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Abstract
In this paper we present three approaches towards adaptive speech understanding. The target system is a model-based Adaptive
Spoken Dialogue Manager, the OwlSpeak ASDM. We enhanced this system in order to properly react on non-understandings in
real-life situations where intuitive communication is required. OwlSpeak provides a model-based spoken interface to an Intelligent
Environment depending on and adapting to the current context. It utilises a set of ontologies used as dialogue models that can be
combined dynamically during runtime. Besides the benefits the system showed in practice, real-life evaluations also conveyed some
limitations of the model-based approach. Since it is unfeasible to model all variations of the communication between the user and
the system beforehand, various situations where the system did not correctly understand the user input have been observed. Thus we
present three enhancements towards a more sophisticated use of the ontology-based dialogue models and show how grammars may
dynamically be adapted in order to understand intuitive user utterances. The evaluation of our approaches revealed the incorporation of
a lexical-semantic knowledgebase into the recognition process to be the most promising approach.

Keywords: Dialogue management, Failure prevention, Keyword spotting

1. Introduction
Within the framework of the EU-funded project ATRACO
we have conducted a series of evaluation sessions to pri-
marily find out how users cope with adaptive and “intel-
ligent” systems, residing within Intelligent Environments
(IEs) (Goumopoulos and Kameas, 2009). The ATRACO
system provides several user interfaces that adapt to devices
and services, which are dynamically integrated into the sys-
tem. One of these interfaces is a Spoken Dialogue System
(SDS) that is managed by the OwlSpeak Spoken Dialogue
Manager (SDM) (Heinroth et al., 2010). OwlSpeak gener-
ates dialogue descriptions (e.g., in VoiceXML) on the fly
depending on the current context. Here context refers to the
status of the ATRACO system and thus to the status of the
IE with respect to the current user task (i.e., when relax-
ing, studying, cooking, etc.) and to the input of the user.
The SDM utilises ontologies as multi-domain dialogue de-
scriptions for specific devices, services, or for information
retrieval. It combines these descriptions during run-time
into a multi-purpose spoken dialogue interface.
In (Heinroth et al., 2010) we presented details about
the model-based OwlSpeak SDM. Model-based ap-
proaches towards SDM yield considerable advantages
as they clearly separate domain-dependent and domain-
independent knowledge. Such a separation offers many
adaptation capabilities, and, due to the predefined mod-
els, also provides robust dialogues. Compared to statistical
approaches (e.g., (Young, 2007)) where costly corpora in-
corporating all contingencies are mandatory, the OwlSpeak
SDM is able to render the dialogue context dynamically in-
cluding the required dialogue aspects on the fly. However,
the followed approach lacks in its capacities when it comes
to unforeseen situations that are not described appropriately
within the pre-defined models. How can a more flexible
and therefore adaptive behaviour of the model-based SDM
be obtained in order to achieve an intuitive spoken inter-

face? In this paper we present several methods that may
be used to exploit a dialogue model more intelligently. We
also show how semantic data may enrich the model during
run-time by querying a lexical-semantic net (GermaNet, see
(Hamp and Feldweg, 1997)).
The following section provides an overview on related
work. In Section 3 we provide some insights into the re-
sults of a real-life ATRACO project evaluation that moti-
vated our work. In Section 4 we provide details on the im-
plemented prototype and show how the SDM benefits from
the different methods. The setup of the evaluation is de-
scribed in Section 5. Section 6 provides the results of the
evaluation that has been carried out. The paper concludes
and provides an outlook on future work in the last section.

2. Related Work
Established SDSs that, for example, have been imple-
mented by means of frameworks such as TrindiKit (Lars-
son and Traum, 2000) or Olympus (Bohus et al., 2007)
have demonstrated a high performance within specific (pre-
defined) domains such as bus line information or flight
booking. However, when it comes to real-life spoken inter-
action within likely changing domains that evolve or even
may be substituted by other domains, it seems to be prob-
lematic to utilize these heavy-weight approaches appropri-
ately. Furthermore, when it comes to intuitive dialogue sit-
uations nowadays SDSs show severe limitations.
Since speech is not a “crisp” communication channel diffi-
culties arise when a computer interprets spoken user input
(McTear et al., 2005). Such difficulties can usually be as-
cribed to misinterpretations caused by the recognizer, for
example, when it is not possible to map an audio signal to
a word that is part of the applied grammar. We use the term
grammar for a formal definition of the input provided by
the recognizer. This definition can be correlated with se-
mantic meanings that in turn can be evaluated by the SDM.
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One way of deciding if an audio signal can be mapped to the
grammar is to calculate a confidence measure (Jiang, 2005).
To detect if a successful mapping can be assumed, a prede-
fined threshold has to be exceeded. We talk about a non-
understanding if an input cannot successfully be mapped to
a term defined as part of the grammar. In contrast, and in-
dependent from a contextual and semantic correctness, the
successful mapping of an input to a term is referred to as un-
derstanding. Obviously, it makes sense to avoid the occur-
rence of non-understandings. However, solving this issue
by implementing huge grammars that cover nearly all pos-
sible inputs would not be beneficial as this inevitably leads
to more misunderstandings (i.e., false positives). In such
a case the user would need to proactively correct the input
and repair the dialogue, which is costly and cognitively de-
manding. In that sense, a non-understanding would even
be beneficial since it allows the system to query the user to
confirm an input that could not be understood at the first at-
tempt. Thus the size of the grammar is a trade-off between
understanding too few or too much input.
As for many other applications the key is to steer a mid-
dle course. One option is to step-wise broaden the gram-
mar during a second or third process of recognition (Chung
et al., 2004). Herewith the grammar can be extended de-
pending on the context. This approach is relevant to our
work since the ontologies used in OwlSpeak as spoken di-
alogue models are perfectly suited to be extended during
runtime. A further interesting approach that is relevant to
our work is a methodology called ISSS (Incremental Sig-
nificant utterance-Sequence Search). It follows the idea of
analysing an input step-by-step without initially knowing
the whole input (Nakano et al., 1999). The authors tried to
recognise the input on a word-by-word basis and built up
a knowledgebase consisting of several possible input vari-
ations. This knowledgebase is actualised for each newly
recognised word. Once an end of the input has been de-
tected the most appropriate system reaction is selected and
provided to the user.
A further approach has been proposed in the recent past:
a second level of recognition (López-Cózar and Callejas,
2006). Here the first level comprises of a comprehensive
grammar covering all possible inputs the user may utter
within the application domain. The first recognition level
provides a graph of words. This graph is a network consti-
tuted of words (corresponding to the nodes) and probability
transitions between the words (corresponding to the arcs).
The second level of recognition comprises an analysis of
the graph of words. Three parameters are important for the
analysis: a set of word classes (consisting of keywords),
the current prompt the SDS uttered before, and the transi-
tion probabilities. The authors showed that their approach
significantly enhanced the recognition accuracy compared
to a similar SDS that utilises a prompt-dependent grammar.
A limitation of the proposed technique is that the recogni-
tion enhancement does not involve the decision logic of the
SDM. This means, for example, that the system is not able
to filter out utterances that do not have a (semantic) mean-
ing within the domain. The approach is relevant to our work
since we apply a second level of recognition as well. In the
following section we present the motivation of our work.

3. Motivation
In order to cope with an evolving dialogue domain the
OwlSpeak SDM proposes a flexible handling of differ-
ent dialogue domains. We have designed several light-
weight ontologies that are utilised as dialogue models.
These ontologies can be activated, deactivated, and most
notably combined with each other during run-time (i.e.,
during the ongoing dialogue). Hence the system is able
to adapt to changing domains that especially occur within
IEs. However, initial real-life studies within the frame-
work of ATRACO revealed a main lack of the model-
based approach towards SDM: Even the most sophisticated
predefined model cannot cover all contingencies. Figure
1 shows the number of non-understandings that occurred
during three comprehensive evaluation sessions conducted
with six test persons. Each session took between 22 and 60
minutes.
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Figure 1: The number of understandings, non-
understandings, and unrelated utterances (van Helvert
et al., 2010).

In order to make the numbers comparable we have nor-
malised them to 30 minutes. It seems to be obvious that
we received a high number of non-understandings on aver-
age. In total 212 non-understandings and 252 understand-
ings have been recorded. Furthermore the system detected
162 unrelated utterances that the system rejected correctly.
Even though these numbers are quite sobering, the system
has to be robust against interjecting utterances (e.g., “Oh,
my god”) since we applied an “always listening” setup. The
main challenge is to find ways to utilise the spoken dialogue
models describing a specific domain in order to properly re-
act on non-understandings. In case the user input does not
match any of the grammatical expressions that are prede-
fined as part of the dialogue model, the system should be
able to detect the most probable command.
Thus, in this paper we present our attempt to overcome the
drawbacks of the approach while keeping the benefits that
have been discussed in (Heinroth and Denich, 2011). In the
following we propose three approaches that lead to fewer
non-understandings without increasing the number of mis-
understandings. As explained in the introduction the Owl-
Speak SDM uses on-the-fly generated VoiceXML Docu-
ments to describe a currently active dialogue. These di-
alogues are newly generated every three to five seconds,
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depending on the setup of the SDM. It is not possible to
manipulate a grammar of a VoiceXML document while the
interpreter parses the document. This is the main reason
why we propose a nested analysis of the user input after the
grammar has failed (Rohlicek et al., 1989).
OwlSpeak uses a set of ontologies for various domains as
dialogue models. Usually a dedicated ontology per device
or service is implemented. We have extended these ontolo-
gies by a set of keywords that can be used to detect the
actual domain (i.e., the topic of the user input). Thus, an
ontology that describes the possible (spoken) commands
that can be used to control, for example, a lamp as part
of an IE, could provide keywords such as “light”, “lamp”,
“shiner”, and “luminary”. These can then be used by the
nested recogniser to find out to which domain the utterance
may belong to. After the system has detected to which
ontology the utterance possibly refers to, a second analy-
sis is started by utilising keywords that are specific for a
concrete command within the detected domain. Regarding
the previous example such keywords could be “on”, “off”,
“bright”, or “low”. If this analysis concludes with a valid
result, i.e., “domain=light” and “command=low” the SDM
generates a confirmation dialogue and asks the user if he
wants the light to be low. This could be answered by “yes”
or “no”. On the one hand this procedure avoids a second
user input that could result in a non-understanding again.
On the other hand the system does not end up performing
the wrong command automatically because of a mislead-
ing combination of keywords. In the following we call this
approach keyword-based.
An alternative mode of recognition does not make use of a
fixed (limited) grammar but of an extensive dictionary. We
refer to this as out-of-vocabulary recognition (OOV). As
a result the system would receive, for example, an n-best
list of results from the recognizer (cf. Listing 1). Obvi-
ously, due to the lack of a grammar, this can easily lead to
confusion. There is, for example, a high probability that
two similar-sounding words, such as “house” and “mouse”
may be mistaken. A way to grasp the user’s intention is
to determine the underlying semantic meaning of the ut-
terance. This could be done by a string-based comparison
between the n-best list and the words listed in the gram-
mar (which has not led to an understanding before). How-
ever, this would lead to a significant number of mistakenly
detected non-understandings. In other words, if the gram-
mar lists the word “light” an OOV recognition would pro-
vide an n-best list containing {might, flight, right,. . .}. The
SDM would still (after the second analysis) only be able
to emit a non-understanding. Obviously, especially homo-
phones are problematic within this context. To encounter
this, we propose to blur the grammar by adopting the Lev-
enshtein distance (Levenshtein, 1966). It is described as
the minimal number of insertions, deletions, or substitu-
tions of characters needed to transform one string into an-
other. In order to detect homophones that have erroneously
been recognized the Levenshtein distance of the recognized
word and the words that are part of the grammar can be cal-
culated pair-wise. For the German language a distance of
one would be sufficient. For the English language there are
several homophones with a higher distance (e.g., “colonel”

and “kernel”), which would admittedly lead to more con-
fusions. Thus we propose to adopt a low distance in order
to benefit from the blurred grammar without producing too
many misunderstandings. In the following we refer to this
approach as blurred-keyword.

1 <?xml version="1.0" encoding="utf-8"?>
2 <results>
3 <result confidence=0,21>
4 Aber Fernseher aus</result>
5 <result confidence=0,21>
6 aber Fernseher aus</result>
7 <result confidence=0,17>
8 Aber Fernsehen aus</result>
9 <result confidence=0,19>

10 aber Fernsehen aus</result>
11 <result confidence=0,18>
12 warum aber Fernsehr aus</result>
13 <result confidence=0,17>
14 aber fern der aus</result>
15 <result confidence=0,16>
16 aber fern sehr aus</result>
17 <result confidence=0,20>
18 am Anfang sehr aus</result>
19 <result confidence=0,168>
20 aber wenn der aus</result>
21 <result confidence=0,17>
22 Amor Fernseher aus</result>
23 </results>

Listing 1: The n-best list provided by the OOV recogniser.

A further attempt that utilises OOV recognition is the se-
mantic interpretation of the user input. A dialogue model
for handling a greeting situation may provide “hello”,
“good morning” or other greeting forms. However, if a
specific greeting form such as “hi” is not covered by the
grammar (note that we utilise a minimal grammar in order
to reduce overlapping grammars and misunderstandings),
the system will not be able to react appropriately. Thus,
we propose to figure out the semantic meaning of “hi”,
which can then be mapped on the semantic value “salu-
tation”. This value is encoded within the dialogue model
to be the semantic meaning of, for example, “hello”. We
utilise GermaNet, a German lexical-semantic dictionary as
an external semantic knowledgebase (Hamp and Feldweg,
1997). GermaNet provides relations to detect synonyms,
hyponyms, and hypernyms. The proposed mechanism may
also be used to dynamically broaden the grammar of the
dialogue model and thereby extend the model during run-
time. We refer to this method as semantic-keyword. In the
following we present the implementation of the three meth-
ods before we present the results of the evaluation.

4. Implementation
The presented work has been implemented as part of the
OwlSpeak SDM framework. The aim is to enhance the
recognition capabilities. We have modified the genera-
tion of the VoiceXML documents to allow a transfer of
the recorded user utterance to an external recognizer (af-
ter a non-understanding occurs). For that purpose we
use the Microsoft Speech API (MS SAPI). The API al-
lows to use a grammar (i.e., a list of keywords) or to per-
form an OOV recognition based on the MS SAPI language
model. The transfer of the user utterance to the recognizer
is performed by the built-in VoiceXML variable “applica-
tion.lastresult$.recording”, which is then passed as a wav-
file to the external recogniser. If the input can be success-
fully analysed, the result is passed back to the OwlSpeak
SDM. It reacts appropriately by modifying the dialogue
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model and generating a new VoiceXML document. Fig-
ure 2 shows a flow-diagram of the keyword-based approach
that detects key utterances that are related to a specific dia-
logue model. The approach allows, for example, if the sys-
tem fails in recognizing a user input such as “lights *back-
ground noise* on” in the first attempt, to correctly detect
“lights on”. For this purpose the system detects “lights”,
which is provided as an ontology keyword by the domain-
specific dialogue model (Figure 2-1). Afterwards a list of
command-keywords for the specific domain is used to de-
tect the word “on” (Figure 2-2). Upon successful process-
ing, a confirmation dialogue is automatically generated and
the dialogue can proceed. If the system does not detect a
matching input a third recognition is performed using the
command-keywords of the last dialogue that was actually
involved within the interaction (Figure 2-3).
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Figure 2: Flow-diagram of the keyword-based approach.

Figure 3 depicts the blurred-keyword approach using the
Levenshtein-Distance. In case of a non-understanding de-
tected by the regular recognizer, the system performs OOV
recognition to be able to understand the user input. The
result, an n-best list, is used to pair-wise calculate the Lev-
enshtein distance for the same keywords we have already
utilised as part of the keyword-based approach. During
a first step (Figure 3-1) the domain related keywords are
used. Usually German homophones have a maximum Lev-
enshtein distance of one. Hence we accept a distance that
is lower than two to indicate an understanding. During a
second step (Figure 3-2) this calculation is repeated utilis-
ing the command-specific keywords. In case of a further
understanding we continue with a confirmation dialogue.
Analogously to the keyword-based approach we perform a
third analysis of the user input by calculating the distance
of the n-best list and the command-related keywords of the
last ontology that has been involved in dialogue generation
(Figure 3-3). The default behaviour of the system is in-
voked in case the distance of this last analysis is greater or
equal two: the system repeats the last prompt (if a question
has to be answered) or it behaves passively.
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Figure 3: Flow-diagram of the blurred-keyword approach.

An entirely different problem is a corresponding input us-
ing words that are not covered by the grammar and there-
fore cannot be detected by neither the blurred-keyword nor
the keyword-based approach. Figure 4 shows the semantic-
keyword approach incorporating a semantic knowledge-
base to analyse the user’s intention.
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Figure 4: Flow-diagram of the semantic-keyword ap-
proach.
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After the regular recognizer detects a non-understanding,
the n-best list provided by the OOV recognition is semanti-
cally analysed using the GermaNet API (Figure 4-1). The
system uses the hyponyms of all ontology keywords and
pair-wise compares them in order to find semantic similar-
ities. As mentioned above, all ontologies provide domain-
related keywords. In other words, the system would de-
tect “lamp” or “torchiere” for the ontology keyword “ceil-
ing light”. In case of a positive match the system checks
if any command-related keywords occur within the corre-
sponding entry of the n-best list (Figure 4-2). In case of a
non-understanding, the system proceeds with the dialogue
and ignores the last user input. The subsequent compar-
ison is processed analogously to the keyword-based ap-
proach (Figure 4-3). For these two steps we have disre-
garded from an optional comparison based on hyponyms
since GermaNet does not provide verbs and only a few ad-
verbs. In case of a positive match the system asks the user
to verify the utterance. If the user confirms, the SDM is
able to carry out the command or to process the new infor-
mation.
We assume that the model-based OwlSpeak SDM benefits
most from our approach when it comes to spontaneous and
intuitive user-system communication. A realistic use-case
for our system would be a command-based SDS used by
non-experts. Such a use-case requires an intuitive handling
of the voice interface. In the following section we focus on
the setup of the evaluation before we present the results of
the test series that has been carried out in order to proof the
capabilities of our system.

5. Evaluation Setup
For the evaluation we decided to implement a scenario re-
lated to home automation. Figure 5 shows the virtual room
that provided a visual feedback for the commands the sub-
jects had to utter intuitively. Since fostering the intuitive-
ness of the OwlSpeak-based SDS was a main motivation
of our approaches, we did not reveal the subjects the com-
mands the SDS is actually able to understand. Thereby
all subjects were forced to control the virtual environment
as they personally assumed. The OwlSpeak system deliv-
ered minimal grammars for the six devices within the en-
vironment. Of course, if a user is aware of the possible
commands the SDS works appropriately with these gram-
mars. However, this is not what we intended to evaluate.
Instead the main aim was to evaluate how users intuitively
cope with such a system. As depicted in Figure 5, a ven-
tilator, a TV, a stereo, the heating, a jalousie, and a lamp
could be controlled. The subjects may use commands such
as “Switch the light on!” or “Volume up”. These com-
mands were part of the original ontologies describing the
dialogues. For the evaluation we have enriched these di-
alogue models with keywords for all domains and for the
corresponding commands. For the stereo domain we in-
troduced keywords such as “audio equipment”, “hi-fi”, or
“music”. The SDS that has been used consists of the Owl-
Speak SDM, a Voxeo Prophecy 10 speech platform, a Lo-
quendo Speech Suite 7 (including TTS, ASR, and MRCP),
a SIP-Client (Linphone), and the Microsoft Speech API
(grammar-based + OOV) utilised as external recogniser.

Figure 5: Virtual room used to visualise the test-bed.

The virtual room provided visual feedback encoded by us-
ing the colours red, blue, and green. Deactivated devices
are coloured red, activated devices are coloured green, and
blue devices are currently changing their state, e.g., the vol-
ume of the device changes. The explanation of the virtual
room was part of the short introduction the subjects re-
ceived. The subjects’ goal was simple and comprehensive
in unison: They have been told to control the environment.
40 subjects took part of the evaluation: 30 male and ten fe-
male users. In order to get an idea of the subjective user
estimation the subjects had to fill in a tailored SASSI ques-
tionnaire (Hone and Graham, 2000) on a scale from zero
(strongly disagree) to seven (strongly agree) regarding the
following measures:

EFF: Efficiency shows how efficient the system is, i.e.,
how well the dialogue flow can be followed by the
user.

REL: Reliability shows how reliable the system is regard-
ing to mistakes and understanding problems.

FRI: Friendliness describes how user-friendly the system
is and how pleasant it is for the subject to interact with
the system.

All test persons were at least fluent German speakers and
the system therefore was implemented as a German SDS.
In order to allow a comparison of the three recognition en-
hancements with the baseline system we divided the 40 sub-
jects into four groups each consisting of 10 people. Each
group had to use the virtual test-bed by freely controlling
the various devices. We terminated a test run after approx-
imately 22 commands depending on the duration (15 min-
utes). In total 900 spoken commands have been recorded.
The most important objective metrics we have investigated
are the number of understandings, non-understandings, and
misunderstandings. Given a pure command-and-control
system, metrics such as task-completion or dialogue suc-
cess rate are less relevant. In order to avoid misunderstand-
ings that may occur, we have implemented a confirmation
dialogue that is initiated whenever one of our enhancements
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detects a spoken command that has not been covered by the
grammar. An example of such an automatically generated
dialogue is presented in Table 1. In the following section
we present the subjective and the objective results of the
evaluation and investigate how the results influence our re-
search.

Utterance Reaction
User Please, the TV, could

you switch it on?
-

System - [Keyword1 = TV]
[Keyword2 = on]

System Do you want to switch
the TV on?

-

User Yes. -

Table 1: A confirmation dialogue the system generates au-
tomatically.

6. Evaluation Results
Figure 6 shows the subjective user estimations for all
groups on average. The approaches are measured neutrally
(4) with slight deviations. The average values show a ten-
dency that Group B who used the keyword-based approach
rated the system worse than the subjects of all other groups.
Regarding EFF (efficiency) and REL (reliability) these dif-
ferences are significant. The Kruskal-Wallis Test calculates
a P value below 0.05 for both measures.
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Figure 6: The subjective results of the questionnaire on av-
erage together with the standard deviation.

The results indicate that regarding EFF and REL the
semantic-keyword approach outperforms the other meth-
ods. Regarding the subjective estimation of user-
friendliness we did not receive a comparable significant
result. The last subjective measure (ALL) gives an in-
dication of the overall system estimation. This group of
bars summarises the subjective rating for all users: The
keyword-based approach was rated worst, the baseline and
the blurred-keyword approach were rated neutrally, and the
semantic-keyword approach is rated best. Again, these re-
sults are significant: The Kruskal-Wallis Test calculates
an exact significance of P = 0.04. During an initial test
phase 10 subjects used the system without any enhance-
ments (Group A). In the following this session is regarded

as baseline. In total, the Group A users uttered 223 com-
mands. Only 68 commands (31%) were correctly under-
stood by the system. Of course, this bad result was ex-
pected and conditioned by the setup of the evaluation: the
users had to intuitively use the spoken command system.
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Figure 7: The average numbers and the percentages of un-
derstandings and non-understandings that occurred during
the Group A session.

The grammar covered 33% of the spoken input during the
keyword-based session, 26% during the blurred-keyword
test run, and 30% during the evaluation of the semantic-
keyword session. These numbers underpin that even a sim-
ple spoken command-and-control system cannot to be in-
tuitively used. Figure 8 shows the objective results of the
keyword-based approach. In total 219 utterances have been
recorded. 73 (33%) of these utterances have been covered
by the grammar. The additional keyword-spotter correctly
detected 83 (37%) utterances.
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Figure 8: The average numbers and the percentages of un-
derstandings, non-understandings, and misunderstandings
that occurred during the Group B session.

Hence, the system was able to understand 70% of all intu-
itively uttered commands. However, we also received 32
(15%) non-understandings and 31 (15%) misunderstand-
ings in total. The misunderstandings were the main rea-
son for the bad subjective rating of the keyword-based ap-
proach. Compared to the baseline approach the improve-
ment is significant. The Mann-Whitney U-Test shows a P
value of 0.008 disproving the hypothesis that the two results
are statistically equal. However, this improvement strongly
depends on the quality of the pre-defined keywords. For a
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scaled-up version of the system we assume that the task of
selecting appropriate keywords is nothing but trivial. Fig-
ure 9 shows the results of the blurred-keyword approach.
221 commands have been recorded during this evaluation
session. Only 26% of these utterances have been covered
by the built-in grammar. The blurred-keywords improved
this rate by 51% eventuating in a total recognition rate
of 77% (163 correctly understood commands). A differ-
ence between the keyword-based approach and the blurred-
keyword setup was the usage of OOV recognition. We sup-
pose this kind of recognition avoided the occurrence of mis-
understandings. Hence, we believe in a scaled up scenario
the blurred-keyword approach may be beneficial due to the
higher user input coverage of the blurred keywords. Com-
pared to the baseline approach the blurred-keywords im-
proved the understanding rate by 46%. Again, the U-Test
shows a very low P value of 0.004 underpinning the signif-
icance of the improvement.
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Figure 9: The average numbers and the percentages of un-
derstandings and non-understandings that occurred during
the Group C session.

Figure 10 depicts the results of the semantic-keyword ap-
proach. During this test run the grammar covered 30%
of the 237 commands that have been spotted. The combi-
nation of the semantic-lexical knowledgebase and the pre-
defined keywords led to 123 additional utterances that were
correctly recognised (52%). Especially within a larger dia-
logue domain we estimate the usage of the OOV recogniser
and the dynamic extension of keywords to be beneficial.
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Figure 10: The average numbers and the percentages of un-
derstandings and non-understandings that occurred during
the Group D session.

The better rating of the semantic-keyword approach regard-
ing the user-friendliness also indicates that the subjects felt
more comfortable since GermaNet allowed a broader usage
of terms leading to a more natural behaviour in practice.
This benefit is important especially with respect to collo-
quial utterances, e.g., “box” for television set. As with the
previous session the U-Test shows a very low P value of
0.002. This underpins the significance of the improvement
between the grammar-based recognition and the semantic-
keyword approach.
Such naming of devices that should be controlled via voice
rarely occurs. However, a system able to understand this
naming is perceived to be more natural, which in this case
relates to more user-friendliness. Table 2 shows the naming
of the six devices the subjects used in German.

Stereoanlage (stereo) 64 Fernseher (telly) 141
Musik 51 TV 6
Radio 41 Fernseh 6
Anlage 11 Fernsehgerät 4
Musikanlage 4 TV-Gerät 3
Radioreceiver 2 Fernsehen 1
Lautsprecher 1 Glotze 1
Audioanlage 1
CD-Player 1
Radiolautsprecher 1
Jalousie (sun-blinds) 62 Licht (lights) 91
Rolladen 58 Lampe 56
Rollo 25 Stehlampe 12
Vorhang 1 Leuchte 2
Fenster 1 Stehleuchte 1
Ventilator (fan) 88 Heizung (heating) 139
Lüfter 9 Heizkörper 8
Gebläse 2 Radiator 3
Lüftung 1 Wärmequelle 1

Table 2: The naming of the devices the subjects used and
the frequency the subjects used them.

Obviously, the most common identifiers (marked as bold
with their English translation) are most frequently used.
However, several uncommon names have rarely been used
(e.g., “Audioanlage” for the English word “stereo”). It
would be hard to develop a grammar that covers such a
variety of names for a higher number of devices and ser-
vices. A further problem of large grammars is their main-
tenance. A main criterion how to choose the various com-
mands a large-scale grammar consists of, is that the utter-
ances should not sound similar in order to avoid misunder-
standings. Lightweight grammars can fulfil this important
requirement due to their lower complexity. In the following
section we summarise the approach and draw some conclu-
sions before taking a look at future work.

7. Conclusion
In this paper we have presented three approaches that have
been implemented in order to enhance the understanding
capabilities of an OwlSpeak-based SDS. On the one hand
the presented approaches avoid the necessity of commands
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to be repeated by the user. On the other hand they avoid
misunderstandings by generating confirmative questions.
By using keywords and the segmentation of the input it
is possible to understand the intention of the user without
comprehending the whole utterance.
We have integrated keywords on the domain level and on
the command level. These keywords can be utilised by
the system to analyse a user utterance in case the built-
in lightweight grammars fail matching the spoken input.
During the evaluation within the IE domain the simple
keyword-based approach showed good results. However,
as indicated by the subjective user estimation, a main draw-
back of this approach was that several misunderstandings
occurred. These are very disruptive to SDSs. Within a
larger domain we assume that such a keyword-based ap-
proach would perform worse since the method strongly de-
pends on the quality of the pre-defined keywords. Thus we
have proposed two more intelligent ways of handling non-
understandings that usually arise during a spoken dialogue.
The blurred-keyword approach utilises an OOV recognizer
and analyses the utterance by comparing the recognised n-
best list with the keywords. The approach matches within
a specific Levenshtein distance. The approach runs without
any misunderstandings and performs slightly better than the
keyword-based method.
Due to the capabilities of the OOV recogniser the blurred-
keywords cover more variations of the pre-defined key-
words, thus making the approach more flexible. How-
ever, the third method, the semantic-keyword approach,
performs better. The subjects also indicated the semantic-
keyword detection to be the most user-friendly one. By util-
ising the GermaNet semantic-lexical knowledgebase and
OOV recognition it outperforms the keyword-based ap-
proach regarding the number of positive matches. Hence
we assume this approach to be the most suitable extension
for model-based SDS. We estimate that it would achieve
similar results within larger domains with more commands
and more keywords. The OOV recognition combined
with the semantic knowledgebase is capable to adaptively
provide a meaningful basis for the recognition especially
within situations where users intuitively interact with an
SDS. In the future we are planning to conduct a further
test session with expert users who are aware of the com-
mands the baseline system is able to understand. We as-
sume that even expert users will only slightly outperform
the intuitively used semantic-keyword approach.
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