Summary of the paper

Title Towards Sentiment Analysis of Financial Texts in Croatian
Authors Željko Agić, Nikola Ljubešić and Marko Tadić
Abstract The paper presents results of an experiment dealing with sentiment analysis of Croatian text from the domain of finance. The goal of the experiment was to design a system model for automatic detection of general sentiment and polarity phrases in these texts. We have assembled a document collection from web sources writing on the financial market in Croatia and manually annotated articles from a subset of that collection for general sentiment. Additionally, we have manually annotated a number of these articles for phrases encoding positive or negative sentiment within a text. In the paper, we provide an analysis of the compiled resources. We show a statistically significant correspondence (1) between the overall market trend on the Zagreb Stock Exchange and the number of positively and negatively accented articles within periods of trend and (2) between the general sentiment of articles and the number of polarity phrases within those articles. We use this analysis as an input for designing a rule-based local grammar system for automatic detection of polarity phrases and evaluate it on held out data. The system achieves F1-scores of 0.61 (P: 0.94, R: 0.45) and 0.63 (P: 0.97, R: 0.47) on positive and negative polarity phrases.
Topics Emotion Recognition/Generation, Information Extraction, Information Retrieval, Document Classification, Text categorisation
Full paper Towards Sentiment Analysis of Financial Texts in Croatian
Slides -
Bibtex @InProceedings{AGI10.876,
  author = {Željko Agić and Nikola Ljubešić and Marko Tadić},
  title = {Towards Sentiment Analysis of Financial Texts in Croatian},
  booktitle = {Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)},
  year = {2010},
  month = {may},
  date = {19-21},
  address = {Valletta, Malta},
  editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis and Mike Rosner and Daniel Tapias},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {2-9517408-6-7},
  language = {english}
 }
Powered by ELDA © 2010 ELDA/ELRA