Title |
A Corpus Factory for Many Languages |
Authors |
Adam Kilgarriff, Siva Reddy, Jan Pomikálek and Avinesh PVS |
Abstract |
For many languages there are no large, general-language corpora available. Until the web, all but the institutions could do little but shake their heads in dismay as corpus-building was long, slow and expensive. But with the advent of the Web it can be highly automated and thereby fast and inexpensive. We have developed a corpus factory where we build large corpora. In this paper we describe the method we use, and how it has worked, and how various problems were solved, for eight languages: Dutch, Hindi, Indonesian, Norwegian, Swedish, Telugu, Thai and Vietnamese. We use the BootCaT method: we take a set of 'seed words' for the language from Wikipedia. Then, several hundred times over, we * randomly select three or four of the seed words * send as a query to Google or Yahoo or Bing, which returns a 'search hits' page * gather the pages that Google or Yahoo point to and save the text. This forms the corpus, which we then * 'clean' (to remove navigation bars, advertisements etc) * remove duplicates * tokenise and (if tools are available) lemmatise and part-of-speech tag * load into our corpus query tool, the Sketch Engine The corpora we have developed are available for use in the Sketch Engine corpus query tool. |
Topics |
Corpus (creation, annotation, etc.), Acquisition, LR Infrastructures and Architectures |
Full paper |
A Corpus Factory for Many Languages |
Slides |
- |
Bibtex |
@InProceedings{KILGARRIFF10.79,
author = {Adam Kilgarriff and Siva Reddy and Jan Pomikálek and Avinesh PVS}, title = {A Corpus Factory for Many Languages}, booktitle = {Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)}, year = {2010}, month = {may}, date = {19-21}, address = {Valletta, Malta}, editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis and Mike Rosner and Daniel Tapias}, publisher = {European Language Resources Association (ELRA)}, isbn = {2-9517408-6-7}, language = {english} } |