Summary of the paper

Title Analysing Temporally Annotated Corpora with CAVaT
Authors Leon Derczynski and Robert Gaizauskas
Abstract We present CAVaT, a tool that performs Corpus Analysis and Validation for TimeML. CAVaT is an open source, modular checking utility for statistical analysis of features specific to temporally-annotated natural language corpora. It provides reporting, highlights salient links between a variety of general and time-specific linguistic features, and also validates a temporal annotation to ensure that it is logically consistent and sufficiently annotated. Uniquely, CAVaT provides analysis specific to TimeML-annotated temporal information. TimeML is a standard for annotating temporal information in natural language text. In this paper, we present the reporting part of CAVaT, and then its error-checking ability, including the workings of several novel TimeML document verification methods. This is followed by the execution of some example tasks using the tool to show relations between times, events, signals and links. We also demonstrate inconsistencies in a TimeML corpus (TimeBank) that have been detected with CAVaT.
Topics Corpus (creation, annotation, etc.), Tools, systems, applications, Validation of LRs
Full paper Analysing Temporally Annotated Corpora with CAVaT
Slides Analysing Temporally Annotated Corpora with CAVaT
Bibtex @InProceedings{DERCZYNSKI10.546,
  author = {Leon Derczynski and Robert Gaizauskas},
  title = {Analysing Temporally Annotated Corpora with CAVaT},
  booktitle = {Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)},
  year = {2010},
  month = {may},
  date = {19-21},
  address = {Valletta, Malta},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis and Mike Rosner and Daniel Tapias},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {2-9517408-6-7},
  language = {english}
 }
Powered by ELDA © 2010 ELDA/ELRA