf. on Automated Reasoning (IJCAR 2006,
pages 292-297. Springer.

W3C. 2004. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/.

René Witte and Christopher J.O. Baker. 2005. Combin-
ing Biological Databases and Text Mining to support
New Bioinformatics Applications. In Natural Language
Processing and Information Systems: 10th International
Conference on Applications of Natural Language to In-
formation Systems (NLDB 2005), volume 3513 of LNCS,
pages 310-321, Alicante, Spain, June 15-17. Springer-
Verlag. http://dx.doi.org/10.1007/11428817 _28.

René Witte, Yonggang Zhang, and Juergen Rilling. 2007.
Empowering Software Maintainers with Semantic Web
Technologies. In E. Franconi, M. Kifer, and W. May, ed-
itors, 4th European Semantic Web Conference (ESWC
2007), number 4519 in LNCS, pages 37-52, Innsbruck,
Austria, June 3-7. Springer-Verlag Berlin Heidelberg.
http://www.eswc2007.org/pdf/eswc07-witte.pdf.

3850

http://www.w3.org/TR/owl-features/
http://dx.doi.org/10.1007/11428817_28
http://www.eswc2007.org/pdf/eswc07-witte.pdf

	Introduction
	Motivation
	Related Work
	Design and Implementation
	Mapping NLP Annotations to OWL Concepts
	Domain and NLP Ontologies
	Coreference Chain Export and Reasoning

	Application and Evaluation
	General Workflow
	Application Examples
	OwlExporter Evaluation

	Conclusion and Future Work
	References

