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Abstract
We present a carefully designed dependency conversion of the German phrase-structure treebank TiGer that explicitly represents verb
ellipses by introducing empty nodes into the tree. Although the conversion process uses heuristics like many other conversion tools
we designed them to fail if no reasonable solution can be found. The failing of the conversion process makes it possible to detect
elliptical constructions where the head is missing, but it also allows us to find errors in the original annotation. We discuss the conversion
process and the heuristics, and describe some design decisions and error corrections that we applied to the corpus. Since most of today’s
data-driven dependency parsers are not able to handle empty nodes directly during parsing, our conversion tool also derives a canonical
dependency format without empty nodes. It is shown experimentally to be well suited for training statistical dependency parsers by
comparing the performance of two parsers from different parsing paradigms on the data set of the CoNLL 2009 Shared Task data and
our corpus.
Keywords: verb ellipses, dependency corpus, German TiGer treebank

1. Introduction
Dependency syntax (Mel’čuk, 1988) provides intuitive,
light-weight descriptions especially suited to languages
with free word order, since it directly represents the func-
tion of a word with respect to its head, and it can cap-
ture discontinuous structures like extraposition by non-
projective trees (i. e. allowing edges to cross). However,
unlike constituent-based approaches, it can run into prob-
lems for phenomena like head-ellipses, if the dependency
representation is restricted to the surface of the sentence,
as is for example assumed by all data-driven dependency
parsers.1 An elliptical structure where the head of a phrase
is elided therefore causes problems for the representation,
because it is not clear where the daughters of an ’empty
head’ should be attached.
In this work, we present a conversion of the German TiGer
treebank (Brants et al., 2002) where we introduce empty
nodes for verb ellipses if a phrase normally headed by a
verb is lacking a head. Empty heads are thus explicitly rep-
resented in the syntactic structure, as it was done for exam-
ple in the Hungarian corpus (Vincze et al., 2010). We re-
strict ourselves to annotating verb ellipsis because it is the
most frequent ellipsis and it can be annotated automatically
without risking to annotate too many incorrect ellipses. The
conversion process is still heuristics driven as are most con-
version tools, however, in our case, the head-finding heuris-
tics for the TiGer treebank are constructed in a way such
that only plausible heads are considered. For example, the
head of a verb phrase in TiGer is explicitly marked by the
function label HD. If no node is marked by HD, the conver-
sion tool introduces an empty node instead of just choosing
arbitrarily between the other nodes, which is the common
way of handling these cases.
When a lot of statistical dependency parsers were devel-
oped in the last years, the need for training data led to the

1In dependency syntax theory for example, the ellipsis can be
handled in a non-surface structure, cf. (Mel’čuk, 1988).

conversion of traditional phrase-structure treebanks to de-
pendency format. But a rather rare phenomenon like el-
lipsis,2 which in phrase-structure format can be easily rep-
resented by annotating an unheaded phrase node, would
usually not receive special attention. Figure 1 shows the
annotation of a sentence from three different dependency
versions of TiGer. The top tree is from the corpus used
in the PaGe Shared Task (Kübler, 2008), the middle tree
is from the CoNLL 2009 Shared Task (Hajič et al., 2009),
and the last tree was created by our conversion tool. In the
original TiGer annotation, the sentence is analysed as two
coordinated main clauses, where the first one is missing a
passive auxiliary verb, while the second one is missing the
finite auxiliary verb. This sentence is rather complex, since
the two conjuncts are sharing some material. The missing
word in the first conjunct does exist in the second conjunct,
and vice versa.
In the top tree, the second conjunct is not represented, but
all its parts are attached to the root node. Note that the tool
by Versley (2005) that was used to derive this tree changes
the function labels to comply with the grammar used by
Foth et al. (2004). In the middle tree, the sentences are rep-
resented and the coordination is annotated (although due
to the ellipsis, two words are coordinated that would not
normally be coordinated). The passive constructions in the
two sentences are structurally atypical since they are miss-
ing elements. In the bottom tree finally, our conversion tool
introduced two empty nodes to represent the missing words
in the incomplete passive constructions. Structurally, the
sentences are now looking like other non-elliptical passive
constructions.
The tool that we present in this work derives a dependency
representation from the original TiGer corpus that explicitly
represents empty verbal heads. The annotation scheme fol-
lows the annotation of the CoNLL 2009 Shared Task data
set, but improves on it in a number of ways. By explicitly

2It is rather rare in the Tiger corpus, which however does not
mean that it would be rare in other language domains as well.
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PaGe 2008 Shared Task

CoNLL 2009 Shared Task

this work

’In this, ten people were killed and about 100 were hurt.’

Figure 1: Three different annotations of an elliptical construction in German (TiGer no. 2,209).

representing empty nodes in the annotation, we make the
information about ellipsis better accessible in the corpus.
Furthermore, we make it possible to develop and evaluate
dependency parsing methods that can handle elliptic con-
structions in German. In addition, the tool can also resolve
the empty nodes by replacing them with one of their daugh-
ters in order to produce a canonical dependency represen-
tation. By comparing the performance of two statistical de-
pendency parsers on the canonical version and the CoNLL
2009 Shared Task data, we show that our conversion is bet-
ter suited to train dependency parsing models for German.
In the following, after discussing related work in Section 2.,
we first present the general conversion algorithm by defin-
ing the rules that our tool applies (Section 3.) and discuss
some differences to the CoNLL 2009 Shared Task data set.
We then show how verb ellipses are identified in the deriva-
tion process and give some statistics on the distribution of
empty nodes (Section 4.). Section 5. describes error cor-
rection and problematic cases for the conversion, and in
Section 6. we show for two representative parsers that the
annotation of the new corpus is superior to the one present
in the CoNLL 2009 Shared Task data. Section 7. concludes
the paper.

2. Related Work
Since the rise of data-driven dependency parsing (Nivre
et al., 2004; McDonald et al., 2005), traditional phrase-
structure treebanks of many languages have been trans-
formed to dependency format to fulfill the need for train-
ing data for statistical parsing models (among others, En-
glish (Magerman, 1994; Yamada and Matsumoto, 2003;
Johansson and Nugues, 2007), German (Daum et al., 2004;
Hajič et al., 2009), and Hungarian (Vincze et al., 2010)).
While there have been grammar-based approaches (e. g.
Bohnet (2003)), most automatically converted dependency

treebanks have been converted using head-finding heuris-
tics. These heuristics implement a set of descriptions how a
(typical) head for a given phrase should look like (in terms
of part-of-speech for example). The phrase-structure tree
is then converted by choosing for every phrase one of the
daughters as the head of the phrase.
German has two big syntactic treebanks, the TiGer tree-
bank (Brants et al., 2002), and the TüBa-D/Z (Hinrichs et
al., 2004). Both treebanks annotate phrase structure with
modifications to account for German-specific phenomena.
For example, because of the relatively free word order in
German, all edges are labeled by functional labels speci-
fying the function that the phrase bears to its mother node.
Both treebanks have also been converted to dependency for-
mat several times (Daum et al., 2004; Versley, 2005; Hajič
et al., 2009). While the versions by Daum et al. (2004)
and Versley (2005) change the label set of the treebanks
to comply with the grammar used by the parser by Foth et
al. (2004), the data set derived from the TiGer treebank
that was used in the CoNLL 2009 Shared Task (Hajič et al.,
2009) stayed faithful to the original annotations. However,
none of the German conversions pays special attention to
the problem of ellipses, or rather to the problem of phrases
where head-finding heuristics do not find a head.
To represent empty heads in dependency treebanks, three
solutions have been proposed: All the German dependency
treebanks that we know simply choose one of the depen-
dents of an unheaded phrase to become the head. This is a
rather undesirable solution because it ignores the fact that
there is something missing in the structure. In the Czech
treebank (Böhmová et al., 2001), which is a genuine depen-
dency treebank that was not derived from a phrase-structure
treebank, a similar solution as for the German treebanks is
used: the dependents of an empty node are attached to the
head of the empty node but the thus suspended dependents

3133



are marked by a different label (ExD). This is a cleaner so-
lution since the information about ellipsis is still annotated.
However, this annotation deletes any functional informa-
tion by replacing the function labels with a uniform ellipsis
marker, but more importantly, it still hides the structural
fact that there is a node missing in the tree. The Hungarian
dependency treebank (Vincze et al., 2010) finally explicitly
represents the empty nodes in the trees by introducing pho-
netically empty elements that serve as attachment points to
other tokens. This is the cleanest solution from a linguis-
tic point of view, which we will adopt here as well, but it
poses problems when parsing with data-driven dependency
parsers, since most of today’s statistical dependency parsers
are not capable of handling empty nodes. Empty nodes cre-
ate the problem that the number of nodes that the parser has
to connect in order to arrive at a dependency structure is no
longer determined by the number of tokens in the sentence.
This is however one of the fundamental assumptions in de-
pendency parsing, and the algorithms are built upon this.
Recently, a parser has been proposed by Dukes and Habash
(2011) that extends the transition-based paradigm for de-
pendency parsing by adding an additional move to the
parser that introduces empty nodes into the tree. As far as
we know, this is the only published dependency parser so
far that can handle empty nodes directly during the parsing
process. Unfortunately, Dukes and Habash (2011) do not
provide evaluation on the performance on empty nodes.

3. Converting the Treebank
The TiGer treebank (Brants et al., 2002) that we use to de-
rive the dependency corpus is a phrase-structure treebank
that annotates discontinuous constituents and classifies ev-
ery edge into functional categories. This is done to ac-
count for the relatively free word order of German. Release
2.1 from August 2006, on which this work is based, con-
sists of 50,474 sentences of newspaper text from the Frank-
furter Rundschau comprising 888,238 tokens, and it is an-
notated with lemma, part-of-speech, and morphological in-
formation on the token level. The part-of-speech annotation
uses the Stuttgart-Tübingen Tag Set (STTS) (Schiller et al.,
1999).
The standard conversion procedures derive a dependency
tree by choosing one of the daughters of the current phrase
as the head of the phrase. The choice is made by us-
ing head-finding heuristics that usually contain a part-
of-speech specification and search direction (start from
left/right) for each phrase category in the treebank. For
converting the TiGer treebank, we can in addition use the
function labels attached to each node to further specify the
head. For some phrase categories, the function labels al-
low us to select the head without any uncertainty since the
TiGer annotation scheme uses a special label hd to mark
the head of a phrase.
Table 1 shows the head-finding rules that we use to derive
the dependency corpus. The first column gives the phrase
category for which we want to select the head, the second
column gives the function label preference for the head,
the third column gives the part-of-speech tag preference of
the head, and the last column states from which direction
we should search through the daughters. The head selec-

tion algorithm then loops over the label and the part-of-
speech lists and, for each label – part-of-speech combina-
tion, searches through the daughters. As soon as it finds a
daughter with the specified label and part-of-speech tag, it
selects this daughter as the head of the whole phrase.
Note that for the categories that are marking their head with
a special label (e. g. the hd label), the part-of-speech of
the head and also the search directions are not taken into
account. In those cases, we rely on the annotation of the
corpus to determine the correct head.

phrase label POS dir
s hd * *
vp hd * *
vz hd * *
avp hd, ph * *
ap hd, ph * *
dl dh * *
aa hd * *
isu uc * *
pn pnc ne, nn, fm, trunc, appr, ap-

prart, card, vvfin, vafin, adja,
adjd, xy, <empty>

right

nm nmc nn, card right
mta adc adja right
avp avc adv right
pp ac, ph apprart, appr, appo, proav, ne,

apzr, pwav, trunc
right

pp nk proav left
avp avc fm left
ch uc fm, ne, xy, card left
np nk, ph nn left
np nk, ph ne, pper, pis, pds, prels, prf,

pws, pposs, fm, trunc, adja,
card, piat, pwav, proav, adjd,
adv, apprart, pdat, <empty>

right

Table 1: Head-finding rules for the dependency conversion.
First column gives the phrase category for which the head
is selected, second column gives the label preference of
the head, third column gives the part-of-speech tag prefer-
ence, and last column gives the search direction in which to
search through the daughters of the phrase (left: start with
left-most daughter, right: start with right-most daughter)

For some phrase categories, we have more than one rule.
The rules are applied in the order that is shown in Table 1
which means that we can use more than one rule for a par-
ticular category and the first rule that finds a suitable de-
pendent will win. Take for example the pp-rules (preposi-
tional phrases): the first rule defines the general head selec-
tion that most of the time will select a preposition labeled
with ac. The second rule is used for some rare cases where
the preposition and the argument of the preposition have
merged into one word. These words are called pronomi-
nal adverbs (proav) in the STTS. An example is the word
dafür (for that). If these words are unmodified, they are not
dominated by a pp-phrase node in the original TiGer cor-
pus. However, they can be modified like prepositions with
adverbs (e. g. auch dafür (also for that)), which will then
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create prepositional phrases that do not contain a preposi-
tion because it is merged into the pronominal adverb. The
second pp-rule catches these cases.

3.1. Special Cases
In addition to the rules in Table 1, the conversion proce-
dure treats some phenomena in a special way to produce a
structure that is a) linguistically more plausible and b) bet-
ter suited for training statistical dependency parsers.

Structured Prepositional Phrases. The original annota-
tion of prepositional phrases in the TiGer corpus does not
introduce a noun phrase thus producing very flat structures.
The CoNLL 2009 Shared Task data set adopted this scheme
which leads to dependency structures like the upper struc-
ture in Figure 2. In these structures, all dependents of the
noun are attached to the preposition which leads to differ-
ent structures for noun phrases, namely noun phrases that
are embedded under a preposition, and noun phrases that
are not. As was done in the PaGe Shared Task data set
(Kübler, 2008), we change the annotation to represent the
noun phrase inside the prepositional phrase. By introduc-
ing additional structure into the annotation, as is shown in
the bottom structure of Figure 2, we unify these two noun
phrase annotations, which is desirable from a linguistic
point of view, because then all noun phrases are annotated
in the same way. It is also beneficial to statistical parsing,
as is shown in Seeker et al. (2010), because the statisti-
cal model can treat both types of noun phrase structures the
same way regardless of whether they are embedded under
a preposition or not.

Figure 2: A prepositional phrase in the CoNLL 2009 data
(top) and in our version (bottom).

The actual conversion happens by applying the np-head rule
to the daughters of a prepositional phrase in order to choose
the head of the embedded noun phrase. After that, all de-
pendents that are not marked by the labels ac, mo, ph, cm
are attached to the selected noun phrase head. The other de-
pendents include either the head of the prepositional phrase
or modifiers of it, which we do not want to attach to the
noun phrase head. The normal conversion procedure is then
continued.

Coordination. There are in principle three possibilities,
how coordination can be annotated in dependency struc-
tures: one can make the coordinating conjunction the head
of the structure and attach everything to it, one can make the
first conjunct the head and attach everything else there, or
one can make the first conjunct the head and then chaining

conjuncts and coordinating conjunctions. Figure 3 shows
schematics of the three possibilities. The first option was
used for example in the Prague Dependency Treebank of
Czech (Böhmová et al., 2001). From a linguistic point of
view, this is the most informative scheme, because it is the
only scheme that allows a distinction between dependents
that affect the entire coordination, and dependents that af-
fect only a particular conjunct. However, it is also a prob-
lematic scheme, if no coordinating conjunction is present.
In these cases, the Czech corpus uses punctuation as the
head of the coordination, which however restricts this an-
notation scheme to edited text. The CoNLL 2009 Shared
Task data set for German adopted the second strategy where
everything is attached to the first conjunct. This avoids the
problem when there is no coordinating conjunction present.
However, Nilsson et al. (2006) present experimental results
on the Prague Dependency Treebank that the third option is
best suited to statistical dependency parsing. Our conver-
sion tool therefore annotates coordination as a chain start-
ing with the first conjunct. There is one exception to that
rule: if the first conjunct turns out to be a truncated ele-
ment, as Bus- in Bus- und Bahnverkehr (roughly: bus and
train traffic), then the first non-truncated element is made
the head of the coordination.

Figure 3: Three different annotation options for coordina-
tion structures.

Noun Phrases with Multiple Nouns. Table 1 shows two
rules for noun phrases (np), the first of which selects the
left-most noun as the head, while the second searches for a
head from the right if no noun was found. In the prototyp-
ical noun phrase of German, the head is on the right of the
phrase, and we could just always select the right-most noun
as well. However, in certain cases the TiGer corpus has
noun phrases that contain more than one noun. This hap-
pens for measurement constructions and close apposition as
shown in Example 1 and 2 respectively. Because the origi-
nal TiGer does not introduce unary branchings, the second
noun Tee/Arbeitslosigkeit is annotated as sister to the first
noun Tasse/Thema. In most of these cases, the other de-
pendents morphologically agree with the first noun,3 which
motivates our choice to always select the left-most of sev-
eral nouns to be the head of the whole phrase. For all other
cases where the noun phrase does not contain a noun, we
apply the second rule to find the head (e. g. proper nouns,
pronouns etc.) on the right of the phrase.

3These constructions are much more complex than we can
discuss here. There are e. g. some exceptions to the agreement
phenomenon, often due to diachronic reinterpretation. See e. g.
Spranger (2005) for an overview of cases that occur in German.
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(1) eine
fem.sg
a

große
fem.sg
big

Tasse
fem.sg
cup of

Tee
masc.sg
tea

(2) das
neut.sg
the

alte
neut.sg
old

Thema
neut.sg
topic

Arbeitslosigkeit
fem.sg
unemployment

4. Marking Verbal Ellipses by Introducing
Empty Nodes

In order to find elliptical constructions, we exploit the fact
that the rules that we use to derive the dependency structure
do not cover every eventuality (Table 1). The rule set con-
tains one rule for verb phrases (vp) and sentences (s). The
differences between these two categories in the TiGer cor-
pus is that sentences are headed by finite verbs and verb
phrases are headed by non-finite verbs. Our conversion
tool only introduces empty nodes for these two phrase cat-
egories and each empty node does have at least one depen-
dent, i. e. the empty nodes are always structural heads in
the dependency structure. Since we annotate empty nodes
automatically, this is the safest way to avoid the incorrect
introduction of superfluous empty nodes.
The actual introduction of the empty nodes is an easy pro-
cess. Before the actual conversion, we check all verb
phrases and sentences in the phrase-structure corpus if they
contain a daughter marked with the hd label (see top two
rules in Table 1). If we do not find any such daughter, we at-
tach an empty node as head daughter. A more difficult prob-
lem is then to position the empty node in the linear string of
the sentence. From a linguistic perspective, this might not
be a necessary measure to be taken since the dependency
structure does not change with respect to the position of
the empty node although a reasonable position might better
support corpus search. However, from a dependency pars-
ing perspective, the position of the empty node has a big
impact on the projectivity of the dependency structure. If
we placed e. g. all empty nodes at the end of a sentence, it
would introduce a lot of non-projective edges, i. e. cross-
ing edges, which would make it harder for most statisti-
cal dependency parsing algorithms to predict the structure.4

Since the empty nodes function as phonetically empty ver-
bal heads, we therefore apply two heuristics in order to po-
sition the empty nodes in the places where the overt verb
would go as well. In verb phrases, the empty node is po-
sitioned as the last daughter but before any trailing senten-
tial or punctuation dependents. This is in accordance to
the verb final nature of German. We exclude sentential de-
pendents because German tends to extrapose sentential de-
pendents to a position after the verb. For sentence phrases
(s), the heuristic is a bit more difficult: the s-category in
the TiGer corpus marks sentences headed by finite verbs.
This targets all matrix clauses but also relative clauses and a
number of subordinate clauses. In German, the former type

4Admittedly, as far as we know, there is only one statistical de-
pendency parser so far that is actually capable of handling empty
nodes directly, namely the parser by Dukes and Habash (2011).
Nonetheless we think it is worth producing a structure as struc-
turally simple and canonical as possible.

has the finite verb in the second position preceded by ex-
actly one constituent, whereas the latter two have the verb at
the end. So the heuristic positions the empty node at the end
of the phrase (but again before any punctuation or sentential
dependents), if the sentence node is labeled with rc (relative
clause), or if it has a dependent marked by cp (complemen-
tizer) or cm (comparative marker). In all other cases, the
empty node is placed as the second daughter. These heuris-
tics approximate the verb position of German for the empty
nodes.

’Denmark’s second biggest insurance company in danger.’

Figure 4: Example of a headline (TiGer no. 1,275)

Having the empty nodes in place, we now give some statis-
tics about the corpus. The current corpus contains 3,595
empty nodes, which gives 3,035 sentences that contain at
least one empty node. 704 of these sentences do not con-
tain any verb at all, 962 do not contain any finite verb. Most
of these are head lines of articles, as shown in Figure 4. Ta-
ble 2 shows the edge labels with which the empty nodes are
labeled.

label freq explanation
– – 1444 root
cj 1046 coordination
par 417 parenthesis
oc 365 clausal object
mo 129 modifier
rc 42 relative clause
re 36 repeated element
nk 30 noun kernel element
cc 27 comparative constr.
sb 20 subject
mnr 13 noun modifier
rs 13 reported speech
pd 8 predicate
app 4 apposition
da 1 dative

Table 2: Frequency of edge labels that are marking empty
nodes

The most frequent case is the empty node being the root
node of the whole sentence, which is the case e. g. for all
the head lines. The second most frequent case is that the
empty node heads a conjunct in a coordination. We show
an example for that in Figure 1. Figure 5 gives an example
for an empty node heading a parenthesis, and an example
for empty nodes heading a clausal object is again shown
in Figure 1. These four edge labels constitute 91% of the
empty nodes in the corpus.

4.1. Resorting to Canonical Dependency Structures
At the moment, there is only one statistical parser that we
know of that is capable of handling empty elements directly
during parsing, which is the parser described by Dukes and
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’Even Klaus-Peter Leyendecker sings along, normally a proven techno fan.’

Figure 5: Example of a parenthesis (PAR) headed by an empty node (TiGer no. 18,574)

Habash (2011). Their parser is a shift-reduce parser (Nivre
et al., 2004) that has an additional move that allows it to in-
troduce empty nodes into the structure. Unfortunately, they
do not provide an evaluation of their parser specifically tar-
geting the empty node performance. However, since there
are no other such parsers at the moment, we also imple-
mented the standard fallback routine that is usually used to
deal with empty heads in dependency corpora: one of the
daughters is chosen to become the head of the phrase. This
does not lead to linguistically plausible structures but it al-
lows statistical dependency parsers to process these trees.
For the sake of completeness, we show the list of part-of-
speech tags in Figure 6 that we consider from left to right
when substituting the empty node with one of its daugh-
ters. This list is not very much motivated, especially at the
end, except that it should cover all cases that occur in the
treebank.

vvfin, vafin, vmfin, nn, ne, apprart, appr, appo, ptkneg,
vvpp, vapp, adjd, proav, pper, vvinf, vainf, vminf, adja,
card, kous, pwav, ptkant, pis, pds, pws, adv, trunc, fm

Figure 6: List of part-of-speech tags that can be substituted
for an empty node, searching daughters from left to right.

5. Error Correction and Manual Head
Selection

The rules shown in Table 1 and the introduction of empty
nodes alone will not fully convert all trees in the TiGer tree-
bank because there are errors in the annotation that block
the application of an otherwise applicable rule. As we
stated in the previous section, we deliberately did not de-
sign the rules to cover every possible situation in the corpus
in order to find those constructions which genuinely lack
something. Although this enables us to find verb ellipses,
it also means that annotation errors will lead to partially
derived trees. E. g. there are prepositional phrases that do
contain a preposition but this preposition is not labeled by
ac or ph (see first rule for pp). We therefore spent some
time to correct several types of errors in the original tree-
bank in order to arrive at a more consistently annotated data
set. We will describe briefly, what we did, but please note
that there are of course still errors left in the annotation that
we did not find. Note also that the decision if something is
an error was made by the authors by consulting the annota-
tion guidelines and doing manual consistency checks.
All error corrections that we apply are integrated into the
conversion tool in terms of modification statements. When
the tool converts the TiGer treebank, it first applies the
modifications to the original corpus before it starts con-
verting the trees to dependency format. This way, anyone
can download the standard TiGer release and apply our tool

without needing access to our corrected version. Note that
this also means that this tool only works with TiGer 2.1
Release August 2006.
The errors we corrected can be classified by whether they
affect part-of-speech tags or phrase categories, morphol-
ogy, function labels, or the syntactic structure. Since these
errors interact sometimes, we give some orientation figures
in Table 3 on the atomic changes that the conversion tool
makes to the treebank before the conversion.

part-of-speech tags and phrase category labels 1,642
edge labels 681

morphological annotation 305
reattachment of edges 291

additional nodes 80
deleted nodes 41

Table 3: Number of atomic changes that the tool makes in
order to correct annotation errors.

To find errors in the treebank, we used an idea by Bouma
(2010). We loaded the whole corpus in Prolog by repre-
senting every node in the corpus as a single Prolog state-
ment. Thus we can use Prolog as a querying language to
query the corpus. We looked for patterns that would violate
the annotation guidelines. For example, we looked for verb
phrases that contained words that were tagged with verbal
part-of-speech tags but did not contain a daughter with an
hd label (which marks the head of a verb phrase) and vice
versa. Another pattern that uses part-of-speech tags would
be to look for prepositional phrases that do not contain a
preposition. One can also crosscompare edge labels and
morphology, e. g. we looked for words that had edge label
sb (subject) but were not marked for nominative case. The
general idea is to come up with patterns that you would not
expect to occur either because of a linguistic insight into
the language or because of the annotation guidelines. Man-
ning (2011) uses this approach to find and correct errors
in the Penn-Treebank part-of-speech annotation. When we
found these patterns, we manually checked the results and
added a modification statement in case it turned out to be
an annotation error.
With error correction applied, we can convert almost the
complete corpus. However, a small number of cases still
remained that could not be derived but are not annotation
errors either. In addition to that, we found some phenom-
ena, where we found it easier to treat them manually in-
stead of creating very complex derivation rules. For these,
we manually selected the head. One such case is shown in
Example 3. It is a company name that ends on the abbrevi-
ation GmbH which states the legal status of the company
(limited liability company). Linguistically, the complete
expression is used like a compound noun, and agreement
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features indicate that the head of the whole expression is
the last noun. Since this breaks our noun phrase head se-
lection rule, which would select Club (Robinson is tagged
as proper noun) as the head, we manually override this by
marking GmbH as the correct head.

(3) die
fem.sg

Robinson Club
masc.sg

GmbH
fem.sg

the Robinson Club GmbH

6. Quality Evaluation for Dependency
Parsing

In order to evaluate the quality of the annotation scheme,
we train two data-driven parsers, one for each of the ma-
jor dependency parsing paradigms. For the graph-based
paradigm (McDonald et al., 2005), we use the parser de-
scribed in Bohnet (2010),5 and for the transition-based
paradigm (Nivre et al., 2004), we used the transition-based
parser described in Bohnet (2011).
As our baseline, we use the original CoNLL 2009 Shared
Task data set for German (Hajič et al., 2009) because it uses
the same edge label set. Both data sets have been derived
from the TiGer corpus. However, because the CoNLL data
were derived from the SALSA Corpus (Burchardt et al.,
2006), it is based on an older release of TiGer. We therefore
changed our version of the corpus manually in order to have
the exact same sentences in training, development, and test
data for this evaluation. In order to provide an equal prepro-
cessing for both data sets, they were annotated by the same
tools for lemmata, part-of-speech, and morphological in-
formation using a ten-fold cross-annotation on the training
set. The development and the test data were then annotated
with models trained on the training data.
Table 4 shows the labeled and unlabeled attachment scores
(no punctuation) for both parsers when trained and tested
on each corpus version.

graph trans
LAS UAS LAS UAS

CoNLL ’09 dev 87.71 90.40 86.48 89.48
this work dev 89.84 92.24 88.17 90.76
CoNLL ’09 test 88.50 90.96 87.31 89.96
this work test 90.30 92.56 88.68 91.15

Table 4: LAS (labeled attachment score) and UAS (unla-
beled attachment score) on both corpora (no punctuation)

Since both corpora use different annotation schemes and
thus different gold standards, a direct comparison of the
parsing performance will not tell us if one of the corpora
is better than the other. We therefore use the tedeval pro-
cedure6 presented in Tsarfaty et al. (2011) that computes
a generalized gold standard from both corpora and eval-
uates both parsers against this shared gold standard using
a tree edit distance measure (TED). This generalized gold
standard only contains information that is present in both
single gold standards, meaning that both parsers are then

5downloadable from code.google.com/p/mate-tools, you can
also find the preprocessing tools here

6http://stp.lingfil.uu.se/ tsarfaty/unipar/index.html

compared against the same structures. If a parser performs
better on the generalized gold standard, it means that it is
better modeling the linguistic content that is shared between
both annotation schemes. Since the tedeval software cur-
rently only supports projective trees, we projected all our
trees before the experiment. We also excluded all punctua-
tion during the evaluation.7

graph trans
CoNLL ’09 dev 94.15 93.98
this work dev 95.21 94.21
CoNLL ’09 test 94.66 94.24
this work test 95.25 94.64

Table 5: Labeled micro TED scores (no punctuation). Pair-
wise differences are statistically significant using the shuf-
fling test provided with the tedeval software.

Table 5 shows the labeled micro TED scores when com-
paring the parsers on both corpora against a common gold
standard. All pairwise differences are statistically signifi-
cant indicating that our conversion is better suited to train
parsing models with the two parsers that we use in the ex-
periment. Note also that the differences between the two
corpora are much smaller than the differences in Table 4.
This effect is in line with the findings in the experiments in
Tsarfaty et al. (2011) demonstrating that direct comparison
of parser performance on different annotation schemes can
be easily misleading.

7. Conclusions and Future Work
We presented a tool to derive a dependency version from
the German TiGer treebank that explicitly introduces empty
nodes to represent verb ellipses. The derivation process
uses head-finding heuristics to determine the head of a
phrase but, different to previous work, these heuristics do
not trade precision for coverage. Instead, the fact that some-
times no head can be found for a phrase is used to detect
elliptical constructions, which are then annotated explicitly
using phonetically empty elements. The tool can also de-
rive a canonical version of the corpus without empty nodes,
which is shown by experiment to be better suited for train-
ing statistical dependency parsers than the data used in the
CoNLL 2009 Shared Task. In the future, we would like
to spend some effort into manually annotating the kind of
verbal ellipses that we found in the corpus. The tool will
be made freely available for academic purposes on the au-
thors’ webpages.
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