
A Survey of Text Mining Architectures
and the UIMA Standard

Mathias Bank†, Martin Schierle‡

†Pattern Science AG, 63579 Freigericht, Germany
‡Mercedes-Benz R&D North America, Palo Alto, USA

m.bank@cid.biz, martin.schierle@daimler.com

Abstract
With the rising amount of digitally available text, the need for efficient processing algorithms is growing fast. Although a lot of libraries
are commonly available, their modularity and interchangeability is very limited, therefore forcing a lot of reimplementations and
modifications not only in research areas but also in real world application scenarios. In recent years, different NLP frameworks have
been proposed to provide an efficient, robust and convenient architecture for information processing tasks. This paper will present an
overview over the most common approaches with their advantages and shortcomings, and will discuss them with respect to the first
standardized architecture – the Unstructured Information Management Architecture (UIMA).

Keywords: Language Engineering, NLP Architecture, UIMA

1. Introduction
With the rapid progress in technology and world wide
web usage the amount of textual data is growing steadily,
thereby carrying and concentrating more and more knowl-
edge. Luckily the development of Natural Language Pro-
cessing (NLP) methods is also progressing and offers today
a manifold functionality to annotate text, extract informa-
tion and build corpus based resources as for example used
for Information Retrieval. Toolboxes and libraries like the
ASV Toolbox1, the JULIE NLP Toolsuite2 or OpenNLP3

offer impressive methods and workflows for a convenient
usage. But the interchangeability of those modules and
their arbitrary composition to new workflows is not always
given. Therefore the development and application of appli-
cations is a time consuming task with lots of reimplemen-
tations and modifications not only for the scientific com-
munity but also for companies dealing with their urge for
information.
Today there are several linguistic processing architec-
tures freely available to solve this problem. We will
present, sketch and compare the architectures having had
the strongest impact on research in recent years, namely
TIPSTER (Grishman, 1996, chapter 1.0), Ellogon (Peta-
sis et al., 2002), GATE (Cunningham, 2000) (including
newest modifications (Cunningham et al., 2010)) and Heart
of Gold (Schäfer, 2006). With respect to scientific issues
we will focus on architectures which are well documented
and freely available. Furthermore we will focus on infras-
tructural capabilities rather than included libraries and GUI
tools (e.g. U-Compare4). These can always be supple-
mented and some of the architectures and frameworks are

1http://wortschatz.uni-leipzig.de/

˜cbiemann/software/toolbox/index.htm
2http://www.julielab.de/Resources/

Software/NLP_Tools.html
3http://opennlp.sourceforge.net
4http://u-compare.org/

evolving fast, so that every survey would be outdated soon.
The underlying infrastructural ideas and theories however
represent the current scientific state of the art in information
processing and show as well limitations as opportunities.
The discussed architectures are finally compared to UIMA
(Lally et al., 2009), the first official OASIS standard for Un-
structured Information Management Architectures, which
is realized in the Apache UIMA architecture. We will dis-
cuss specification shortcomings and provide possible alter-
natives to improve applicability and interoperability among
different software developers in the linguistic scenario. It
will be shown that UIMA can be seen as the most evolved
and comprehensive architecture available to the date of this
work – at least regarding the infrastructural capabilities and
neglecting the pure toolbox size. We encourage the scien-
tific community to extend the OASIS standard with linguis-
tic standards to support an improved interchange among re-
searchers which would increase code reusability and qual-
ity.

2. Language Engineering Architectures
In this section, we will present and sketch different archi-
tectures for information retrieval. Each one is analyzed to
which extent it can serve as a framework for information re-
trieval and how it can be used to create individual analysis
systems. Six different categories are analyzed specifically,
based on thoughts of (Cunningham, 2000):

1. Modularity and interchangeability: Modularity guar-
antees high quality and short development cycles. A
framework for information retrieval should encourage
to develop modular and independent modules dealing
with one special task only. It’s to the architecture to
provide communication interfaces to other resources
(processing resources and data resources).

2. Workflow management: Each specialized processing
resource must be arranged in a superordinated work-
flow. Depending on the analysis complexity, different

3479



types could be necessary: serial, parallel, conditional,
iterative, nested or even cascaded5 workflows. It is
analyzed, which types are supported and if the archi-
tecture supports analysis aware systems in which it is
necessary to change workflows, settings or resources
depending on prior analysis results, languages or do-
mains.

Only native architecture support for standardized
workflows is considered. We neglect programmatical
workflow control, although all presented architectures
allow to create individual and thus complex processing
units on code level.

3. Configuration management: Processing resources
should be configured by configuration parameters to
guarantee reusable code. It is analyzed in which
way the architectures enforce the usage of outsourced
metadata and which possibilities are available to mod-
ify these parameters depending on the fulfilled work-
flow. In this context it is also analyzed, if configura-
tion parameters can be defined analysis aware which
means that the parameters can be defined in relation to
already extracted data.

4. Resource handling: Many processing resources re-
quire data resources (e.g. dictionaries) and corre-
sponding access structures in addition to parameter
settings. Shifting the resource management to the ar-
chitecture would enable complete domain independent
and thus reusable processing units. A formal specifi-
cation and restricted interfaces provided by the frame-
work improve parallelization, distribution and even
analysis aware behavior.

5. Parallelization and distribution: With the increasing
amount of unstructured data, it becomes more and
more important to provide an architecture that enables
parallelization and distribution. It is analyzed, if the
architectures provide methods for parallelization and
distribution and in which way they support processing
units in using these possibilities.

6. Annotation model: A typical Information Retrieval
toolchain enriches unstructured data with relevant in-
formations like part of speech tags. It is analyzed in
which way the architectures model and store the infor-
mation, and if efficient and convenient access struc-
tures exist. Typical questions are if annotations are
stored inline or as stand-off markup, if they are typed
to provide formal verification and declaration and if
annotation types can be inherited. Furthermore the ar-
chitecture should allow annotations as fields of other
annotations (e.g. for parse trees) as well as indexing
mechanisms, iterators and subiterators for given types.

2.1. TIPSTER
TIPSTER describes a common architecture developed to
provide means for efficient information retrieval and in-
formation extraction to government agencies and general
research ((Grishman, 1996), chapter 1.0). TIPSTER was

5corpus and document based processing iteratively applied

not only designed for multilingual applications in a wide
range of software and hardware environments, but also in-
troduced the thought of interchangeable modules from dif-
ferent sources. While being defined in an abstract (yet
object-oriented) way, the TIPSTER architecture is imple-
mented in a number of programming languages like C, Tcl
and Common Lisp.
The TIPSTER architecture can be seen as document cen-
tric. Each document may be contained in one or more
collections and is the atomic unit of information retrieval
which is considered as the repository of any extracted data.
It is possible to derive documents from other documents,
thereby forming logical documents.
Any information about the text is given by stand-off an-
notations. Each annotation can be defined by the system
engineer using arbitrary annotation names with arbitrary at-
tributes. Each annotation name has to be defined in a type
declaration, which is merely used for documentation, but
intended to serve as a base for formal verifications. It is
possible to assign each annotation to one or more spans of
text in the document. Attributes allow primitive data types
as values as well as references to other annotations or doc-
uments, thereby allowing even hierarchical structures such
as parse trees. Some annotation types and general annota-
tion attributes are predefined according to the Corpus En-
coding Standard (CES, (Ide, 1998)) to facilitate the inter-
changeability of modules and the usage of the architecture.
Annotations are managed and indexed to ensure efficient
access for different use case scenarios.
TIPSTER’s strength is the sophisticated typed annotation
model – adopted by as well UIMA (Ferrucci and Lally,
2004), GATE (Cunningham et al., 2002) and Ellogon (Peta-
sis et al., 2002) – and the integration of existing standards
like CES. The main shortcoming is the sparse specification
of processing resources. Besides being able to work with
the Tipster document model no further characteristics are
defined. There is no parameter or resource management
by the architecture, and no sophisticated workflow manage-
ment. This makes interchangeability, a standardized paral-
lelization and distribution of processing and language re-
sources impossible.

2.2. Ellogon
The Ellogon platform (Petasis et al., 2002) is intended to
be a multilingual and general purpose language engineer-
ing environment aiming to help as well researchers as com-
panies to produce NLP systems. In comparison to other
language engineering architectures at the time of creation,
Ellogon was designed to support a wide range of languages
by using Unicode to work under the major operating sys-
tems and to be more efficient with respect to hardware re-
quirements (cp. (Petasis et al., 2002)). The architecture
is build around three basic subsystems (cp. (Petasis et al.,
2002)):

1. The Collection and Document Manager (CDM),
which is implemented according to the TIPSTER ar-
chitecture, is a well-defined programming interface to
all processing resources. The central element is a col-
lection of documents, each consisting of textual data

3480



and linguistic information stored as stand-off anno-
tations and attributes. Programmatically, the collec-
tion can be modified online. Annotations as well as
attributes are typed using user-defined textual identi-
fiers.

2. Ellogon uses pre- and postconditions of processing
resources (components) to establish relations among
each other and to automatically generate workflows.
These workflows can be aggregated to systems by
the user. On this level, the Ellogon architecture
can change from document level processing to cor-
pus based processing so that next to basic infor-
mation extraction algorithms machine learning algo-
rithms working on the complete data set are possible.

3. A modular and pluggable component system to load
and integrate processing resources (called modules in
Ellogon) at runtime. Modules comprise the imple-
mentation part doing the analysis and the interface
part declaring metadata for the framework. The inter-
face describes pre- and postconditions, parameters and
GUI elements to provide user access to the compo-
nent. Conditions are specified using annotation types
and attributes of the documents or the collection, pa-
rameters are restrained to a small set of predefined
types.

Although Ellogon provides an integrated workflow man-
agement system based on pre- and postconditions, only se-
rial and cascaded workflows are possible. Parallel, condi-
tional, nested or iterative workflows are not supported by
the architecture. The same applies to the distribution of
processing and language resources. Ellogon offers however
the possibility to use components as web services. There is
no resource management and parameterization is very ba-
sic and not analysis aware. It is neither possible to inherit
already available type definitions for annotations nor is it
possible to reuse metadata in derived processing resources
(metadata inheritence).

2.3. GATE
The General Architecture for Text Engineering (GATE,
(Cunningham, 2000)) was developed to provide an infras-
tructure for a wide range of language engineering activities
that also considers the prior infrastructural findings of the
scientific community. It was originally released 1996 and is
today available in version 5. The current version is imple-
mented completely in Java, uses Unicode as default encod-
ing and is also capable of processing audio-visual content.
Besides comfortable GUI editing tools, it comprises two
central elements (cp. (Cunningham, 2000), chapter 7):

1. The GATE Document Manager (GDM) is imple-
mented according to the TIPSTER specifications
about document management. Therefore the core of
the manager is given by a collection of documents con-
taining text and annotations, which – similar to Ell-
ogon – can be modified online. With the GDM be-
ing the common interface to all processing resources
it is also the central data repository. All processing

resources obtain the annotated documents from the
GDM and return them for later processing steps. An-
notations on documents are organized in so-called an-
notation graphs (Bird et al., 2000). Except the infor-
mation about start and end node, every annotation de-
fines an identifier, a type declaration and additional
attributes. Annotation schemes similar to TIPSTER
define common annotations with their attributes (cp.
(Bontcheva et al., 2004)). Although one annotation is
determined to refer to only one span of text, the archi-
tecture offers the possibility to create multiple annota-
tion graphs per document.

2. A Collection of REusable Objects for Language En-
gineering (CREOLE) which can be seen as a library
of processing resources, language resources and data
structures for general usage (cp. (Cunningham, 2000),
chapter 7.2). Users can extend the CREOLE objects
by own implementations using the CREOLE API and
initialize and run them on documents using the GGI or
programmatic access. All necessary information for
the processing resource (PR) is provided by the GDM
in the form of documents with text and annotations
and results are written back respectively.

Every CREOLE component must specify its configu-
ration to facilitate workflow creation, accessibility by
the Gate Graphical Interface (GGI) and interchange-
ability. This metadata comprises parameters as well
as pre- and postconditions (in the form of annotations
and attributes). It is expressed in XML or by using
Java Annotations (Cunningham et al., 2010), which
simplifies inheritance of processing resources signifi-
cantly.

Besides the infrastructural capabilities GATE offers an ex-
haustive library of GUI tools, data access structures, lan-
guage resources and import filters for common document
formats. The workflow management offers possibilities for
conditional processing and collection level processing. Al-
though language resources may be distributed and applica-
tions may run on different machines, there is still no sophis-
ticated workflow management allowing iterative, nested or
parallel processing (cp. (Bontcheva et al., 2004), (Cunning-
ham et al., 2010)).
An impressive feature is the possibility for finite state pro-
cessing over annotations based on regular expressions. This
Java Annotation Pattern Engine (JAPE) operates on given
pattern/action rules which define a pattern of annotations
and their features in the input document, and a correspond-
ing action to perform if the pattern is matched. Correspond-
ing actions may also include the creation of new annota-
tions or the modification of the matched ones.
GATE can be seen as quite exhaustive. Resources are sepa-
rated and described using metadata that can be composed in
workflows. Inheritance of modules is facilitated using Java
Annotations, collection level processing is possible and the
document model with typed annotations is as well compre-
hensive as well defined. Shortcomings of GATE are the
lack of a sophisticated workflow management (especially
with respect to parallelization) and that formal declarations

3481



of resources are not analysis aware – neither pre- or post-
conditions nor parameters can be defined with respect to
annotations and attributes. Although many different kinds
of resources can be accessed via predefined structures, there
is no formal specification for individual resource manage-
ment. Type inheritance is not possible.

2.4. Heart of Gold
Heart of Gold (Schäfer, 2006) has been developed within
several research projects6 funded by the EU and the Ger-
man ministry for education and research BMBF and is de-
scribed as a lightweight and XML-based middleware archi-
tecture for shallow and deep processing workflows of NLP
components (Schäfer, 2008).
The main architectural design principle behind Heart of
Gold is the use of open XML standoff markup to repre-
sent the input and output of all components as it is easily
exchangeable and transformable using for example XSLT7.
Unicode handling is directly given by the XML standard.
The core of the architecture is the Module Communication
Manager which serves as an interface to the application by
getting requests and returning results (cp. (Callmeier et al.,
2004)). Internally the manager organizes the workflow of
processing resources, the persistence layer and the data ex-
change between components. Processing resources can be
implemented in Java or may be called using XML-RPC
– even on remote machines. Workflows are specified us-
ing the System Description Language SDL (Krieger, 2003)
which covers sequential, parallel and iterative execution.
By defining so-called sub-architectures consisting of other
modules, SDL also allows nested and cascaded workflows.
Analysis results are represented as stand-off annotations in
an RMRS-XML format (Copestake et al., 2006). Every in-
put document can be enriched by a collection of annota-
tions, which may also refer to other annotations and col-
lections by the use of unique identifiers. If modules create
output in different formats (or two cooperating modules use
different annotation schemes), the Heart of Gold architec-
ture supports XSLT transformation to support module com-
munication. XSLT is also utilized to combine and query
annotations.
Heart of Gold offers no capabilities for the definition of
pre- and postconditions and there is no parameter or re-
source management. Furthermore conditional workflows
are not supported by the architecture. The usage of stan-
dard XML formats and transformation techniques makes
the architecture however very flexible, although requiring
expensive transformation algorithms.

2.5. Other NLP software
A widespread and common toolbox is OpenNLP8, which
considers itself to be “an umbrella for various open source
NLP projects to work with greater awareness and (poten-
tially) greater interoperability”. With respect to this work
OpenNLP is of minor importance, as it does not define any
infrastructural base, but is just a collection of perhaps even
completely different NLP tools.

6http://heartofgold.dfki.de/index.html
7http://www.w3.org/TR/xslt
8http://opennlp.sourceforge.net/

The Advanced Language Engineering Platform (ALEP) is
neglected here, because its restrictions with respect to oper-
ating systems (only Unix) methods and resources prevented
it from being used in a large scale.
Another toolbox widely used is LingPipe9, which sees it-
self as a “suite of Java libraries for the linguistic analysis of
human language”. The Java based software includes a wide
range of machine learning algorithms for classification and
clustering like k-means, SVM or Naı̈ve Bayes, but unfortu-
nately does not provide a very sophisticated infrastructure
and is only available under a very restrictive license.
Other toolboxes and libraries which are freely available for
research purpose but does not provide sophisticated infras-
tructure capabilities beyond simple pipelines are FreeLing
(Atserias et al., 2006), MALLET (McCallum, 2002) and
NLTK (Loper and Bird, 2002). Another toolkit which pro-
vides more complex workflows and stand-off annotations is
LinguaStream (Bilhaut and Widlöcher, 2006).

2.6. Overview
An overview over a set of features selected with respect to
application development is presented in table 1, including
features of the UIMA framework presented and discussed
in the next section.

3. UIMA - an OASIS Standard
3.1. Architecture properties
The Unstructured Information Management Architecture
(UIMA) was originally developed and published by IBM to
facility the analysis of unstructured information like natural
language text, speech, images or videos (Lally et al., 2009).
The Java based framework was accepted as Apache Incu-
bator project in 2006 and has been standardized by OASIS
in 200910. 2010 UIMA graduates from the Incubator. Al-
though the framework explicitly targets different kinds of
data, its focus lies on the analysis of text. Nevertheless,
UIMA uses the term artifact to denote the subject of anal-
ysis in contrast to document as used in other architectures.
UIMA specifies six central elements, thereby defining the
architecture and its usage as well (cp. (Lally et al., 2009)
chapter 3 ff.):

1. The Common Analysis Structure (CAS) is the com-
monly shared data structure to represent the artifact
as well as according metadata. The artifact is encap-
sulated in one or more Subjects of Analysis (Sofas).
Similar to the GATE document model the CAS can
be considered to be the common interface for sharing
data between all analytics with all contained objects
being modeled using the UIMA Type System (see be-
low). Stand-off annotations are allowed to reference
other annotations or objects in general, thereby allow-
ing hierarchical structures such as parse trees. Accord-
ing to the specification, annotations may be enriched
with additional metadata about the annotation. All an-
notations are indexed and it is possible to access each
of them efficiently via iterators and subiterators.

9http://alias-i.com/lingpipe/
10http://incubator.apache.org/uima/news.

html

3482



Table 1: Comparison of NLP architectures: “+” fully supported, “0” partially supported, “-” not supported.
Tipster Gate Ellogon HoG Uima

Stand-off annotations + + + + +
Typed annotations 0 + + + +
Annotation Type inheritance - - - - +
Processing Resource inheritance - + - - 0
Processing Resource interchangeability 0 + + + +
Language Resource interchangeability - 0 - - -
Access Structure interchangeability - 0 - - -
Parameter Management - + + 0 +
Analysis Awareness - - - - 0
Resource Management - - - - 0
Workflow Management - 0 0 0 +
Parallelizable - - - - +
Distributable - - - - +
Tool-Box 0 + + - +

Import and export of CAS objects is achieved by using
the XML Metadata Interchange specification11 (XMI).
XMI was chosen because of being a widespread stan-
dard and being aligned with object-oriented program-
ming and UML.

2. Every CAS must conform to a user-defined type sys-
tem, which is described within the Type System Model.
The modeling language used to define this model is
the Ecore standard of the Eclipse Modeling Frame-
work (EMF). Although UIMA does not define spe-
cific type systems for analytics, it does define a Base
Type System containing some commonly-used and do-
main independent types, thereby allowing a funda-
mental level of interoperability between different ap-
plications. These include primitive types as defined by
Ecore and general source document information like
an URI pointing to the source document.

3. Abstract Interfaces are provided to define the standard
component types and operations. The specification de-
fines two fundamental types of Processing Elements
(PE): Analytics and Flow Controllers. Analytics pro-
cess the CAS and update its content with new or mod-
ified annotations. Each one is able to process data ad-
ditionally at batch and collection level so that UIMA
is able to switch from document based to collection
based processing. CAS multipliers as special form of
analytics are able to map a set of input CASes to a
set of output CASes by creating new ones or merging
existent ones. Flow Controllers determine the route
CASes take through a workflow of multiple analytics.
Describing the desired flow in a flow language like
BPEL12 results in a powerful, flexible, distributable
and reusable workflow management.

4. Every analytic describes its processing characteristics
using Behavioral Metadata. This metadata declara-
tively describes in terms of type system definitions

11http://www.omg.org/spec/XMI/2.1.1/
12http://docs.oasis-open.org/wsbpel/2.0/

OS/wsbpel-v2.0-OS.html

prerequisites to the CAS, what elements in the CAS
are analyzed and in which way the CAS contents are
altered or modified. Using this information, UIMA
can automatically discover required analytics and their
composition can be supported by an automated pro-
cess. Additionally the metadata helps in facilitating
efficient sharing of CAS content among processing el-
ements. Behavioral Metadata specifies required inputs
and the types of objects which may be created, mod-
ified or deleted. Although implementations according
to the UIMA specification are free to use any expres-
sion language to represent these conditions, the spec-
ification defines a mapping to the Object Constraint
Language13 (OCL).

5. Every Processing Element has to publish Processing
Element Metadata to support component discovery
and the composition of processing elements. This data
includes parameterization, the priorly defined behav-
ioral metadata and identification information like ver-
sion, vendor and description. The processing element
metadata is provided as a valid XMI document. It has
to be defined for each processing resource separately,
but it is possible to aggregate a group of processing
resources and to override individual settings (e.g. a
common encoding). This is also possible for complete
workflows. Therefore it is possible to define general
settings for each processing unit and to create special-
ized settings on application level.

6. UIMA facilitates the publication of analytics as web
services by specifying a WSDL14 description of the
abstract interfaces. Additionally a binding is defined
to a concrete SOAP interface, which must be imple-
mented by compliant architectures.

UIMA can be seen as the most evolved and comprehensive
architecture available to the date of this work – at least re-
garding the infrastructural capabilities and neglecting the

13http://www.omg.org/spec/OCL/2.0/
14http://www.w3.org/TR/wsdl20/

3483



pure toolbox size. UIMA’s strengths lie particularly in its
standardization and the consequent integration of existing
standards like XMI, Ecore, XML, OCL or BPEL. Most
workflow types pose no challenge to the architecture, nor
does parallelization or distribution of processing resources.
All metadata is declared formally, including pre- and post-
conditions, parameters and language resources. UIMA is
the only architecture providing at least partially resource
management and analysis aware parameter handling.

3.2. Shortcomings of the UIMA specification
The UIMA specification is the first architecture for unstruc-
tured information management that is standardized. It is
realized by the scientifically established UIMA architec-
ture. The specification relies on well defined other stan-
dards, therefore providing the basis for quick adoption and
wide dissemination. But besides all the advantages, there
are some shortcomings from an application point of view:

Analysis Awareness: An impressive feature of the
UIMA architecture is the capability for defining named pa-
rameter groups. The annotator can decide which group
to use depending on arbitrary conditions. For language-
specific annotators for example it is possible to define lan-
guage dependent parameters that are selected based on the
document language. A language fallback can be defined
as a default group, which allows the usage of e.g. the en
settings if there are not settings for en-GB. This feature is
not only advantageous, but absolutely required. In applica-
tion scenarios it might be necessary to process documents
in many domains and languages. Defining, requesting and
handling separate parameters (and resources) for all these
cases is time-consuming and error-prone if done in the pro-
cessing resource.
In contrast to the current implementation, the UIMA speci-
fication is missing this very important feature. We further-
more suggest to specify the complete processing element
metadata as analysis-aware using the same OCL notation
as the behavioral metadata. Every parameter and data re-
source needs to be defined with respect to conditions on ar-
bitrary annotation types and attributes and the architecture
needs to handle the management instead of the annotator
(which right now has to ask for the right parameter group
on its own).

Meta-Data inheritance: Inheritance in software engi-
neering aims in increasing code-reusability and seman-
tic subtyping. While the architecture itself is completely
object-oriented and therefore supports inheritence, there is
one weakness: There is no applicable model for metadata
inheritance. Although a user is free to subclass any annota-
tor, the metadata has to be rewritten – thereby introducing
error sources and complicating maintenance. A possible so-
lution to this problem is given by GATE: Metadata can be
expressed using Java Annotations, which can be inherited
with the code.

Resource Handling: Although the UIMA specification
is very comprehensive with respect to processing resources,
document and annotation model there is a lack of defi-
nition of data resources and access structures. The OA-
SIS standard does neither include already defined language

standards like for example given by ISO TC37SC415, EA-
GLES16 or LMF17 nor does it provide an according library
of resources and access structures, as for example provided
by GATE. Every application has to care about standards on
its own.
Although we are aware of the fact that UIMA only de-
scribes the processing architecture and the users should
rely to resource standards on their own, this lack is an im-
portant definition shortcoming. Without defining resource
standards and common interfaces for resource handling, the
framework is not able to care about optimal parallelization
and distribution. Additionally, a real exchange of process-
ing resources in the scientific community is prevented be-
cause of different data structures.
We suggest to extend the basic approach for resource han-
dling already realized in the architecture implementation
and to include already defined standards to the specifi-
cation. A common access library and interfaces – simi-
lar to GATE – can additionally increase code reusability,
maintenance and global system performance because the
framework could efficiently care about resource distribu-
tion. Thus even new standards and approaches for im-
proved resource representations (e.g. LexInfo18 (Buitelaar
et al., 2009)) can be implemented in a reusable way.

NLP Type System: Similar to the lack of standardiza-
tion of data resources and access structures, the definition
of commonly usable type systems is by far not comprehen-
sive enough. Beside the definition of a very general Source-
DocumentInformation type, no other types are defined in
the standard. Interchange of NLP modules within scientific
community and industry will only succeed if there are at
least some well defined type system standards. Even simple
information like the part-of-speech of a word can be mod-
eled in several ways (independent type, attribute of type to-
ken etc.) thereby hindering the interchangeability of for ex-
ample syntax parsers. Although it is clear that no universal
type system standard can be derived, it is however possible
to define such standards with respect to specific domains
or applications. At least the inclusion of already existing
standards like the corpus encoding standard CES into the
UIMA specification would be a significant improvement.
Positive examples for this are given by Tipster and GATE.
The currently available OASIS specification enforces the
usage of wrappers or – similar to Heart of Gold – the in-
clusion of transformation analytics, which decrease system
performance significantly.

Workflow Management: Workflow management is sup-
ported by the UIMA specification (and the architecture re-
spectively) through the usage of FlowControllers. The well
specified description language BPEL may be used to enable
iterative, conditional, parallel and even distributed work-
flows, so that most document based analytical projects can
be realized by the use of descriptor files. Collection based
analyses are supported in a limited way as UIMA provides
special method interfaces that are called when all docu-

15http://www.tc37sc4.org
16http://www.ilc.cnr.it/EAGLES96
17http://www.lexicalmarkupframework.org/
18http://lexinfo.net/

3484



ments are processed.
Unfortunately, aggregated workflows are only defined as
collections of different analytics. The OASIS specification
does not allow nested or cascaded workflows on descriptor
level. So it is neither possible to use document and collec-
tion based analytics iteratively nor is it possible for a single
processing resource to call other workflows to accomplish
its tasks. Aggregation tasks, which are used in machine
learning algorithms for example, are thus only possible if
a processor programmatically calls a subworkflow, which
is possible in UIMA. This possibility is however not stan-
dardized and in consequence the approach does not support
code interchangeability.
In the eyes of the authors, aggregation tasks are as im-
portant as document-centered text mining and information
extraction tasks. UIMA can only become accepted if all
types of analyses are supported. We propose to also sup-
port FlowController definitions next to analytic definitions.
Thus arbitrarily nested and cascaded workflows would be
possible. Depending on the implementation, these sub-
workflows could be defined in the same or in a separate
workflow description file. A simple realization would be to
provide a standardized processor that calls subworkflows at
its own. This extension would create a completely config-
urable analysis system.

Annotation model: UIMA supports a very flexible typed
annotation model with a small definition lack: Most pro-
cessing resources have the ability to create different outputs
with associated probabilities. Considering part of speech
tagger or spelling correctors it is common that several tags
or corrections are created, and usually only the one with
highest probability is added to the document as annota-
tion. The alternative outputs are however of big interest
and may be used and even resolved by later modules. A
syntax parser for example might switch back to a part of
speech tag with inferior probability if the parse of the sen-
tence is not possible otherwise. Although UIMA supports
the addition of alternative suggestions as additional annota-
tions or features, other modules cannot use this information
reliably if it is not standardized and managed by the archi-
tecture itself. A scientific exchange of modules will not
be possible, if every module encodes alternative solutions
and their certainties in different ways - or even skips them
completely. A more satisfactory option is to store all possi-
ble annotations according to their probability. A following
analysis resource is able to use this information to judge on
its own, which annotation is probably the best with respect
to its task. The definition of such annotation groups con-
taining alternative annotations marked with distinct proba-
bilities allows more powerful workflows by changing and
reweighting annotations in later steps. In this way, the ar-
chitecture could also provide fast access structures and effi-
cient annotation management. Modules which do not need
alternative annotations would just use (and maybe only see)
the representative of each group – the one with the currently
highest certainty.

4. Conclusion
This paper presented and discussed some widely spread
NLP architectures and compared their features with the

UIMA specification from an application developer’s point
of view. Concluding this work it can be said, that the spec-
ification is very comprehensive, well defined on commonly
accepted standards and finally offering an impressive rep-
resentational power not only for NLP applications. Es-
pecially the component based approach that can be com-
bined via BPEL description language makes UIMA a great
framework for interchangeability and research issues with
the possibility to create real analysis applications fast. It
however must be stated that there is still space for improve-
ments, especially with respect to resource management and
workflow architecture. A real interchangeability of meth-
ods will only be given if all components and all interfaces
are specified. As this is nearly infeasible to achieve, a set of
corresponding standards for common NLP applications and
domains would be of great advantage. Beside these short-
comings there are some smaller facets of the specification
which could be improved, like the analysis awareness of
descriptor metadata.
Finally it is to state that the UIMA specification and the
Apache implementation is a promising effort, which should
be accepted and used in the community. It provides an im-
pressive and fast architecture not only for textual informa-
tion retrieval but for every kind of unstructured data. Al-
though there are some specification issues left, the current
OASIS standard could be very helpful to the scientific com-
munity for unified module representations.

5. References
Jordi Atserias, Bernardino Casas, Elisabet Comelles, Mer-

itxell González, Lluis Padró, and Muntsa Padró. 2006.
Freeling 1.3: Syntactic and semantic services in an open-
source nlp library. In Proceedings of the 5th Interna-
tional Conference on Language Resources and Evalua-
tion (LREC’06), pages 48–55.

Frédérik Bilhaut and Antoine Widlöcher. 2006. Linguas-
tream: an integrated environment for computational lin-
guistics experimentation. In EACL ’06: Proceedings of
the Eleventh Conference of the European Chapter of the
Association for Computational Linguistics: Posters &
Demonstrations, pages 95–98, Morristown, NJ, USA.
Association for Computational Linguistics.

Steven Bird, David Day, John S. Garofolo, John Hender-
son, Christophe Laprun, and Mark Liberman. 2000. At-
las: A flexible and extensible architecture for linguistic
annotation. CoRR, cs. CL / 0007022.

K. Bontcheva, V. Tablan, D. Maynard, and H. Cunning-
ham. 2004. Evolving GATE to Meet New Challenges in
Language Engineering. Natural Language Engineering,
10(3/4):349—373.

Paul Buitelaar, Philipp Cimiano, Peter Haase, and Michael
Sintek. 2009. Towards linguistically grounded ontolo-
gies. In The Semantic Web: Research and Applications,
volume 5554 of Lecture Notes in Computer Science,
pages 111–125. Springer Berlin / Heidelberg.

Ulrich Callmeier, Andreas Eisele, Ulrich Schfer, and
Melanie Siegel. 2004. The deepthought core architec-
ture framework. In Proceedings of LREC 04, Lisbon,
Portugal.

3485



Ann Copestake, Peter Corbett, Peter Murray-rust, Advaith
Siddharthan, Simone Teufel, and Ben Waldron. 2006.
An architecture for language processing for scientific
texts. In In Proceedings of the 4th UK E-Science All
Hands Meeting.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A framework and graphical development
environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics.

Hamish Cunningham, Diana Maynard, and Kalina et al.
Bontcheva, 2010. Developing Language Processing
Components with GATE Version 5 (a User Guide). The
University of Sheffield, 01.

Hamish Cunningham. 2000. Software Architecture for
Language Engineering. Ph.D. thesis, University of
Sheffield. http://gate.ac.uk/sale/thesis/.

D. Ferrucci and A. Lally. 2004. UIMA: An Architec-
tural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Lan-
guage Engineering.

Ralph Grishman. 1996. Tipster text phase ii architecture
design. In Proceedings of a workshop on held at Vienna,
Virginia, pages 249–305, Morristown, NJ, USA. Associ-
ation for Computational Linguistics.

Nancy Ide. 1998. Corpus encoding standard: Sgml guide-
lines for encoding linguistic corpora. In In Proceedings
of the First International Language Resources and Eval-
uation Conference, pages 463–70.

Hans-Ulrich Krieger. 2003. Sdl - a description language
for building nlp systems. In In Proceedings of the HLT-
NAACL Workshop on the Software Engineering and Ar-
chitecture of Language Technology Systems, SEALTS,
pages 84–91.

Adam Lally, Karin Verspoor, and Eric Nyberg. 2009. Un-
structured information management architecture (uima)
version 1.0, March.

Edward Loper and Steven Bird. 2002. Nltk: The natural
language toolkit. In In Proceedings of the ACL Workshop
on Effective Tools and Methodologies for Teaching Nat-
ural Language Processing and Computational Linguis-
tics. Philadelphia: Association for Computational Lin-
guistics.

Andrew Kachites McCallum. 2002. Mallet: A machine
learning for language toolkit. http://mallet.cs.umass.edu.

Georgios Petasis, Vangelis Karkaletsis, Georgios Paliouras,
Ion Androutsopoulos, and Constantine D. Spyropoulos.
2002. Ellogon: A new text engineering platform. In In
Proceedings of the Third International Conference on
Language Resources and Evaluation (LREC 2002), Las
Palmas, Canary Islands, pages 72–78.

Ulrich Schäfer. 2006. Middleware for creating and com-
bining multi-dimensional nlp markup. In NLPXML ’06:
Proceedings of the 5th Workshop on NLP and XML,
pages 81–84, Morristown, NJ, USA. Association for
Computational Linguistics.

Ulrich Schäfer. 2008. Shallow, deep and hybrid process-
ing with uima and heart of gold. In Proceedings of the
LREC-2008 Workshop Towards Enhanced Interoperabil-

ity for Large HLT Systems: UIMA for NLP, 6th Interna-
tional Conference on Language Resources and Evalua-
tion. LREC-2008, May 26 - June 1, Marrakesh, Morocco,
pages 43–50. ELRA.

3486


