
LDC Forced Aligner
Xiaoyi Ma

Linguistic Data Consortium
3600 Market St. Suite 810

Philadelphia, PA 19104
E-mail: xma@ldc.upenn.edu

Abstract
This paper describes the LDC forced aligner which is designed to align audio and transcripts. Unlike existing forced aligners, LDC
forced aligner can align partially transcribed audio files, and also audio files with large chunks of non-speech segments, such as
noise, music, silence etc, by inserting optional wildcard phoneme sequences between sentence or paragraph boundaries. Based on
the HTK tool kit, LDC forced aligner can align audio and transcript on sentence or word level. This paper also reports its usage on
English and Mandarin Chinese data.

Keywords: speech, transcript, forced alignment

1. Introduction

Aligned audio and transcript is a valuable source for
many HLT applications, including speech recognition,
text-to-speech synthesis, speech indexing, etc. Alignment
can be done on different levels, such as utterance, word
or phoneme level. Manual alignment of audio and
transcript is very expensive and time consuming, so with
a few exceptions, most aligned audio-transcript corpora
were created by automatic aligners, some with manual
validation and adjustment performed afterwards.
Existing aligners require that 1) audio files have been
completely transcribed; 2) there are no long periods of
non-speech regions, such as silence, music, background
noise. These requirements are difficult to meet in some
cases, for example, most close captioning of TV
broadcast isn’t complete, i.e. part of a program may not
have been transcribed. In some other cases, the
requirement is impossible to meet because the audio file
contains non-speech signals, such as noise, music, and
silence (most existing aligners can handle short silence
well, but not silence over 10 seconds), because these
non-speech signals cannot be transcribed using a
phoneme set.
With the existing aligners, aligning audio and its
incomplete transcript will have to be done in two steps.
In the first step, one splits the audio and transcript into
paired trunks so that each alignable audio trunk has a
complete transcript. Then as the second step, each paired
chunks is aligned automatically. The first step has to be
done manually, and it involves annotators listening to the
audio file and identifying the parts that have been
transcribed, then mark the boundary on the audio file and
the transcript file. It’s a labour intensive process.
The LDC aligner was designed to align audio files with
incomplete transcripts, which is often the case for
broadcast transcripts since music, commercials, noise
and sometimes parts of programs are not transcribed.
The rest of the paper is laid out as follows: section 2
describes the overall structure of the aligner; section 3
contains details of the tool; section 4 describes

experiments and some preliminary results; section 5
concludes the paper.

2. Overall Structure

The LDC forced aligner is based on the HTK toolkit[1].
However, unlike other aligners, which use HTK’s forced
alignment feature (HVite with –a option) to align audio
and transcripts, the LDC aligner runs HTK’s recognition
function (HVite without –a option) and get the alignment
as a by-product. This allows us to inject optional
wildcard phoneme sequences, which can match
untranscribed audio of arbitrary length, into the word
lattice that HTK uses for recognition.
In pattern matching with regular expression, one can use
wildcard to match zero or more occurrences of certain
symbols. For example, AB*C matches any sequence that
starts with an A and ends with a C and with zero or more
Bs in between.
The wildcard phoneme sequences that we used are
similar in nature. Its purpose is to match any non-speech
(noise, music) and untranscribed speech in a given audio
file. Because of the wide range of acoustic properties of
noise, music, and speech with and without background
music and noise, we need more than one wildcard
phoneme sequence. Through experiments we created 24
such wildcard sequences for each language (English and
Chinese) so the tool has the best chance of matching the
wildcard with untranscribed signals.
With the 24 wildcards created above and a wildcard for
silence, we have 25 wildcards in total.
During force alignment, we first segment the transcript
by paragraph, or sentence, or utterance, depending on the
source of the corpus. Then we insert the wildcards
between those transcript segments. The resulting
grammar looks like the following:

Sentence1 {WILDCARD1 | WILDCARD2
|…|WILDCARD25} Segment2 {WILDCARD1 |
WILDCARD2 |…|WILDCARD25} sentence2
{WILDCARD1 | WILDCARD2 |…|WILDCARD25}

3405

where curly bracket indicates zero or more occurrences
of the patterns inside, according to HTK’s grammar
syntax.
HTK will then take the grammar as input and generate a
word lattice which will be used in speech recognition.
We configured HTK in such a way that it not only
outputs the words it identifies (which we already know),
but also the time boundaries of each word, which is what
we want.
As the final step, we take the HTK recognition output,
discard the entries for wildcards and return the remaining
words and their time stamps as output. The script can be
configured to return word or sentence level alignment.

3. Wildcard Phoneme Sequences

The 24 wildcard sequences were created as follows for
each language:
1) we trained a speech recognition system on broadcast

news data that have speech with or without
non-speech background; Non-speech segments, such
as coughing, laughing, music and other noises, were
excluded from the training data;

2) we divided our development data into four
categories: speech, music, noise, and speech with
non-speech background;

3) we run the speech recognizer obtained in 1) on each
category of 2);

4) we selected the most frequent six triphones from
each of the four categories;

4. Implementation

4.1. Pronouncing Dictionary

For English, we use the CMU Pronouncing dictionary[2],
which contains pronunciations for over 125,000 words.
The version used in this work is CMUDict v0.6. The
CMU phoneme set has 39 phonemes (see Table 1), for
which the vowels may carry lexical stresses. The lexical
stresses, however, were not used in this work. Some
words may have multiple pronunciations, which HTK
does allow and can choose the one that gives the highest
score during the training or recognition process.
As for OOV words, some of them can be dealt with by a
transducer train on CMUDict, but others, mostly
numbers, dates, etc., require a rule based system so
possible alternative pronunciations can be generated.

 Phoneme Example Translation
 AA odd AA D
 AE at AE T
 AH hut HH AH T
 AO ought AO T
 AW cow K AW

 AY hide HH AY D
 B be B IY
 CH cheese CH IY Z
 D dee D IY
 DH thee DH IY
 EH Ed EH D
 ER hurt HH ER T
 EY ate EY T
 F fee F IY
 G green G R IY N
 HH he HH IY
 IH it IH T
 IY eat IY T
 JH gee JH IY
 K key K IY
 L lee L IY
 M me M IY
 N knee N IY
 NG ping P IH NG
 OW oat OW T
 OY toy T OY
 P pee P IY
 R read R IY D
 S sea S IY
 SH she SH IY
 T tea T IY

 TH theta
TH EY T
AH

 UH hood HH UH D
 UW two T UW
 V vee V IY
 W we W IY
 Y yield Y IY L D
 Z zee Z IY
 ZH seizure S IY ZH ER

Table 1 English Phoneme Set

The Mandarin Chinese pronouncing dictionary contains
pronunciations of 7,333 Chinese characters. Some of the
characters have multiple pronunciations. Mandarin
Chinese is a tonal language, but tones are not marked in
the pronouncing dictionary, nor used in training of the
acoustic models.
The Mandarin Chinese phoneme set contains a total of
38 phonemes (see Table 2).
Modern Chinese have a limited number of characters.
The pronouncing dictionary contains all characters in the
GB2312 encoding standard. It has less characters than
the more inclusive GB12345 standard, but it does

3406

contain all the characters we see in the training,
development and subsequent testing. Thus OOV words
wasn’t an issue for Chinese in our case. There are,
however, English words (mostly names) in our training
and development data. Sentences or paragraphs
containing such words were excluded from training and
testing.
It’s easy to expand the current pronouncing dictionary to
include characters in GB12345 standard, if it becomes
necessary.

Phoneme Example Translation
> 多 d w >
@ 哀 @ y
& 策 c &
% 吃 C %
a 八 b a
b 八 b a
c 擦 c a
C 插 C a
d 代 d @ y
e 杯 b e y
E 鞭 b y E n
f 发 f a
g 哥 g &
h 很 h & n
i 闭 b i
I 词 c I
j 积 j i
k 哭 k u
l 拉 l a
m 马 m a
n 鞍 @ n
N 肮 a N
o 博 b w o
p 品 p i n
q 其 q i
r 然 r @ n
R 而 R
s 色 s &
S 山 S & n
t 谈 t @ n
u 毒 d u
U 居 j U
w 保 b a w
W 学 x W E
x 习 x i
y 北 b e y
z 早 z a w
Z 张 Z a N

Table 2 Chinese Phoneme Set

4.2. Acoustic Models

We trained acoustic models for English and Mandarin
Chinese. The training data were both from LDC hub4
broadcast news corpora [3][4]. To create clean HMM
training data, we filtered out the segments that contain
partial words, mispronounced words, interjections,
non-lexemes, idiosyncratic words, unintelligible speech
and speech in foreign languages.
This gives us about 67 hours of English training data and
63 hours of Mandarin Chinese training data in 8-bit
16KHz NIST sphere file format.
The coding uses Mel Frequency Cepstral Coefficients
(MFCCs) as the energy component, the frame period is
10msec. The FFT uses a Hamming window and the
signal has the first order preemphasis applied using a
coefficient of 0.97. The filterbank has 26 channels and
outputs 12 MFCC coefficients. Energy normalization
was performed on recorded audio files.
Monophone HMMs were trained and they consist of
3-state left-right with no skips.

4.3. Pre- and post-processing

There are two issues with the English forced aligner that
we solve by pre- and post-processing: 1) OOV words; 2)
preserving the surface form, including capitalization and
punctuations that are connected to the word. The first
issue is obvious and easy to understand, the second needs
some explanation. It’s desirable that the output of the
forced aligner, that is words with start and end time, has
the same spelling as the original text in order to make
validation and down stream processes easier. This is not
possible with HTK, because HTK is not case sensitive.
There are three kinds of OOV words. The first kind
consists of proper names, such as Anajay, Abagil, and
newly coined words, such as vacationary, facebook,
which are not included in the pronouncing dictionary.
The second kind consists of mostly numbers, dates, times,
symbols (currency, percentage), which are not spelled
out. The third kind involves punctuations, for example
Bush’s (policy), where Bush’s become an OOV if we
tokenize by space.
To deal with the first kind of OOV words, we trained a
transducer on the CMU dictionary which takes a word in
its surface form and output its pronunciation in CMU
phoneme set. Acronyms such as NIST and IBM receive
special treatments. We provide two alternative
pronunciations for every acronym, one pronouncing it as
a word, the other as letters.
To deal with the second kind of OOV words, which
mostly involves numbers and symbols, we first use a
rule-based system to spell out these words, then we look

3407

up the resulting words from the pronouncing dictionary.
Some examples of the words covered by this approach:

Numbers: 19104, 2010
Symbols: $, £, €, %, &
Date and time: 03/05/2010, Mar. 5, 7:30pm

Again, we try to provide all possible readings of these
words. For example, the possible readings of 2010
include:

Twenty ten
Two thousand ten
Two thousand and ten
Two zero one zero
Two oh one oh

The third kind of OOV words that involve capitalization
and punctuation are first parsed into multiple parts, each
containing only alphanumeric characters, then the
pronunciations of these parts are looked up or generated
separately. Finally the pronunciations of these parts are
merged to form the pronunciation of the full word.
It’s worth noting that during each run of the English
forced aligner, CMU dictionary was only used as the
seed dictionary. The transcript is parsed and a
pronouncing dictionary is created dynamically, based on
entries from the CMU dictionary and analysis of the
OOV words.
To address the second issue, which is to preserve the
spelling of the words in the transcript, we created a
mapping table between the transcript words and their
HTK uppercase counterpart. After HTK is run, the
mapping table is then used to convert the aligned words
or sentences into its original spelling.

5. Experiments

To test the forced aligners, we selected 30 hours of
broadcast news each for English and Chinese. All these
audio files contain some music, advertisement that
cannot or have not been transcribed. The length of audio
files range from 10 to 60 minutes, with the majority
around 30 minutes.
To make the task more difficult for the aligner, we
randomly removed parts of the transcripts. The audio
durations without transcripts range from 10.5 to 35.8 per
cent.
The transcripts do not contain any time stamps on any
level.
Two experiments were run to test the forced aligner’s
performance on sentence and word level alignment
respectively. For experiment on sentence level alignment,
we first break the transcripts into sentence before feeding
them into the forced aligner.
To create a baseline system, we first create word and
sentence level alignment of the segments that do have
accurate transcripts. This involves extracting each audio

segment individually, aligning it to its corresponding
transcript using the same aligner, then adding an offset to
the timestamps to reflect their real positions in the
original speech file.
The output of the forced aligners is then compared to the
baseline result. We computed the average offset between
the timestamps of forced aligned results and those of the
baseline system. For sentence level alignment, the
average offset is 15ms for English and 18ms for Chinese.
For word level alignment, the average offset is 10ms for
English and 12ms for Chinese.
Both results indicate the forced aligner’s results on
incomplete transcripts are comparable to those from
complete transcript.
We also manually checked the word and sentence level
alignment of randomly selected files, and the findings
are consistent with the finding above.
There are about one percent of files that failed the forced
alignment, i.e the aligner doesn’t produce any output for
these files. These files were excluded from the statistics
above. A closer look finds that these files usually have
very poor acoustic qualities.

6. Conclusion and Future Work

We introduced the LDC forced aligner which completely
eliminates manual annotation when aligning audio with
incomplete transcripts. The results demonstrate that the
aligner’s results are as good as the results from files with
manual sentence/utterance level alignment.
The LDC forced aligner has been used to align about 300
hours of English broadcast news audio and transcripts
and 250 hours of Mandarin Chinese data. All transcripts
are incomplete transcription of the original audio. Some
of these transcripts were closed captioning, some were
transcripts prepared before a broadcast, some were
outsourced transcription with instructions to transcribe
only parts of a file. None of the transcripts had any
timestamps on them on sentence, utterance, or paragraph
level. The forced aligner has proven to be a very cheap
and efficient way of aligning these kinds of audios and
transcripts.
We intend to expand this work to other languages.

7. References
[1] http://htk.eng.cam.ac.uk/
[2] http://www.speech.cs.cmu.edu/cgi-bin/cmudict
[3]http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?c

atalogId=LDC98S71
[4]http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?c

atalogId=LDC98S73

3408

