
A General Methodology For
Equipping Ontologies With Time

Hans-Ulrich Krieger

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH (DFKI)



What Is This Talk All About?

I representing changing relationships over time important for
I reasoning & querying services on top of RDF & OWL
I practical applications, e.g., business intelligence
I Semantic Web & Web 2.0 in general

I DLs unable to represent diachronic relations directly
I no built-in mechanism to handle changing relationships
I temporal DLs are no exception
I extending relation instances with time leads to massive

proliferation of objects

I 4D view makes it easy to extend ontologies with time

I preferable: a temporal “annotation” mechanism plus
lightweight temporal reasoning services



Example: Synchronic Relation

Tony Blair was born on May 6, 1953.

output of an IE system (RDF triples):

<tb, rdf:type, Person>
<tb, hasName, "Tony Blair">
<tb, dateOfBirth, "1953-05-06">

dateOfBirth is a synchronic relation, often functional

temporal entity stored as range value of relation instance

representation perfectly captures the intended meaning



Example: Diachronic Relation

most relationships vary with time

Christopher Gent was Vodafone’s chairman until July 2003.
Later, Chris became the chairman of GlaxoSmithKline with effect
from 1st January 2005.

informal IE output:

[????-??-??, 2003-07-??]: <cg, isChairman, vf>
[2005-01-01, ????-??-??]: <cg, isChairman, gsk>



Example: Diachronic Relation, cont.

applying synchronic representation scheme from above gives:

<cg, isChairman, vf>
<cg, hasTime, [????-??-??, 2003-07-??]>
<cg, isChairman, gsk>
<cg, hasTime, [2005-01-01, ????-??-??]>

resulting RDF graph mixes up association between fact and extent:

[????-??-??, 2003-07-??]: <cg, isChairman, vf>
[2005-01-01, ????-??-??]: <cg, isChairman, vf>
[????-??-??, 2003-07-??]: <cg, isChairman, gsk>
[2005-01-01, ????-??-??]: <cg, isChairman, gsk>



Encoding 1: Equip Relation with Temporal Argument

obvious extension, used in temporal data bases and logic
programming community

hasCeo(c, p) 7−→ hasCeo(c, p, t) or hasCeo(c, p, s, t)

DLs do not support relations with more than two arguments, i.e.,
encoding not applicable to OWL



Side Note: Temporal Description Logics

so what are Temporal Description Logics (e.g., Lutz 2004)?

TDLs = DLs + concrete domain (Baader & Hanschke 1991)

TDLs are great aiming at representing synchronic relations

temporal features are functional relations

descriptive inventory: paths, additional constructors (e.g., <)

example:

Human v ∃(hasMother.dateOfBirth < dateOfBirth) u
∃(hasFather.dateOfBirth < dateOfBirth)



Encoding 2: Apply Meta-Logical Predicate

use holds to encode temporally constant information

hasCeo must be reinterpreted as a functional fluent

used by situation calculus, Allen logic, KIF

complex relation arguments not possible in OWL

annotation properties in OWL not possible for relation instances

hasCeo(c, p, t) 7−→ holds(hasCeo(c, p), t)



Encoding 3: Reify Original Relation

relation reification loses original relation

needs introduction of a new class for each relation

requires massive ontology rewriting

new individual, four additional relation instances

similarities to reification in RDF

hasCeo(c, p, t) 7−→ ∃hc .
type(hc, HasCeo) ∧ hasTime(hc, t) ∧
company(hc, c) ∧ person(hc, p)



Encoding 4: Wrap Range Arguments

domain argument often anchor for reasoning and querying

so wrap range arguments in a new container object

same container class can be applied to each relation instance

ontology rewriting still needed

related to relation reification, but does not lose relation name

hasCeo(c, p, t) 7−→ ∃et .

type(et, EntityTime) ∧ hasTime(et, t) ∧
hasCeo(c, et) ∧ hasEntity(et, p)



Perdurants and Time Slices: Encoding 5+6

distinction between endurants and perdurants in philosophy

perdurantist view: all entities only exist for some period of time

perdurant ≈ 4D trajectory in spacetime

time slice = temporal part of a 4D slice

of special interest: slices where specific information stays constant

we usually only have partial information for a given perdurant



Encoding 5: Encode Perdurantist/4D View in OWL

Welty & Fikes 2006: OWL implementation of perdurantist view

time slice encodes time dimension of spacetime

relations from source ontology no longer connect original entities

encoding requires ontology rewriting

hasCeo(c, p, t) 7−→ ∃ts1, ts2 .

hasCeo(ts1, ts2) ∧
type(ts1, TimeSlice) ∧ hasTimeSlice(c, ts1) ∧ hasTime(ts1, t) ∧
type(ts2, TimeSlice) ∧ hasTimeSlice(p, ts2) ∧ hasTime(ts2, t)



Encoding 6: Reinterpret Perdurantist/4D View

reinterpret perdurantist view:
what has originally been an entity becomes a time slice

original entities now describe the “behavior” of perdurants at a
certain moment in time (e.g., being a person)

time slices of a perdurant need not to be of the same type, e.g.,
perdurant DFKI has slices for Company and AcademicInstitution

cooccurring information in such a slice stays constant

encoding does NOT need rewriting of original ontology

hasCeo(c, p, t) 7−→
hasCeo(c, p) ∧ hasTime(c, t) ∧ hasTime(p, t) ∧
hasTimeSlice(C, c) ∧ hasTimeSlice(P, p)

time slices c, p are linked to perdurants C, P (created only once)



Example I

DC’s CEO Jürgen Schrempp announces that he will
resign by 31st December 2005.



Example II

I believe [that] Jürgen Schrempp was the CEO of DC
from 1995 until 2005.



Equiping OWL Ontologies With Time: Example

1. find out which relations will undergo a temporal change
2. identify domain and range class(es) for these relations
3. make these classes time slices using owl:equivalentClass

example: PROTON upper ontology (proton.semanticweb.org/)

1. most properties in PROTON are diachronic properties
2. psys:Entity is the class of choice, both for domain and range
3. fourd:TimeSlice ≡ psys:Entity

4D
↓

Time → PROTime ← Allen
↑

PROTON



General Integration Scheme

1. always use 4D
Perdurant: hasTimeSlice; TimeSlice: timeSliceOf, hasTime

2. choose Time
an arbitrary time ontology, e.g., OWL-Time

3. choose upper/domain ontology
the original ontology that lacks time, e.g., PROTON

4. use Allen (optional)
13 relations, plus 6 super-relations defined over time slices

5. add axiom fourd:TimeSlice ≡ c1 t . . . t cn

c1, . . . , cn: maximal incompatible classes that need to be
extended by a temporal dimension



Outlook: Temporal Extensions to OWL

additional arguments, going beyond binary relations/triples

Hayes-/ter Horst-style rules can be extended by a temp. dimension

only lightweight reasoning needed

example 1: owl:inverseOf
ceoOf(js, dc, 1995, 2005)
→ hasCeo(dc, js, 1995, 2005)

example 2: owl:SymmetricProperty
marriedWith(bbt, aj, 2000, 2003)
→ marriedWith(aj, bbt, 2000, 2003)

example 3: owl:TransitiveProperty
contains(dfki, room1.26, s, t) & contains(room1.26, chair42, u, v)
→ contains(dfki, chair42, max(s, u), min(t, v))



Paper: Further Issues

I sophisticated time ontology
I temporal underspecification
I granularity of time

I more on Hayes-/ter Horst-style entailment rules

I comparison how extended tuples ease the writing of custom
rules (and querying), compared to RDF triples



Thank you!

Questions?


