
Polaris: Lymba’s Semantic Parser

Dan Moldovan and Eduardo Blanco

Lymba Corporation

Richardson, TX 75080 USA

{moldovan,eduardo}@lymba.com

Abstract

Semantic representation of text is key to text understanding and reasoning. In this paper, we present Polaris, Lymba’s semantic

parser. Polaris is a supervised semantic parser that given text extracts semantic relations. It extracts relations from a wide variety

of lexico-syntactic patterns, including verb-argument structures, noun compounds and others. The output can be provided in several

formats: XML, RDF triples, logic forms or plain text, facilitating interoperability with other tools. Polaris is implemented using eight

separate modules. Each module is explained and a detailed example of processing using a sample sentence is provided. Overall results

using a benchmark are discussed. Per module performance, including errors made and pruned by each module are also analyzed.

Keywords: Semantic relations, semantic parser, semantic representation of text

1. Introduction

Extracting semantic relations from text is an important step

towards understanding the meaning of text. Broadly speak-

ing, a semantic relation is a directional connection between

two concepts. For example, in the sentence John and Mary

bought a brand new BMW convertible last year, John and

Mary are the AGENT of bought, convertible the THEME and

last year the TIME of bought. In addition to these verb-

argument relations, there are more relations: BMW MAKES

convertibles and the convertible has VALUE brand new.

Semantic parsers are tools that extract meaning from text.

The means to do so include semantic relations like in the

above example, extensions to first order logic (Poon and

Domingos, 2009), logical forms (Allen et al., 2008), and

other formal representations (Bos, 2008). Semantic relation

extraction has received considerable attention, including

numerous competitions with dozens of participants (Car-

reras and Màrquez, 2005; Diab et al., 2007; Màrquez et al.,

2007; Girju et al., 2007; Ruppenhofer et al., 2009; Hen-

drickx et al., 2009; Pustejovsky and Verhagen, 2009).

In this paper we present Polaris, a semantic parser that takes

free English text or parsed sentences and extracts a rich set

of semantic relations. Polaris extracts semantic relations

from a wide variety of lexico-syntactic patterns (Section

3), not only verb-argument structures like semantic role

labelers do. Polaris will be freely available for research

purposes1 and can provide its output in several formats:

XML, RDF triples, logic forms or plain text. Polaris is

also commercially available and it is at the core of many

software products developed at Lymba: question answer-

ing system (Moldovan et al., 2010), entailment recognition

(Tatu and Moldovan, 2005), ontology creation (Balakrishna

et al., 2010), etc.

Whereas syntactic parsers have matured during the last

decade, the progress in semantic parsers has been more

modest mainly due to the complexity of the problem. Role

labelers extract only relations between a verb and its ar-

guments, however SemEval tasks have focused on rela-

tions between nominals. Working with semantics is harder

1http://www.lymba.com

than some other NLP tasks mainly because: (1) there is no

agreement on the set of relations to extract; (2) relations are

often poorly defined (a sentence and a couple of examples);

and (3) relations can be encoded between a wide variety of

arguments and syntactic patterns.

Polaris extracts semantic relations that are easily trans-

formed into RDF triples, a standard for knowledge repre-

sentation proposed by W3C and recommended for knowl-

edge interchange within the semantic web. Its output can be

readily used with third party RDF management tools such

as Oracle 11g and RDF reasoners such as AllegroGraph.

2. Previous Work

There have been several proposals to extract semantic re-

lations from text. The public availability of large corpora

(e.g., PropBank, FrameNet) allows to reliably train super-

vised models. Supervised approaches typically focus on a

fixed set of semantic relations (AGENT, MANNER, etc.) and

consider relations between arguments fulfilling some con-

straints, e.g., forming a noun compound (Tratz and Hovy,

2010), being a verb and one of its syntactic arguments

(Gildea and Jurafsky, 2002), being an instance of a pattern

that usually encodes a particular relation (Girju, 2003).

Polaris is a comprehensive effort to extract relations from

text, blending previous efforts on relation extraction and

incorporating in-house annotations. Polaris is an unified,

self-contained and ready-to-use tool and it extracts more

relations than any other single tool available (Figure 1).

Our approach to representing text semantics contrasts with

first order logic and with work grounded on extensions of

first order logic (Poon and Domingos, 2009). We believe

that using a fixed set of dyadic relations is better suited for

automated reasoning than allowing an uncontrollable large

number of predicates with variable number of arguments.

A novelty of Polaris, that brings a significant improvement,

is its feature of imposing semantic restrictions on relations

arguments which in turn results in filtering out relations that

cannot exist between certain arguments. It is grounded on

an extended definition for semantic relations that specifies

semantic restrictions on the relation arguments.

66

The terrorists sent letter bombs a few years ago to newspaper offices in New York City and Washington, D.C., [. . .]

AGENT(sent, The terrorists) THEME(sent, letter bombs) IS-A(letter, letter bomb) IS-A(bomb, letter bomb) PUR-

POSE(letter bombs, bombs) TIME(sent, a few years ago) LOCATION(sent, to newspaper [. . .] D.C.) MAKE(offices,

newspaper) RECIPIENT(letter bombs, newspaper [. . .] D.C.) IS-A(offices, newspaper offices) LOCATION(newspaper

offices, New York City) LOCATION(newspaper offices, Washington) PART-WHOLE(D.C., Washington) LOCA-

TION(Washington, D.C.)

Figure 1: Example of thorough semantic representation Polaris extracts. Only four out of fifteen relations are semantic

roles, i.e., a semantic relation whose arguments correspond to a verb and one of its arguments.

Relation Example DOMAIN × RANGE

CAU CAUSE CAU(tsunami, earthquake) [si] × [si]
JST JUSTIFICATION JST(don’t smoke, it is forbidden) [si] × [si ∪ ntao]
IFL INFLUENCE IFL(poor grade, missing classes) [si] × [si]
INT INTENT INT(Mary, buy) [aco] × [si]
PRP PURPOSE PRP(garage, storage) [si ∪ co ∪ ntao] × [si ∪ ntao]
VAL VALUE VAL(car, blue) [o ∪ si] × [ql]
SRC SOURCE SRC(avocados,Mexican) [o] × [loc ∪ ql ∪ ntao ∪ ico]
AGT AGENT AGT(gave, John) [si] × [aco]
EXP EXPERIENCER EXP(felt, John) [si] × [o]
INS INSTRUMENT INS(broke, a hammer) [si] × [co ∪ ntao]
THM THEME THM(gave, flowers) [ev] × [o]
TPC TOPIC TPC(discuss, issue) [ev] × [o ∪ si]
STI STIMULUS STI(listen, train) [ev] × [o]
ASO ASSOCIATION ASO(phone, fax) [ent] × [ent]
KIN KINSHIP KIN(John, his cousin) [aco] × [aco]
ISA IS-A ISA(car, convertible) [o] × [o]
PW PART-WHOLE PW(car, engine) [o] × [o] ∪ [l] × [l] ∪ [t] × [t]
MAK MAKE MAK(BMW, cars) [co ∪ ntao] × [co ∪ ntao]]
POS POSSESSION POS(John, truck) [co] × [co]
MNR MANNER MNR(delivery, quick) [si] × [ql ∪ st ∪ ntao]
RCP RECIPIENT RCP(gave,Mary) [ev] × [co]
SYN SYNONYMY SYN(twelve, a dozen) [ent] × [ent]
LOC LOCATION LOC(gave, in the porch) [o ∪ si] × [loc]
TMP TIME TMP(gave, yesterday) [o ∪ si] × [tmp]
PRO PROPERTY PRO(John, height) [o ∪ si] × [ntao]
QNT QUANTIFICATION QNT(roses, a dozen) [o ∪ si] × [qn]

Table 1: Relation inventory used by Polaris. Domain and range restrictions are defined using the ontology presented in

Section 3.1.

3. Approach

Polaris aims at extracting semantic relations from a wide

variety of lexico-syntactic patterns, including verb argu-

ment structures (e.g., John runs fast : AGENT(runs, John),

MANNER(runs, fast)), nominals (e.g., door knob : PART-

WHOLE(door, door knob)), genitives (e.g., Mary’s house:

POSSESSION(Mary, house)), adjectival phrases (e.g., cat in

the tree: LOCATION(cat, the tree)), adjectival clauses (e.g.,

the man who killed Kennedy: AGENT(killed, the man)) and

others. Figure 1 shows a sample sentence and the semantic

relations found in it. We denote a semantic relation R hold-

ing between x and y R(x, y). R(x, y) means x has R y, e.g.,

AGENT(bought, John) means bought has AGENT John.

The relation set (Table 1) is fixed and was decided based

on inventories used by others (PropBank, FrameNet, Nom-

Bank, SemEval competitions) and our own annotations.

Some relations considered elsewhere are ignored since they

do not occur frequently enough in text and their automatic

extraction would not be feasible, e.g., ENTAILMENT.

Polaris uses an extended definition for semantic relations.

Whereas most relation inventories are defined using plain

English and some examples, Polaris incorporates semantic

restrictions on domains and ranges (i.e., what kind of con-

cepts can be the first and second argument). These restric-

tions are defined in Table 1 using a modified version (Sec-

tion 3.1) of an ontology first proposed by Helbig (2005).

Domain and range restrictions allow us to select plausi-

ble relations that may hold between any pair of concepts

(x, y) simply by enforcing that their semantic classes are

compatible with the relation definition. For example, DO-

MAIN(INTENT) is restricted to animate concrete objects,

thus, INTENT is not proposed for the argument pair (wind,

y) since an abstract object like wind cannot be the first ar-

gument of INTENT by definition.

67

Figure 2: The ontology of sorts and their acronyms.

3.1. Ontology of Sorts

In order to define domains and ranges for each relation,

we use a customized ontology of sorts (Figure 2) modified

from the one proposed by Helbig (2005). The root corre-

sponds to entities, which refers to all things about which

something can be said.

Objects can be either concrete or abstract. The former oc-

cupy space, are touchable and tangible. The latter are in-

tangible; they are somehow a product of human reasoning.

Concrete objects are further divided into animate or inani-

mate. The former have life, vigor or spirit (e.g., John); the

latter are dull, without life (e.g., table, pencil). Abstract ob-

jects are divided into temporal or non temporal. The first

corresponds to abstractions regarding points or periods of

time (e.g., July, last week); the second to any other abstrac-

tion (e.g., disease, justice). Some abstract objects can be

sensually perceived, e.g., pain, odor.

Situations are anything that happens at a time and place.

Simply put, if one can think of the time and location of

an entity, it is a situation. Events (e.g., go, grow) imply a

change in the status of other entities, states (e.g., standing

next to the door, account for 10% of sales) do not. Situa-

tions can be expressed by verbs (e.g., move, print) or nouns

(e.g., party, hurricane).

Descriptors complement entities by stating properties about

their spatial or temporal context. They are composed of

an optional non-content word signaling the local or tempo-

ral context and another entity. Local descriptors are further

composed of a concrete object or situation, e.g., [above]prep
[the roof]co; temporal descriptors by a temporal abstract ob-

ject or situation, e.g., [during]prep [the party]ev. The non-

content word signaling the local or temporal context is usu-

ally present, but not always, e.g., The [birthplace]ev of his

mother is [Ankara]loc.

Qualities represent characteristics that can be assigned to

entities. They can be quantifiable like tall and heavy, or

unquantifiable like difficult and sleepy. Quantities represent

quantitative characteristics of concepts, e.g., a few pounds.

4. Architecture

Polaris is implemented using eight modules. These mod-

ules form a pipeline and currently there are no feedbacks:

each module only feeds the next one.

1. Pre-processing. Tokenizer, POS tagger, named entity

recognizer, syntactic parser, word sense disambiguator

and co-reference resolution.

2. Bracketer. Parse tree is slightly modified to facilitate

argument detection.

3. Argument Detection. Argument pairs likely to en-

code a semantic relation are selected and assigned can-

didate relations based on lexico-syntactic patterns.

4. Domain and Range Filtering. Candidates assigned

to each argument pair are filtered based on the argu-

ments’ semantic classes and the extended definition of

each relation.

5. Grouping. Argument pairs are clustered into nine

generic syntactic patterns: V V, V N, V J, N V, N N,

N J, J V, J N, J J.

6. Feature Extraction. Different feature sets are ex-

tracted depending on the generic pattern.

7. Classifiers. SVM, Semantic Scattering (Moldovan

and Badulescu, 2005), Decision Trees and Naive

Bayes are used, both in a per-relation and per-pattern

approach. After combining the output of the classi-

fiers, each candidate of each argument pair is assigned

a confidence score.

8. Conflict Resolution. Classifiers’ output is resolved

and tuned to avoid conflicts. Final semantic represen-

tation is obtained.

Module 1 can be bypassed if the annotations have already

been extracted. The implementation allows the user to eas-

ily deactivate a module, retrain using only specific relations

(commonly, the less relations the more accurate), focus on

certain syntactic patterns and incorporate new annotations.

Below we give more details for each module. Figure 3 ex-

emplifies the output of each module for the input sentence

The two security guards are carrying automatic weapons.

Pre-processing is done with in-house tools that obtain state-

of-the-art performance. The bracketer is specially useful to

detect relations within a noun phrase. In Figure 3, the parser

creates a base NP (an NP without embedded NPs) for the

two security guards. After bracketing, two new NPs are

created (i.e., [the [two [security guards]NP]NP]NP), fa-

cilitating the extraction of argument pairs (security guards,

two) and (security guards, guards), since all arguments now

correspond to a single node in the parse tree.

Argument Detection is based on the lexico-syntactic pat-

terns seen during training. This step is key: in order to

68

Figure 3: Polaris modules and their output for the sample sentence The two security guards are carrying automatic weapons.

extract a relation R holding between two concepts, we must

first detect that the concepts are likely to encode any se-

mantic relation. This module uses two steps: unlabeled

and labeled argument detection. Unlabeled argument de-

tection extracts argument pairs likely to encode a relation,

and labeled argument detection assigns candidate relations

to the extracted argument pairs. Both tasks are done based

on counts over the training data.

Domain and range filtering is done in two phases. First,

argument pairs are assigned a semantic class from the on-

tology. Second, the candidate relations whose domain and

range are not compatible with the semantic classes of the

argument pair are discarded as candidates.

Assigning a semantic class from the ontology to an arbi-

trary piece of text is not a trivial task. First, the head word

of a potential argument is identified. Then, the head is

mapped into a semantic class from the ontology using three

sources of information: POS tags, WordNet hypernyms and

named entity (NE) types. We obtained rules that define the

mapping following a data-driven approach using a subset of

the available data. For this task, we do not use word senses

because in our experiments it did not bring any improve-

ment; all senses are considered for each word. Rules are of

the following form:

aco = neType=(human|organization|country

|town|province|other-loc)

|| (POStag=noun &&

((isHypo(entity.n.1) &&

!isHypo(thing.n.9,anticipation.n.4))

|| isHypo(social_group.n.1)))

Note that the above rule partially accounts for metonymy

resolution. NE types like organization and location

are mapped to animate concrete object even though

they can be so only when metonymy is used, e.g.,

[The White house]organization passed an important bill,

[Washington]location passed an important bill.

The next step is to group concept pairs into simplified syn-

tactic paths. These groups are defined by the category of

the argument head, V stands for verb, N for noun and J for

adjective. This allow us to extract features and create mod-

els specialized on each generic pattern.

Feature extraction considers standard features for semantic

relation extraction (syntactic path, first word, voice, etc), as

well as features that we have identified over time. The latter

include, among many others, the semantic class of modifier

noun, useful to detect relations within genitives (Moldovan

and Badulescu, 2005).

For each candidate of each argument pair, the classifiers

assign a confidence score ranging from 0 to 1. Finally, con-

69

Disabled Module(s) P R F

2: Bracketer 0.274 0.723 0.398

4: Domain and Range Filtering 0.230 0.710 0.354

8: Conflict Resolution 0.231 0.761 0.353

2 and 4 0.202 0.716 0.315

2 and 8 0.203 0.765 0.321

4 and 8 0.203 0.729 0.317

2, 4 and 8 0.182 0.745 0.293

None (all enabled) 0.321 0.731 0.446

Table 2: Overall performance disabling different combina-

tions of modules.

flict resolution combines the output of the classifiers and

creates the final semantic representation. Semantic rela-

tions with low confidence score are discaded and conflicts

resolved. In the example in Figure 3, conflict resolution

picks the candidate with highest confidence score for each

argument pair and no relations are discarded.

5. Results and Performance Analysis

Polaris uses as training corpora a mixture of publicly

available resources (FrameNet, PropBank NomBank and

SemEval competitions; their relations inventories were

mapped to our inventory) and annotations done at Lymba

over time. The latter include questions from several TREC

competitions and text sources relevant to past projects at

Lymba. Features are extracted manipulating the output of

automatic tools, i.e., features in training potentially contain

the same kind of errors found when using Polaris in a real

application.

For testing purposes, we have fully annotated a benchmark

that contains text outside the domain of the training data.

This benchmark has been annotated without any sort of re-

striction on the kind of arguments that may encode a rela-

tion: any relation (from our inventory) holding between any

two concepts is considered. This is a significant step to-

wards realistic evaluation of semantic parsers: the parser’s

output is tested against a gold benchmark containing re-

lations between concepts that were simply ignored dur-

ing training. As a result, unlike evaluations of other tools

for relation extraction, we evaluate Polaris against a much

tougher benchmark.

5.1. Overall results

Table 2 provides overall results disabling different combi-

nations of modules. The best results are obtained when

all modules are enabled and the worst when the bracketer,

domain and range filtering, and conflict resolution are dis-

abled. It is worth noting that only disabling domain and

range filtering brings a decrease in f-measure of 0.092, and
disabling conflict resolution a decrease of 0.093. On the
other hand, disabling the bracketer brings a more moderate

decrease of 0.048. Disabling either the bracketer or do-
main and range filtering brings small losses in recall (0.008
and 0.021), but bigger losses in precision (0.047 and 0.091
respectively). In contrast, disabling conflict resolution im-

plies an increase of 0.030 in recall, but a decrease of 0.090
in precision, from 0.321 to 0.231. This is due to the nature
of the conflict resolution module: out of all relations pre-

Unlabeled argument detection

Correct #argpairs extracted corresponding to a re-

lation

Spurious #argpairs extracted not corresponding to a

relation

Missing #argpairs not extracted holding a relation

Generated #argpairs extracted

Labeled argument detection, domain and range fil-

tering

Correct #argpairs holding a relation and with the

right candidate assigned

Spurious #argpairs for which no relation holds and

candidates are assigned

Missing #argpairs which hold a relation and either

all assigned candidates are wrong or no

candidate is assigned

Generated #argpairs with at least one candidate as-

signed

Classifier

Correct #argpairs whose highest confidence candi-

date is the right relation

Spurious #argpairs for which no relation holds and

the highest confidence candidate is wrong

Missing #argpairs which hold a relation and either

the highest confidence candidate is wrong

or no candidate is predicted

Generated #argpairs with at least one candidate pre-

dicted

Conflict Resolution

Correct #relations correct

Spurious #relations whose arguments do not hold

any relation

Missing #relations whose arguments hold a differ-

ent relation plus valid relations whose ar-

guments are not assigned any relation.

Generated #relations outputted

Table 3: Performance measures per module.

dicted by the classifiers, it discards the ones that are incom-

patible with each other. Enabling conflict resolution suc-

cessfully increases precision at the cost of a small penalty

in recall (i.e., most relations discarded are not valid, but a

few are wrongly discarded).

5.2. Performance per module

In this section, we evaluate the overall performance after

each module (Table 4). This is useful to perform error anal-

ysis, since the number of errors made and fixed by each

module can be quantified. Performance at each module is

calculated using the measures detailed in Table 3. Out of

the eight modules (Section 4), it is only useful to calculate

performance per module after argument detection, domain

and range filtering, classifiers and conflict resolution: pre-

processing only uses external tools to annotate input text,

the bracketer modifies the parse tree but otherwise has no

effect, grouping deterministically clusters argument pairs

into the nine generic patterns and feature extraction only

extracts values for features to feed the classifier.

70

Unlabeled ArgDet Labeled ArgDet D / R Filtering Classifier Conflict Res.

Correct 3,579 2,986 2,861 2,727 2,619

Errors

Spurious 9,767 9,319 8,341 8,341 5,156
Missing 5 598 723 857 1,019
Total 9,772 9,917 9,064 9,198 6,175

Generated 13,348 12,873 11,807 11,807 8,160
Errors pruned n/a −145 853 −134 3,023
Annotated 3,584 3,584 3,584 3,584 3,584

Precision 0.268 0.232 0.242 0.231 0.321
Recall 0.999 0.833 0.798 0.761 0.731
F-measure 0.423 0.363 0.372 0.354 0.446

Table 4: Performance analysis per module.

Note that both labeled argument detection, and domain

and range filtering have the same definition for the per-

formance measures. This is because the latter module fil-

ters the candidates proposed by the former, but otherwise

output the same kind of information (argument pairs and

candidates). Also, note that it is not necessarily the case

that generated = correct + spurious. For example,

when evaluating labeled argument detection, an extracted

argument pair that holds a relation and to which all as-

signed candidates are wrong is counted as generated and

missing.

Errors are divided into spurious and missing. In general,

one can think of spurious errors as what was overgenerated

and missing errors as what was ignored; the specific defi-

nitions depend on the module we are evaluating (Table 3).

Errors pruned always refers to the difference in total errors

between the current and previous module, a positive num-

ber indicates that errors are pruned and a negative number

that errors are introduced. Precision, recall and f-measure

are always calculated as follows:

precision =
correct

generated

recall =
correct

annotated

f -measure =
2 × precision × recall

precision + recall

Unlabeled argument detection extracts most argument pairs

holding a relation (recall 0.999), but also a lot of pairs that

do not hold any relation (precision 0.268, approximately 3

out of 4 argument pairs extracted do not encode a relation).

Out of the 3,579 correct argument pairs extracted, labeled
argument detection assigns the right candidate for the pair

(along with other candidates) to 2,986 pairs. This is respon-
sible for a decrease in recall of 0.166, from 0.999 to 0.833.
Domain and range filtering discards candidates assigned

to argument pairs by discarding candidate relations whose

definition are not compatible with the arguments’ semantic

classes. This process reduces the number of argument pairs

generated from 12,873 to 11,807 (−1,066, if all candidates
are filtered out the argument pair is not counted as gener-

ated (Table 3)). This module is not perfect, for 125 pairs

the right candidate is discarded (LabeledArgDetcorrect =
2,986, DRFilteringcorrect = 2,861, 2,986 − 2,861 =

125). However, the vast majority of candidate relations dis-
carded do not hold and the module significantly improves

overall performance (Section 5.1).

Out of the 2,861 argument pairs with the correct candidate
selected after domain and range filtering, the classifiers pick

up the right candidate for 2,727 pairs. However, the major-
ity of argument pairs (8,341) at this point are spurious (i.e.,
they do not hold any relation and yet the classifiers assign

a relation to them), but the classifiers are unable to predict

that no relation holds between these pairs.

Finally, the vast majority of relations discarded by conflict

resolution are incorrect. This module decreases recall from

0.761 to 0.731 (−0.030), but the increase in precision from
0.231 to 0.321 (0.090) makes it very valuable. Overall,
conflict resolution reduces the total errors by 3,023. Note
that the spurious errors (relations correctly discarded) are

reduced by 3,185, but 162 missing errors are introduced
(relations wrongly discarded).

6. Discussion and Future Work

Polaris extracts relations from text and its output is pro-

vided in RDF, a standard for automatic reasoning and

knowledge interchange. It is used at Lymba for a variety of

real-world applications with high demand in industry, such

as ontology creation, advanced question answering from

heterogeneous sources of data, textual entailment recogni-

tion, and others. APIs have been developed to easily inter-

act with Polaris from other applications. Currently, Polaris

takes about 1 second to process 5 KB of free English text.

Some issues remain unsolved and several improvements are

scheduled. We plan to incorporate semantic primitives and

expect an improvement similar to the one brought by do-

main and range filtering. Incorporating primitives will fully

integrate our proposal for an extended definition of seman-

tic relations (Blanco and Moldovan, 2011).

Composing the relations provided by Polaris is another ad-

dition. Our framework for composing relations (Blanco and

Moldovan, 2011) will facilitate the extraction of relations

between concepts that are far away in a sentence which nor-

mally are not considered by a semantic parser, and we be-

lieve it will bring an improvement against the benchmark.

Finally, we also plan to add an extra module to customize

the relation inventory using inference axioms without mod-

ifying the current Polaris implementation.

71

7. References

James F. Allen, Mary Swift, and Will de Beaumont. 2008.

Deep Semantic Analysis of Text. In Johan Bos and

Rodolfo Delmonte, editors, Semantics in Text Process-

ing. STEP 2008 Conference Proceedings, volume 1 of

Research in Computational Semantics, pages 343–354.

College Publications.

Mithun Balakrishna, Dan Moldovan, Marta Tatu, and Mar-

ian Olteanu. 2010. Semi-Automatic Domain Ontology

Creation from Text Resources. In Proceedings of the

Seventh International Language Resources and Evalua-

tion (LREC’10).

Eduardo Blanco and Dan Moldovan. 2011. Unsupervised

Learning of Semantic Relation Composition. In Pro-

ceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Tech-

nologies (ACL-HLT 2011), Portland, OR, USA.

Johan Bos. 2008. Wide-Coverage Semantic Analysis with

Boxer. In Johan Bos and Rodolfo Delmonte, editors, Se-

mantics in Text Processing. STEP 2008 Conference Pro-

ceedings, volume 1 of Research in Computational Se-

mantics, pages 277–286. College Publications.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduction to

the CoNLL-2005 shared task: semantic role labeling. In

CONLL ’05: Proceedings of the Ninth Conference on

Computational Natural Language Learning, pages 152–

164, Morristown, NJ, USA. Association for Computa-

tional Linguistics.

Mona Diab, Musa Alkhalifa, Sabry ElKateb, Christiane

Fellbaum, Aous Mansouri, and Martha Palmer. 2007.

SemEval-2007 Task 18: Arabic Semantic Labeling. In

Proceedings of the Fourth International Workshop on

Semantic Evaluations (SemEval-2007), pages 93–98,

Prague, Czech Republic, June. Association for Compu-

tational Linguistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic La-

beling Of Semantic Roles. Computational Linguistics,

28:245–288.

Roxana Girju, Preslav Nakov, Vivi Nastase, Stan Szpakow-

icz, Peter Turney, and Deniz Yuret. 2007. SemEval-

2007 Task 04: Classification of Semantic Relations be-

tween Nominals. In Proceedings of the Fourth Inter-

national Workshop on Semantic Evaluations (SemEval-

2007), pages 13–18, Prague, Czech Republic, June. As-

sociation for Computational Linguistics.

Roxana Girju. 2003. Automatic Detection of Causal Re-

lations for Question Answering. In Proceedings of the

41st Annual Meeting of the Association for Computa-

tional Linguistics (ACL 2003), Workshop on ”Multilin-

gual Summarization and Question Answering - Machine

Learning and Beyond”.

Hermann Helbig. 2005. Knowledge Representation and

the Semantics of Natural Language. Springer, 1st edi-

tion.

Iris Hendrickx, Su N. Kim, Zornitsa Kozareva, Preslav

Nakov, Diarmuid, Sebastian Padó, Marco Pennac-

chiotti, Lorenza Romano, and Stan Szpakowicz. 2009.

SemEval-2010 Task 8: Multi-Way Classification of Se-

mantic Relations Between Pairs of Nominals. In Pro-

ceedings of the Workshop on Semantic Evaluations: Re-

cent Achievements and Future Directions (SEW-2009),

pages 94–99, Boulder, Colorado, June. Association for

Computational Linguistics.

Lluı́s Màrquez, Lluis Villarejo, M. A. Martı́, and Mariona

Taulé. 2007. SemEval-2007 Task 09: Multilevel Seman-

tic Annotation of Catalan and Spanish. In Proceedings of

the Fourth International Workshop on Semantic Evalua-

tions (SemEval-2007), pages 42–47, Prague, Czech Re-

public, June. Association for Computational Linguistics.

Dan Moldovan and Adriana Badulescu. 2005. A Seman-

tic Scattering Model for the Automatic Interpretation of

Genitives. In Proceedings of Human Language Technol-

ogy Conference and Conference on Empirical Methods

in Natural Language Processing, pages 891–898, Van-

couver, British Columbia, Canada, October. Association

for Computational Linguistics.

Dan Moldovan, Marta Tatu, and Christine Clark. 2010.

Role of Semantics in Question Answering. In Phillip

Sheu, Heather Yu, C. V. Ramamoorthy, Arvind K. Joshi,

and Lotfi A. Zadeh, editors, Semantic Computing. Wiley-

IEEE Press, May.

Hoifung Poon and Pedro Domingos. 2009. Unsupervised

Semantic Parsing. In Proceedings of the 2009 Confer-

ence on Empirical Methods in Natural Language Pro-

cessing, pages 1–10, Singapore, August. Association for

Computational Linguistics.

James Pustejovsky and Marc Verhagen. 2009. SemEval-

2010 Task 13: Evaluating Events, Time Expressions, and

Temporal Relations (TempEval-2). In Proceedings of

the Workshop on Semantic Evaluations: Recent Achieve-

ments and Future Directions (SEW-2009), pages 112–

116, Boulder, Colorado, June. Association for Compu-

tational Linguistics.

Josef Ruppenhofer, Caroline Sporleder, Roser Morante,

Collin Baker, and Martha Palmer. 2009. SemEval-2010

Task 10: Linking Events and Their Participants in Dis-

course. In Proceedings of the Workshop on Semantic

Evaluations: Recent Achievements and Future Direc-

tions (SEW-2009), pages 106–111, Boulder, Colorado,

June. Association for Computational Linguistics.

Marta Tatu and Dan Moldovan. 2005. A semantic ap-

proach to recognizing textual entailment. In HLT ’05:

Proceedings of the conference on Human Language

Technology and Empirical Methods in Natural Language

Processing, pages 371–378, Morristown, NJ, USA. As-

sociation for Computational Linguistics.

Stephen Tratz and Eduard Hovy. 2010. A Taxonomy,

Dataset, and Classifier for Automatic Noun Compound

Interpretation. In Proceedings of the 48th Annual Meet-

ing of the Association for Computational Linguistics,

pages 678–687, Uppsala, Sweden, July. Association for

Computational Linguistics.

72

