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Abstract 
This paper describes the LDC forced aligner which is designed to align audio and transcripts. Unlike existing forced aligners, LDC 
forced aligner can align partially transcribed audio files, and also audio files with large chunks of non-speech segments, such as 
noise, music, silence etc, by inserting optional wildcard phoneme sequences between sentence or paragraph boundaries. Based on 
the HTK tool kit, LDC forced aligner can align audio and transcript on sentence or word level. This paper also reports its usage on 
English and Mandarin Chinese data. 
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1. Introduction 
 
Aligned audio and transcript is a valuable source for 
many HLT applications, including speech recognition, 
text-to-speech synthesis, speech indexing, etc. Alignment 
can be done on different levels, such as utterance, word 
or phoneme level. Manual alignment of audio and 
transcript is very expensive and time consuming, so with 
a few exceptions, most aligned audio-transcript corpora 
were created by automatic aligners, some with manual 
validation and adjustment performed afterwards. 
Existing aligners require that 1) audio files have been 
completely transcribed; 2) there are no long periods of 
non-speech regions, such as silence, music, background 
noise. These requirements are difficult to meet in some 
cases, for example, most close captioning of TV 
broadcast isn’t complete, i.e. part of a program may not 
have been transcribed. In some other cases, the 
requirement is impossible to meet because the audio file 
contains non-speech signals, such as noise, music, and 
silence (most existing aligners can handle short silence 
well, but not silence over 10 seconds), because these 
non-speech signals cannot be transcribed using a 
phoneme set. 
With the existing aligners, aligning audio and its 
incomplete transcript will have to be done in two steps. 
In the first step, one splits the audio and transcript into 
paired trunks so that each alignable audio trunk has a 
complete transcript. Then as the second step, each paired 
chunks is aligned automatically. The first step has to be 
done manually, and it involves annotators listening to the 
audio file and identifying the parts that have been 
transcribed, then mark the boundary on the audio file and 
the transcript file. It’s a labour intensive process. 
The LDC aligner was designed to align audio files with 
incomplete transcripts, which is often the case for 
broadcast transcripts since music, commercials, noise 
and sometimes parts of programs are not transcribed. 
The rest of the paper is laid out as follows: section 2 
describes the overall structure of the aligner; section 3 
contains details of the tool; section 4 describes 

experiments and some preliminary results; section 5 
concludes the paper. 

2. Overall Structure 
 
The LDC forced aligner is based on the HTK toolkit[1]. 
However, unlike other aligners, which use HTK’s forced 
alignment feature (HVite with –a option) to align audio 
and transcripts, the LDC aligner runs HTK’s recognition 
function (HVite without –a option) and get the alignment 
as a by-product. This allows us to inject optional 
wildcard phoneme sequences, which can match 
untranscribed audio of arbitrary length, into the word 
lattice that HTK uses for recognition. 
In pattern matching with regular expression, one can use 
wildcard to match zero or more occurrences of certain 
symbols. For example, AB*C matches any sequence that 
starts with an A and ends with a C and with zero or more 
Bs in between. 
The wildcard phoneme sequences that we used are 
similar in nature. Its purpose is to match any non-speech 
(noise, music) and untranscribed speech in a given audio 
file. Because of the wide range of acoustic properties of 
noise, music, and speech with and without background 
music and noise, we need more than one wildcard 
phoneme sequence. Through experiments we created 24 
such wildcard sequences for each language (English and 
Chinese) so the tool has the best chance of matching the 
wildcard with untranscribed signals. 
With the 24 wildcards created above and a wildcard for 
silence, we have 25 wildcards in total. 
During force alignment, we first segment the transcript 
by paragraph, or sentence, or utterance, depending on the 
source of the corpus. Then we insert the wildcards 
between those transcript segments. The resulting 
grammar looks like the following: 
 
Sentence1 {WILDCARD1 | WILDCARD2 
|…|WILDCARD25} Segment2 {WILDCARD1 | 
WILDCARD2 |…|WILDCARD25} sentence2 
{WILDCARD1 | WILDCARD2 |…|WILDCARD25}  
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where curly bracket indicates zero or more occurrences 
of the patterns inside, according to HTK’s grammar 
syntax. 
HTK will then take the grammar as input and generate a 
word lattice which will be used in speech recognition. 
We configured HTK in such a way that it not only 
outputs the words it identifies (which we already know), 
but also the time boundaries of each word, which is what 
we want. 
As the final step, we take the HTK recognition output, 
discard the entries for wildcards and return the remaining 
words and their time stamps as output. The script can be 
configured to return word or sentence level alignment. 
 

3. Wildcard Phoneme Sequences 
 
The 24 wildcard sequences were created as follows for 
each language: 
1) we trained a speech recognition system on broadcast 

news data that have speech with or without 
non-speech background; Non-speech segments, such 
as coughing, laughing, music and other noises, were 
excluded from the training data; 

2) we divided our development data into four 
categories: speech, music, noise, and speech with 
non-speech background; 

3) we run the speech recognizer obtained in 1) on each 
category of 2); 

4) we selected the most frequent six triphones from 
each of the four categories; 

4. Implementation 

4.1. Pronouncing Dictionary 
 
For English, we use the CMU Pronouncing dictionary[2], 
which contains pronunciations for over 125,000 words. 
The version used in this work is CMUDict v0.6. The 
CMU phoneme set has 39 phonemes (see Table 1), for 
which the vowels may carry lexical stresses. The lexical 
stresses, however, were not used in this work. Some 
words may have multiple pronunciations, which HTK 
does allow and can choose the one that gives the highest 
score during the training or recognition process. 
As for OOV words, some of them can be dealt with by a 
transducer train on CMUDict, but others, mostly 
numbers, dates, etc., require a rule based system so 
possible alternative pronunciations can be generated. 
 

        Phoneme Example Translation 
        AA odd AA D 
        AE at AE T 
        AH hut HH AH T 
        AO ought AO T 
        AW cow K AW 

        AY hide HH AY D 
        B  be B IY 
        CH cheese CH IY Z 
        D  dee D IY 
        DH thee DH IY 
        EH Ed EH D 
        ER hurt HH ER T 
        EY ate EY T 
        F  fee F IY 
        G  green G R IY N 
        HH he HH IY 
        IH it IH T 
        IY eat IY T 
        JH gee JH IY 
        K  key K IY 
        L  lee L IY 
        M  me M IY 
        N  knee N IY 
        NG ping P IH NG 
        OW oat OW T 
        OY toy T OY 
        P  pee P IY 
        R  read R IY D 
        S  sea S IY 
        SH she SH IY 
        T  tea T IY 

        TH theta 
TH EY T 
AH 

        UH hood HH UH D 
        UW two T UW 
        V  vee V IY 
        W  we W IY 
        Y  yield Y IY L D 
        Z  zee Z IY 
        ZH seizure S IY ZH ER 

 

Table 1 English Phoneme Set 

The Mandarin Chinese pronouncing dictionary contains 
pronunciations of 7,333 Chinese characters. Some of the 
characters have multiple pronunciations. Mandarin 
Chinese is a tonal language, but tones are not marked in 
the pronouncing dictionary, nor used in training of the 
acoustic models. 
The Mandarin Chinese phoneme set contains a total of 
38 phonemes (see Table 2). 
Modern Chinese have a limited number of characters. 
The pronouncing dictionary contains all characters in the 
GB2312 encoding standard. It has less characters than 
the more inclusive GB12345 standard, but it does 
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contain all the characters we see in the training, 
development and subsequent testing. Thus OOV words 
wasn’t an issue for Chinese in our case. There are, 
however, English words (mostly names) in our training 
and development data. Sentences or paragraphs 
containing such words were excluded from training and 
testing. 
It’s easy to expand the current pronouncing dictionary to 
include characters in GB12345 standard, if it becomes 
necessary. 
 

Phoneme Example Translation 
> 多 d w > 
@ 哀 @ y 
& 策 c & 
% 吃 C % 
a 八 b a 
b 八 b a 
c 擦 c a 
C 插 C a 
d 代 d @ y 
e 杯 b e y 
E 鞭 b y E n 
f 发 f a 
g 哥 g & 
h 很 h & n 
i 闭 b i 
I 词 c I 
j 积 j i 
k 哭 k u 
l 拉 l a 
m 马 m a 
n 鞍 @ n 
N 肮 a N 
o 博 b w o 
p 品 p i n 
q 其 q i 
r 然 r @ n 
R 而 R 
s 色 s & 
S 山 S & n 
t 谈 t @ n 
u 毒 d u 
U 居 j U 
w 保 b a w 
W 学 x W E 
x 习 x i 
y 北 b e y 
z 早 z a w 
Z 张 Z a N 

 

Table 2 Chinese Phoneme Set 

4.2. Acoustic Models 
 
We trained acoustic models for English and Mandarin 
Chinese. The training data were both from LDC hub4 
broadcast news corpora [3][4]. To create clean HMM 
training data, we filtered out the segments that contain 
partial words, mispronounced words, interjections, 
non-lexemes, idiosyncratic words, unintelligible speech 
and speech in foreign languages. 
This gives us about 67 hours of English training data and 
63 hours of Mandarin Chinese training data in 8-bit 
16KHz NIST sphere file format.  
The coding uses Mel Frequency Cepstral Coefficients 
(MFCCs) as the energy component, the frame period is 
10msec. The FFT uses a Hamming window and the 
signal has the first order preemphasis applied using a 
coefficient of 0.97. The filterbank has 26 channels and 
outputs 12 MFCC coefficients. Energy normalization 
was performed on recorded audio files. 
Monophone HMMs were trained and they consist of 
3-state left-right with no skips. 
 

4.3. Pre- and post-processing 
 
There are two issues with the English forced aligner that 
we solve by pre- and post-processing: 1) OOV words; 2) 
preserving the surface form, including capitalization and 
punctuations that are connected to the word. The first 
issue is obvious and easy to understand, the second needs 
some explanation. It’s desirable that the output of the 
forced aligner, that is words with start and end time, has 
the same spelling as the original text in order to make 
validation and down stream processes easier. This is not 
possible with HTK, because HTK is not case sensitive. 
There are three kinds of OOV words. The first kind 
consists of proper names, such as Anajay, Abagil, and 
newly coined words, such as vacationary, facebook, 
which are not included in the pronouncing dictionary. 
The second kind consists of mostly numbers, dates, times, 
symbols (currency, percentage), which are not spelled 
out. The third kind involves punctuations, for example 
Bush’s (policy), where Bush’s become an OOV if we 
tokenize by space. 
To deal with the first kind of OOV words, we trained a 
transducer on the CMU dictionary which takes a word in 
its surface form and output its pronunciation in CMU 
phoneme set. Acronyms such as NIST and IBM receive 
special treatments. We provide two alternative 
pronunciations for every acronym, one pronouncing it as 
a word, the other as letters. 
To deal with the second kind of OOV words, which 
mostly involves numbers and symbols, we first use a 
rule-based system to spell out these words, then we look 
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up the resulting words from the pronouncing dictionary. 
Some examples of the words covered by this approach: 

 
Numbers: 19104, 2010 
Symbols: $, £, €, %, & 
Date and time: 03/05/2010, Mar. 5, 7:30pm 

 
Again, we try to provide all possible readings of these 
words. For example, the possible readings of 2010 
include: 
 

Twenty ten 
Two thousand ten 
Two thousand and ten 
Two zero one zero 
Two oh one oh 
 

The third kind of OOV words that involve capitalization 
and punctuation are first parsed into multiple parts, each 
containing only alphanumeric characters, then the 
pronunciations of these parts are looked up or generated 
separately. Finally the pronunciations of these parts are 
merged to form the pronunciation of the full word. 
It’s worth noting that during each run of the English 
forced aligner, CMU dictionary was only used as the 
seed dictionary. The transcript is parsed and a 
pronouncing dictionary is created dynamically, based on 
entries from the CMU dictionary and analysis of the 
OOV words. 
To address the second issue, which is to preserve the 
spelling of the words in the transcript, we created a 
mapping table between the transcript words and their 
HTK uppercase counterpart. After HTK is run, the 
mapping table is then used to convert the aligned words 
or sentences into its original spelling. 
 

5. Experiments 
 
To test the forced aligners, we selected 30 hours of 
broadcast news each for English and Chinese. All these 
audio files contain some music, advertisement that 
cannot or have not been transcribed. The length of audio 
files range from 10 to 60 minutes, with the majority 
around 30 minutes. 
To make the task more difficult for the aligner, we 
randomly removed parts of the transcripts. The audio 
durations without transcripts range from 10.5 to 35.8 per 
cent. 
The transcripts do not contain any time stamps on any 
level. 
Two experiments were run to test the forced aligner’s 
performance on sentence and word level alignment 
respectively. For experiment on sentence level alignment, 
we first break the transcripts into sentence before feeding 
them into the forced aligner. 
To create a baseline system, we first create word and 
sentence level alignment of the segments that do have 
accurate transcripts. This involves extracting each audio 

segment individually, aligning it to its corresponding 
transcript using the same aligner, then adding an offset to 
the timestamps to reflect their real positions in the 
original speech file. 
The output of the forced aligners is then compared to the 
baseline result. We computed the average offset between 
the timestamps of forced aligned results and those of the 
baseline system. For sentence level alignment, the 
average offset is 15ms for English and 18ms for Chinese. 
For word level alignment, the average offset is 10ms for 
English and 12ms for Chinese. 
Both results indicate the forced aligner’s results on 
incomplete transcripts are comparable to those from 
complete transcript. 
We also manually checked the word and sentence level 
alignment of randomly selected files, and the findings 
are consistent with the finding above. 
There are about one percent of files that failed the forced 
alignment, i.e the aligner doesn’t produce any output for 
these files. These files were excluded from the statistics 
above. A closer look finds that these files usually have 
very poor acoustic qualities. 
  

6. Conclusion and Future Work 
 
We introduced the LDC forced aligner which completely 
eliminates manual annotation when aligning audio with 
incomplete transcripts. The results demonstrate that the 
aligner’s results are as good as the results from files with 
manual sentence/utterance level alignment. 
The LDC forced aligner has been used to align about 300 
hours of English broadcast news audio and transcripts 
and 250 hours of Mandarin Chinese data. All transcripts 
are incomplete transcription of the original audio. Some 
of these transcripts were closed captioning, some were 
transcripts prepared before a broadcast, some were 
outsourced transcription with instructions to transcribe 
only parts of a file. None of the transcripts had any 
timestamps on them on sentence, utterance, or paragraph 
level. The forced aligner has proven to be a very cheap 
and efficient way of aligning these kinds of audios and 
transcripts. 
We intend to expand this work to other languages. 
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