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Abstract

Domain adaptation is an important task in order for NLP systéo work well in real applications. There has been extensgearch
on this topic. In this paper, we address two issues that &étedeto domain adaptation. The first question is how muchegeariation
will affect NLP systems’ performance. We investigate ttfe@fof genre variation on the performance of three NLP tawsnely, word
segmenter, POS tagger, and parser. We choose the Chings@ieebank (CTB) as our corpus. The second question is hoveame
estimate NLP systems’ performance when gold standard otesthielata does not exist. To answer the question, we extenphiising
prediction model in (Ravi et al., 2008) to provide predintfor word segmentation and POS tagging as well. Our expeitsrshow that
the predicted scores are close to the real scores when tested CTB data.
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1. Introduction 2.1. Domain adaptation and genre variation

There has been extensive research on domain adapta-Many of the studies on domain adaptation focus on im-
tion, and the methods include training data selection (e.gProVing parsing results. Gildea (2001) compared a parser's

(Moore and Lewis, 2010; Plank and van Noord, 2011)),performance on the Brown and WSJ corpora when differ-

model combination (e.g., (McClosky et al., 2010)) feature€Nt combinations of the corpora were used for training and
' ' ' esting. His experiments showed that a small amount of

copying (Daume, 2007), semi-supervised learning (e.g.t, =
(McClosky et al., 2006)), and many more. matched training data was more .useful than a large amount
Our study addresses two questions related to domaiﬂf. unmatchgd data and the parsing mo_del could be prqqed
adaptation. The first question is how much genre variay\"th.oqt hurting perfor_mancg by removing corpus-spec!ﬂc_
tion will affect NLP systems’ performance. We investigateStat'St'CS such as lexical bigrams. Roark and Bacchiani
- ' 2003) demonstrated that a lexicalized PCFG parser could
';\t:lt_apeﬁect of g?nr%;]/grlatlon on;he performan;gsof thre enefit from out-of-domain training data using maximum
systems for Chinese: word segmenter, tagger o L . .
and parser. We choose the Chinese Treebank (CTB) af'is posteriori (MAP) estimation. Even when no in-domain

. . . . raining data is available, unsupervised techniques geovi
our corpus, which consists of five genres. Our experiments

show that more training data does not necessarily lead el substantial improvement over unadapted grammars. Mc-

. . losky et al. (2006) showed, with reranking and self-
better performance and certain patterns (such as ranking ?raining techniques, the performance of a parser trained
genre closeness based on system performance) are commPth out-of-domain aata was in par with the performance
no matter which of the three NLP systems is used to get th%f the parser when trained with ir? domain datFe)\
ranking. . i ) '

g L . Beyond parsing, there are a few studies on other NLP
The second question is how one can estimate NLP SEA

) sks. Finn and Kushmerick (2003) argued that automatic
tems’ performance when gold standard on the test data do%%nre analysis (i.e., the ability to distinguish documests
not exist. This is a very realistic setting because, for in '

¢ it ldbe i ible to build a treebank f “cording to style) would help information retrieve by identi
sancet,hl }[/vou et|tmp055| elobuida reRe '?mt (I)r 2\66(; ing documents that are most suitable for a particular.user
genre that we want to run our parsers on. ay| etal. ( ebber (2009) provided genre information about the arti-
used a regression model to predict a parser’s performan

q in Th | d thei he WS es in the English Penn Treebank (Marcus et al., 1993).
on a new domain. They evaluated their system on t_ € he characterized each genre in terms of features manually
data and Brown corpus and showed that the predicted

: annotated in the Penn Discourse Treebank (Prasad et al.,
score was quite close to the real F-score. We extend the 008), and demonstrated that genre should be made a fac-
model to estimate the performance of word segmenter an ’

r in automated sense labeling of discourse relations that
POS tagger, and show that the system works reasonab g

re not explicitly marked.
well when tested on the CTB data. Compared to the amount of work on domain adaptation

for a particular NLP task (e.g., parsing or language mod-
2 Reated Work eling for machine translation), there has not been many
studies on some fundamental questions such as what is the
In this section, we provide a brief overview of previous definition of genres, how one can measure the similarities
work on genre variation and system performance predicand differences between genres, what causes different be-
tion. haviors (e.qg., distribution of words, verb subcategorizgt
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context-free rules) of various genres, and what causes per- 3. Our corpusand NLP systems

formance degradation of NLP systems when tested on a dif: ,
ferent genre. One study along this line is (Roland and Jurafour study has two parts. In the first part, we measure the

9 T y 9 . effect of genre variation on the performance of NLP sys-
sky, 1998), which analyzed frequencies of verb subcategaq- .
Lo . g L ~“tems. We choose the Chinese Penn Treebank (CTB) as our
rization from four different corpora and identified two dis-

. . o corpus as itincludes data from five different genres. As for
tinct sources for the frequency differences. One is diss®ur P 9

influence, which is a result of how verb use is affected byNLP systems, we choose three basic NLP tasks for Chi-

: : . “nese: word segmentation, POS tagging, and parsing. In
different discourse types such as narrative, connected dlz%he second part, we build a system that predicts the per-
course, and single sentence productions. The other sou i

rce .
fSrmance of NLP systems on a new domain, and evaluate

is semantic influence, which is a result of different corpora, system on the CTB. In this section, we provide a quick

using d!ﬁergnt senses c_)f verbs, which have different SUbbverview of CTB and the three NLP systems.
categorization frequencies.

3.1. TheChinese Penn Treebank
he Chinese Penn Treebank (CTB) was developed at the

2.2. Prediction of system performance

One issue with domain adaptation is that quite often there % . . . .
no gold standard for the test data in a different domain. Fo niversity of Pennsylvania in late 1990s (Xia et al., 2000)

instance, even for a resource-rich language such as Englisﬂnd later expanded by the te_am a_t the_Umvers!ty of Col-
orado at Boulder and Brandeis University. In this corpus,

Treebanks exist only for several genres. Now if we want to h i . d ted. Part-of-S ht d
test an English parser’s performance on other genres, sonf&ch sentence is word segmented, Fart-ol-speech tagged,

prediction model would be needed. The intuition for suchand bracketed with a scheme similar to the English Penn

prediction is that the more different training data and test‘l’reebank (Marcu_s etal. 1993)._The f!rst release of Fhe cor-
s, CTB1, consisted of newswire articles only, but in later

data are, the lower the parsing performance on the test daty’

will be. The question is what features can be used to captur. irsuoqs, tteth from more genrssoaréo_lr;(;urceﬁ_ V\r/]e_re ?d dded.
the differences between the training and test data. e latest release is version 7.0 ( ), which includes

. 1.2 million words in five genres.
Albrecht and Hwa (2007) proposed to use a regression - . .
( ) prop ¢ Some statistics of CTB7 are given in Tablé JAs one

model to predict human assessment scores on the output of L
machine translation (MT) system, which did not require theCan see, the sentence length and the file size vary a lot from

availability of human reference translations for sentenceg%nre t(t) genre. Docqn"cnjgntf '3 t?a(t:E glenrte C?n coms from
in the test set. The model used adequacy features (Whic(fj1I erent sources, as indicated by the fast column. Docu-
nts from the same resource may belong to different gen-

compare input sentences with pseudo references produc .
by other MT systems) and fluency features (which compar%}s' For mstanc_e, documents from CCTV may belong to
input sentences against target-language references such or bc depending on the content of the doquments. In
large text corpora and treebanks). The predicted scores coe?doIItIOn to genre and source, the docgments |n.CTB7 also
related better with human assessment than did common MJ°™M€ ffOF“ different regions (e.g., l\./lallnland China, Hong
evaluation metrics such as BLEU (Papineni et al., 2002). Kong, Taiwan, USA). Al thlese var|at|0n§ T"a"e cTB/ a
Ravi et al. (2008) developed a model that predicted peryaluablt_a resource for studying genre variation and domain
formance of a parser on test data G2 when the parser wa‘%j aptation.
trained on training data G1. In their approach, G1 data wa:
split into training and development data: training data Was§'2' NLP systems
used to train a parser and development data was used 1® test the effect of genre variation, we use three NLP sys-
train the predictor. They used an SVM regression model fotems: a CRF word segmenter, the Stanford POS tagger, and
prediction and several additional parameters suchasd  the Berkeley parser. The first one was built by our team, and
/3 to tune the results. They used a rich feature set includinghe other two were off-the-shelf systems re-trained with th
sentence length, unknown words, root node of a tree, alCTB data.
the non-terminal nodes in the tree, reference F-scores from
another parser, and others. For evaluation, they chose WS2.1.  Word segmenter
corpora as their G1; they tested the predictor on three coin this system, we follow the general practice of treating
pora: WSJ, Brown Corpus, and news stories from Xinhuavord segmentation as a character tagging task (Xue, 2003),
News Agency. The predicted labeled F-score was close tand build a Conditional Random Fields (CRF) (Lafferty et
the real F-score for WSJ as G2 (0.909 vs. 0.911), reasoral., 2001) tagger. We adopt the six-tag set used in (Zhao
ably well after tuningy and;3 for the Brown Corpus (0.885 and Kit, 2008), which presents the first three positions (B1,
vs. 0.863 without tuning; 0.870 vs. 0.863 with tuning), B2, B3), the middle position (M), the ending position (E) of
and not so well for Xinhua News (0.851 vs. 0.791). Whena multiple-character word, and a single-character word (S)
another corpus, which is the union of the English Chinesgespectively. The features used by the segmenter are shown
Translation Treebank and the English Newswire Translain Table 2.
tion Treebank, was used as G1, the predicted f-score on
Xinhua News was closer to the real score (0.870vs. 0.848). 1The word # and sentence # in this table are based on
These experiments showed that how well this predictiorbur own calculation from the CTB7 final release. They are
model worked depended on how similar the training andslightly different from the numbers on the LDC release page a
test genres were. Idc.upenn.edu/Catalog/CatalogEntry.jsp?catalogldSRO10T07
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Genre word # | file# | sent#| words/sent| words/file | File Ids Source

Newswire 260K | 811 10,713 24.3 320.8| 1-931 Xinhua News, People’s Daily

(nw) 4000-4050 Guangming Daily, AFP, etc.
Magazine (mz) 258K 130 | 8,420 30.6 1971.6| 1001-1151| Sinaroma

Broadcast news | 287K | 1,207 | 10,083 28.5 238.1| 2000-3145| CCTYV, China Broadcsting System,
(bn) 4051-4111| VOA, CNR, Phoenix TV, etc.
Broadcast 184K 86 | 12,049 15.3 2141.4| 4112-4197| CCTV, Phoenix TV, CNN,
conversation (bc Ahhui TV, MSNBC, etc.

Weblog (web) 210K | 214 10,181 20.6 973.2| 4198-4411| Newsgroups, Weblogs

Total 1199K | 2,448 | 51,446 23.3 488.7 | - -

Table 1: Statistics of the CTB7

Type Features Function 4.1. Procedurefor creating a prediction system

Unigram | €1, Co, C1 | prev, current, and nextchar | the goal is to estimate the performance of an NLP tool on
Bigram | C_1Co, CoC | bigrams with the current chr 5 target domainD, when the tool is trained on a source
Jump C..Ch The previous and nextchar | gomainD,. Three data sets are involved when building a
prediction system.

Table 2: Features used in the CRF word segmerdigiis ) .

is the next character. e Set2: Data that is used to train the predictor. The data
can come fronD, or a domain that is different from
both D, and D, .2

3.2.2. POStagger e Set3: Data fronD, that is used to test the predictor.

For POS tagging, we use the Stanford POS tagge - . )
(Toutanova et al., 2003) for our experiments. The Stanforuée'OW a.re the steps for bu.lldmg apredictorfor an NLP tool:
POS tagger is based on maximum entropy Markov model e Train the NLP tool with Set1.

(MEMM) and has been tested on English, Chinese and a  pjyide the sentences in Set2 and Set3 into chunks.

few other languages. The package includes training, decod-  gach chunk has multiple sentences. The chunk size
ing and testing modules, with which we retrain the system is set empirically.

on the CTB7 data. The parameters we used are the default

specified in its Chinese POS tagger parameter file. e For each chunkh;, in Set2 or Set3, run the NLP tool

on chy, calculate the tool's real performance score

score, i, and form a feature vectgf,.
3.23. Parser ’

For parsing, we choose two parsers in this study: the Berke-
ley parser (Petrov and Klein, 2007) as our main parser and
the Stanford parser (Klein and Manning, 2003) as another e Run the predictor on the chunk#; in Set3, which
parser that produces some feature values for predictien (se ~ produces a predicted scoseorey, .

4.2.4.). We retrained both parsers on the CTB data and re- |
ceived similar performance as reported in their studies.

e Train a linear regression predictor with the(
scorep 1) pairs for chunks:h,, in Set2.

Let score, be the average ofcore, ;. for chunkschy,
in Set3, andscore, be the average ofcore, . The
performance of the predictor is measured by the dif-
4 Building a prediction system ference betweescore, andscore,.
In this section, we describe the prediction system that wé-2- Featuresfor prediction
built for word segmentation, POS tagging, and parsing. OuFeatures used for prediction can be divided into several
approach is similar to (Ravi et al., 2008), but we extendedroups, depending on what kind of annotation is available
their work in several ways. First, while their work focused in its training and test dafa.
on parsing only, we built systems for three tasks: word seg-
mentation, POS tagging, and parsing. Second, we tested—; _ )
each predictor on more genre pairs. Third, we did not use We have.run some experiments that show that using Set2 from
any tuned parameters likeand; in their system. Fourth, a third do.rnannllgads to better pgrformaqce than using Setd fr

. . Ds. But since it is often hard to find a third domain with labeled
we introduced a_ddltlonal features SUCh. as D.LG SCOres fOaata, in this paper we will only report the results when Set2 i
word segmentation. There are other minor differences; fof,, D..
instance, we use linear regression instead of support vec- sggme features (e.g., sentence length, unknown words, words
tor regression because the former is robust, does not havgth high information gain, and parse-tree-based feajunese
many parameters (e.g., kernel function) to select, and oufrom (Ravi et al., 2008); others (e.g., unknown characte, rav-
performs the latter in many of our experiments. erage DLG scores, POS-tag-based features) are added by us.
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4.2.1. Featuresfrom raw text The list of words with high information gain is calculated
The following features are extracted from raw text: the same way as the list of character with top information

e OOV character rate: the percentage of character togain except that words, not characters, are used in the pro-
kens in the current chunk that do not appear in Setl. cedure given in Section 4.2.1.

e Percentage of punctuation marks: the percentage
character tokens in the current chunk that are punct
ation marks.

e Percentage of characters with high information gain:
The percentage of character tokens in the current
chunk that appear in a list of characters with high in-

0{[.2.3. Featuresfrom POStagged text

uThe following features require the text to be POS tagged:

e Percentage of ambiguous words: the percentage of
word tokens in the current chunk that have more than
one POS tag in Setl.

formation gain, as explained below. e Percentage of words with a particular POS tag: the
o Average DLG scores: the average DLG score for the ~ Percentage of word tokens in the current chunk that
segments in the current chunk, as explained below. are labeled with a particular POS tag (e\). There

is one feature for each POS tag.
For the third feature in the list above, the list of charagter

with the highest information gains is generated as follows4.2.4. Featuresfrom parsetrees

(1) Run the NLP tool on Set2, (2) Choose the topnd  Following (Ravi et al., 2008), we extract the features below
bottomn chunks according to their real performance scorerom parse trees:

scorerk, (3) compute information gain for each character o Root label: the label of the root of the parse tree pro-
in those2n chunks (where the top chunks form one class, duced by the Berkeley parser.

and the bottorm chunks form the other class), and (4) se-
lect the topm characters according to the information gain.
Intuitively, characters with high information gain meaath
they have different distributions in the two classes in Step
(3). In our experiments, botthandm are set to be 100.

For the last feature in the list above, description length ®
gain (DLG) is a goodness measure proposed by Kit and
Wilks (1999) as an unsupervised learning approach to lexi-
cal acquisition. Intuitively, the DLG of a stringindicates
the reduction of description length of a corpdisvhen the
characters in s are treated as a unit and all the occurrences
of sin X are replaced by the index of the unit. Therefore,
the more frequens is in X and the longes is, the higher .
DLG(s) is. Given a sentence, Kit and Wilks (1999) pro- 5. Experiments
poses to segment the sentence into words by choosing tHe this section, we report the results for three sets of ex-
sequence with the highest, DLG(s;), wheres; is aseg-  periments. The first set compares the performance of the
ment in the sequence. Berkeley parser on CTB5 and CTB7; the second set illus-

Coming back to the prediction task, we use the same proirates how genre variation affects the performance of our
cess to find the best segment sequence for given a chumi_P tools (segmenter, POS tagger, and parser) on five gen-
and calculate average DLG scotdygDLGScore, of a  res in CTB7; the third set shows the performance of our
chunk as in Eq (1), where; is a segment in the best prediction systems with different sets of features.
segment sequence amdis the chunk length (in charac- ]
ters). DLG(s;) is calculated with respect to Setl. Be- >1. Parsingresultson CTBSand CTB7
cause chunks that are similar to Setl tend to have higeveral previous studies on Chinese parsing evaluate their
AvgDLGScore values, we uselvgDLGScore as a fea- parsers on the CTB version 5 (CTB5), which has approx-
ture for prediction. imately half a million words. Data split of CTB5 in those
experiments is given in Table 3. The performance of the

e Percentage of nodes with a particular syntactic label:
the percentage of non-terminal nodes in the parse tree
with a particular syntactic label (e.g\NP). There is
one feature for each syntactic label.

Difference of the performances of two parsers: we run
two parsers (the Berkeley one and the Stanford parser)
on the current chunk, and calculate the labeled f-scores
when treating one parse tree as the reference and the
other as system output. The intuition is that the more
similar the two parse trees are, the more likely the
parse trees are close to the correct parse tree.

AvgDLGScore(chunk) = M (1) Berkeley parser on this dataset is provided in the first two

n rows of Table 4. Row #1 is the result from (Petrov and

4.2.2. Featuresfrom segmented text Klein, 2007)# and Row #2 is the result when we re-trained
The following features come from segmented text: their parser with CTB5. The results in the two rows are

e OOV word rate: the percentage of word tokens in thevery similar, as they should be.
current chunk that do not appear in Set1.

e Average word length: the average word length (in ‘Somehow there are two slightly different versions
characters) in the current chunk. of this paper. One uses the data set in our Table 3,

. d the paper is available at the first author's web-
¢ Average sentence length: th_e average sentence Iengg?e’ http://www.petrovi.de/data/naacl07.pdf. The sec-
(in words) for the sentences in the current chunk.

ond version uses a subset of CTB5 and the paper is

e Percentage of words with high information gain: the part of the ACL anthology and can be downloaded from
percentage of word tokens in the current chunk thattp://aclweb.org/anthology/N/NO7/N07-1051.pdf. Weoshthe
appear in the list of words with high information gain. results from the first version.
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Expt | Data < 40 words All sentences

id Set P/R/F | F-score rangg P/R/F | F-score range
CTB5: Data split as in Table 3

#1 (Petrov & Klein, 2007)| 86.9/85.7/86.3 86.3 84.8/81.9/83.3 83.3

#2 Retrained parser 87.1/85.4/86.2 86.2 84.6/82.7/83.6| 83.6
CTB5: 10-fold cross validation

#3 w/o reshuffling 82.8/80.1/81.4 78.7-84.1 81.6/78.7/80.1 77.2-82.5

#a with reshuffling 83.9/81.2/82.5 81.7-83.4 82.2/79.3/80.7 80.0-81.9
CTB7: 10-fold cross validation

#5 w/o reshuffling 78.2/79.7/78.9 72.8-88.9 78.1/78.7/78.4 72.8-88.7

#6 with reshuffling 83.9/81.3/82.6 82.1-83.2 82.8/80.0/81.4f 80.9-82.1

Table 4: Performance of the Berkeley parser on CTB5 and CTiBié. P/R/F numbers in each cell are labeled precision,
recall, and f-score. For Row #3—#6, P/R/F are the averagé® ofins and F-score range shows the lowest and highest
f-scores among the 10 runs.

Data Set| File Ids # of sents| # of words 10 runs, as shown in Row #3 and #4 in Table 4, is much
Training | 1-270 18,089 493,939 worse than Row #2. Second, CTB7 is more diverse than
400-931 CTB5; not only does it have documents from five genres
1001-1151 (whereas CTB5 has only two genres: newswire and mag-
Dev 301-325 350 6,821 azine), but the documents in CTB7 also come from more
Test 271-300 348 8,008 sources. For instance, the newswire documents in CTB5

are from Xinhua News and Hong Kong News, where the
newswire documents in CTB7 can also come from other
sources such aigence France Presse (AFP), China News

Service, People’s Daily, and Guangming Daily. As a result,
the performance on CTB7 is worse than CTB5 without file

Givgn that CTBY is more than twice the size of CTBS, reshuffling (#5 vs. #3), and is about the same as CTB5 with
one might expect that the Berkeley parser, or any parseFEShuﬁling (#6 vs. #4)

W.OUId perform better when trained on C.TB7 than on CTBS. To summarize, Table 4 demonstrates the significant im-
Since there is not a standard data split for CTB7, we ra act of genre variation on parsing performance in two ways.
10-f0|d_c_ross validation on CTB7 and reported the averag irst, more training data does not necessarily lead to bette
of precision/recall/f-score and the range of f-scorestier t performance (e.g. #5 vs. #3). Second, different splits of
10 runs. The results are in Row #5, which, SurprISIngly’training, development and test data could lead to very dif-

are much worse than ROW #2 (e.g., the f-score is 0.783 Verent parsing results (e.g., #2 vs. #3, #5 vs. #6), especial
0.862 for sentences with no more than 40 words). when the corpus is very diverse

The main reason for low performance on CTB7 is due to
genre variation in CTB7. Notice that the f-scores for the5.2. Performance of NLP toolson CTB7
10 runs on CTB7 in Row #5 vary a lot, ranging from 0.728 For this set of experiments, we divide the data for each
to 0.889. This is because the 10 folds of CTB7 are creategenre in CTB7 into three sets: the first 20% as the test
based on file ids, and in a particular run training and tesportion, the first 150K words of the remaining 80% as the
data can come from very different genres. For instancetraining portion, and the rest of the remaining 80% which
in the run where the test data is the last 10% of data ofre not used here. Tables 5-7 show the results of running
CTB7 according to file ids, most of the test data belongs tahree NLP tools on the data set. In each table, a row corre-
the web genre, whereas the training data are mainly fromsponds to the genre of the training data, and each column
the other four genres. To reduce the effect of file ids oncorresponds to the genre of the test data. The cell shows
the makeup of the 10 folds, we randomly reshuffle the fileshe performance of the tool when trained on the training
before dividing them into 10 folds. Row #6 lists the I’eSU|tSp0rti0n of the training genre, and tested on the test portion
of cross validation with the new 10 folds; not only do the of the test genre. That results irba< 5 matrix. For each
average precision/recall/f-score increase, but alsceti®er column, the highest score is in bold. In addition to the ma-
less variation among the 10 runs. trix, we also add amll row, where the training data is the

While reshuffling improves the performance on CTB7 union of the training portion of all five genres.
by a few percentage points, it is still lower than the re- There are several observations from Tables 5-7. First,
sults on CTB5 as in Row #2. There are two reasons foas indicated by the boldface numbers on the diagonals of
that. First, the data split in Table 3 turns out to be an easyhe three matrices, the highest accuracy for each test set
one for the parser: the test data are all from Xinhua Newsis achieved when the training and test data come from the
so are the development data and most files in the trainingame genres (we call it the-domain setting, in contrast
set. When we ran 10-fold cross validation on CTB5 withto thecross-domain setting when the training and test data
or without file reshuffling, the average performance of thecome from different genres). Second, when comparing

Table 3: Standard data split of the CTB5
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bc bn mz | nw | web bc bn mz nw web
bc 939 | 88.0| 81.8| 85.7| 85.5 bc 888 | 17.91| 24.21| 17.92| 17.14
bn | 87.9| 94.1| 82.8| 87.6| 85.1 bn 11.59( 823 | 19.92| 12.05| 15.29
mz | 86.8| 87.7| 91.6 | 88.2 | 85.7 mz | 13.60| 16.83| 10.44 | 15.66| 16.31
nw | 83.1| 89.7| 85.8| 94.6 | 83.8 nw | 14.83| 15.28| 19.57| 7.96 | 16.92
web | 92.1| 89.5| 84.2| 86.8| 91.5 web | 857 | 14.31| 17.15| 14.32| 9.53

Al [96.1] 96.1] 93.2] 96.2] 935

Al [ 336 | 4.18 [ 6.29 | 414 | 5.41 |

Table 5: Performance of the CRF word segmenter on th&able 8: OOV rates of the test data (i.e., the percentage of
CTB7. The numbers are f-scores for all the words. word tokens in the test data that do not appear in the training
data). The lowest rate in each column is in bold.

bc bn mz | nw | web
bc 922 | 87.4| 81.8| 86.1| 86.3
bn | 87.1]| 93.2 | 84.5| 90.5| 86.6
mz | 84.3| 87.0| 915 | 88.1| 84.1

are also consistent with the ranking based on the OOV rates
in Table 8, where low OOV rates correspond to closeness
nw 18221 8881 8651 941 849 in genres and higher performgnces for NLP tools. This re-
web1 9031 891 8711 8861909 sult implies that some properties of the corpora such as the

OOQV rate could be used as a cue to measure genre closeness
All | 93-8| 94-2| 92-4| 94-7| 92-0| or predict performance of NLP tools.

Table 6: Performance of the Stanford POS tagger on thg.3, Prediction resultson CTB7

CTB7. The numbers in the table are tagging accuracy. oy prediction experiments, we first divide the data in each

genre into three portions: 20% as test data (Set3), 150k-
words of the remaining 80% as training data for NLP tools
numbers in different columns. we can see that the NLES€t1), and the next one thousand sentences as training data

tools perform better on some genres (engz.andweb) than fqr the predictqr (Setd.For all the experiments, thg chunk
other genres (e.dap andnw), for both in-domain and cross- SIZ€ was empirically set to be 1Q sentences, which means
domain settings, implying some genres are easier than othg?at Set2 corresponds_to 100 training instances for the pre-
genres for these NLP tools. Third, from each matrix we carflictor. For these experiments, we did not bseecause af-
define the closeness of genres according to the performan&@/ Putting aside 20% for Set3 and 150 thousand words for
of the NLP tool; that is, given test data in genre G1 andSet3, Fh_ere are only 217 sentences left, which is too small
training data in genre G2 or G3, we say that GBléser o [OF training the predictor. .
G1 than G3 is to G1 if the performance in cell (G2, G1)is Next we train a predictor for each genre pair and com-
better than the one in cell (G3, G1). For example, the firsPare t_he predicted scores with the real scores. Section 4.2.
columnin Table 5 indicates thekb is closer tdoc thannw. described four groups of features: raw text features (F1),
While all these observations are not surprising, what igvord-basedfeatures (F2), POS-tag-based features (k8), an
interesting is that, although we using three tools, develParse-tree-based features (F4). _ _
oped by three institutes for three very different tasks, the ® For the three NLP tasks, F1 is always available as it
rankings of genre closeness are very similar. For instance, ~depends on only the raw text; the availability of F2-F4
for the test data irbc, the ranking of the training genres to the predictor varies from task to task.
based on the word segmentation performance is the same® For word segmentation prediction, F2 is calculated
as the ones based on POS tagging or parsing. In addition, if ~ from the output of the CFG segmenter for chunks in
we rank genre difficulty based on system performance, the ~ Set2 and Set3. For POS tagging and parsing, F2 is
rankings are very similar for all three tasks, witiv andbn calculated from the gold standard of word boundary
considered easier than the other three genres. Furthermore in Set2 and Set3 because both the tagger/parser and
ranking of genre closeness and ranking of genre difficulty ~ their predictor assume that the input text is segmented
correctly.
e For POS tagging prediction, features in F3 are ex-
bc |bn | mz | nw | web tracted from the output of the Stanford tagger.
be 74.9 | 68.2] 61.9] 64.7]| 69.5 e For parsing prediction, because the input to the Berke-
bn 69.5| 81.8 | 68.3| 73.8| 70.7 ley parser is a word segmented sentence with no POS
mz | 66.2| 70.3]| 76.6 | 70.5)| 69.4 tags, both F3 and F4 features are extracted from the

nw | 63.2) 72.8)| 69.8| 81.7 | 6.0 output of the Berkeley parser. For the feature that com-
web | 72.8| 71.9] 70.2| 70.0| 76.0 pares two parse trees of the same sentence, the Stan-
| All [77.7]82.8] 79.0] 83.8] 76.1] ford parser is used to process sentences in Set2 and
Set3.

Table 7: Performance of Berkeley’s parser on the CTB7.
The numbers in the table are labeled f-scores for sentences °The Set2 foweb is a little bit smaller, as there are only 825

with no more than 40 words. sentences left after using 20% for Set3 and another 150dhdus
words for Setl.
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An example of the prediction matrix is given in Table 9, | Features | Feature #| AvgDiff | RMS
which is for POS tagging prediction with features in Group F1: raw text features
F1, F2, and F3. Features in F3 are calculated from the DLG-based score 1 4.97 5.39
output of the Stanford tagger, not from the gold standard, OOV chars 1 6.07 6.90
because the gold standard for Set3 should be used only tolnfo Gain chars 1 7.52 8.40
evaluate the predictor, not to be used as part of input to the All features in F1 4 5.26 5.66
predictor. Each cel(z, j) has two numbers for genre pair F2: word-based features
(Gi,Gj): the first is the real accuracy of the POS tagger 5ov words 1 497 587
when the tagger is trained on Set1l@fand tested on Set3 71575 Gain words 1 6.80 776
of G;; the second number is the predicted accuracy when— -+ leng 1 6.79 775
the POS tagger is trained on Setl®f, and the predictor Al features in £2 2 519 596
is trained on Set2 of7; and tested on Set3 6f;. -

| All featuresin F1 + F2[ 8 |5.10 [5.68 ]

5 bn 5 mz ] nw ; web/ 5 Table 10: Word segmentation prediction results on the
n_| 93.2/93.7| 84.5/90.4| 90.5/91.8| 86.6/92.0 CTB7. F1: raw text features, F2: word-based features.
mz | 87.0/89.0| 91.5/91.1| 88.1/89.9| 84.1/89.5 F2 features are collected from the output of the CRF seg-
nw | 88.8/89.4| 86.5/86.4| 94.1/93.8| 84.9/81.0 menter.
web | 89.1/90.1| 87.1/88.0| 88.6/88.7| 90.9/91.8
Features | # of feats| AvgDiff | RMS
Table 9: POS tagging prediction results on CTB7 with E; j ggg gig
F1+F2+F3 features. The row specifies the genre of the = 33 3.38 4'35
training data (Setl and Set2) and the column specifies the - -
genre of the test data (Set3). The two numbers in each cell F1+F2 81192 2.80
are real tagging accuracy and the predicted accuracy, re- F1+F3 37| 237 3.13
spectively. F2+F3 37| 2.37 3.40
F1+F2+F3 41| 1.91 2.76

Table 9 shows that the predictor works reasonably well, . o
as the gap between the two numbers is less than two pe'll'able 11: POS tagging prediction results on the CTB7. F1:
centage points for 12 out of the 16 cells. More formally, wer@W text features, F2: word-based features, F3: POS-tag-
use two metrics to evaluate a predictor: one is the averadéased features. F3 features are collected from the output of
of the difference between real scores and predicted scordde Stanford POS tagger.
(AvgDiff), and the other is root mean square (RMS), as de-
fined in Eq (2) and (3). Herey is the number of cells in the
matrix; score,. ; andscore, ; are the two numbers in thé&*
cell.

and show that more training data does not necessarily lead
to better performance. Second, we evaluate three NLP sys-
tems with all the genre pairs in CTB7 and show that genre

variation affects system performance significantly. While

is not surprising that NLP systems perform the best when

the training and test data come from the same genre, what
D) is interesting is, when we rank genres based on how close
(3) they are to a particular test genre or how well an NLP sys-

o S tem performs on the genres, the rankings are very similar
Tables 10-12 show the results of prediction with different
feature combinations. There are several observationst, Fir

Sty | scorey; — scorep; |

AvgDiff = @)

n

RMS = \/ 2 iz (scorer; — scorep,q)

n

among the three tasks, the prediction for word segmentation | Features # of feats| AvgDiff | RMS
is the worst partly because, compared to POS tagging and | F1 4 | 4.07 4.60
parsing, there is less information available to the predict F2 4| 4.88 5.89
Second, more features normally lead to better performance, F3 33| 4.27 5.19
as illustrated by many feature combinations in the three ta- F4 29| 3.27 3.78
bles, but there are exceptions as shown in Table 12 for the F1+F2 3] 3.72 4.76
feature combinations that include F4. Third, compared to F1+F4 33 | 3.60 450
other features which require more information present in F2+F4 33 352 4.45
the input, simple features such as the ones in F1 work pretty  "E1yEo7E3 211 2.70 379
well for all three tasks, indicating that the raw text itsak F1+E2+E3+E4 70 | 3.40 219

cludes a lot of information for performance prediction.

) Table 12: Parsing prediction results on the CTB7. F1: raw
6. Conclusion text features, F2: word-based features, F3: POS-tag-based

To measure the effect of genre variation on NLP Systemsf,eatures, and F4: parse-tree-based features. F3 and F4 fea-
we have run two sets of experiments. First, we compare thiures are collected from the output of Berkeley and Stanford
performance of the Berkeley parser on CTB5 and CTB7parsers.
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no matter which NLP system we use. This implies that ing and labeling sequence data.Rroc. of the 18th In-
these rankings are more likely to result from some inherent ternational Conference on Machine Learning (ICML),
properties of the genres than from properties of a particula pages 282-289.
NLP system. Mitch Marcus, Mary Ann Marcinkiewicz, and Beatrice
In addition to studying genre variation, we also build a Santorini. 1993. Building a large annotated corpus of
predictor for the three NLP systems and report experimen- English: the Penn Treeban€omputational Linguistics,
tal results with different feature combinations. Among the 19(2):313-330.
three systems, the prediction for the Stanford POS tagger ®avid McClosky, Eugene Charniak, and Mark Johnson.
the best, followed by the Berkeley parser, and followed by 2006. Effective self-training for parsing. IRroc. of
the CRF word segmenter. NAACL-HLT, pages 152-159.
As mentioned in Section 2.1., many important question®David McClosky, Eugene Charniak, and Mark Johnson.
about genre variation (such as how to measure similar- 2010. Automatic domain adaptation for parsing Pho-
ity between genres and what exactly causes performance ceedings of HLT-NAACL, pages 28—36.
degradation of NLP systems when tested on a differenRobert Moore and William Lewis. 2010. Intelligent selec-
genre) have not been studied a lot in the NLP field. We tion of language model training data. Rnoceedings of
plan to address these questions in the future. For perfor- ACL, pages 220-224.
mance prediction, we will experiment with various featureKishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
selection methods to find a good feature combination fora zhy. 2002. BLEU: a Method for Automatic Evaluation

given NLP system. of Machine Translation. IfProceedings of ACL, pages
311-318.
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