
Automatically Extracting Procedural Knowledge from Instructional Texts using 
Natural Language Processing 

Ziqi Zhang
1
, Philip Webster

1
, Victoria Uren

2
, Andrea Varga

1
, Fabio Ciravegna

1
 

1
 University of Sheffield 

1
Initial.Surname@dcs.shef.ac.uk 

2
University of Aston 

2
v.uren@aston.ac.uk 

Abstract  

Procedural knowledge is the knowledge required to perform certain tasks, and forms an important part of expertise. A major source of 
procedural knowledge is natural language instructions. While these readable instructions have been useful learning resources for 
human, they are not interpretable by machines. Automatically acquiring procedural knowledge in machine interpretable formats from 
instructions has become an increasingly popular research topic due to their potential applications in process automation. However, it 
has been insufficiently addressed. This paper presents an approach and an implemented system to assist users to automatically acquire 
procedural knowledge in structured forms from instructions. We introduce a generic semantic representation of procedures for 
analysing instructions, using which natural language techniques are applied to automatically extract structured procedures from 
instructions. The method is evaluated in three domains to justify the generality of the proposed semantic representation as well as the 
effectiveness of the implemented automatic system. 
 
Keywords: procedural knowledge, information extraction, instructional text 

 

 

1. Introduction 

Procedural knowledge is the knowledge required to 

perform certain tasks. It is extensively used in our daily 

life, and forms an important part of expertise. There is a 

broad range of research studies addressing the usage of 

procedural knowledge, such as automatic user 

documentation generation (Paris et al., 2002; Paris et al., 

2005), or to support procedural question answering 

(Delpech and Saint-Dizier, 2008). In the area of process 

automation, procedural knowledge can be modelled as 

workflows or programs to enable workflow engines or 

programs to control the process. 

Due to the importance of procedural knowledge, 

continuous efforts have been dedicated to the research 

related to the acquisition of procedural knowledge. One 

popular direction is learning procedures from natural 

language instructions or procedural texts, which are 

descriptions of steps for performing certain tasks written 

in human natural language. Examples of such include 

recipes, teaching texts, and product usage manuals. These 

are commonly used by human learners to carry out tasks 

and acquire new skills, and are usually well documented 

and easily available. However, automatically extracting 

procedural knowledge from texts is a challenging task. 

Firstly, natural language texts must be processed and 

transformed into well-formed structured procedures 

interpretable by programs. Secondly, human instructions 

are naturally plagued with imperfections such as 

ambiguities, omissions, unintentional inconsistencies and 

errors (Gil, 2010), which must be resolved. 

Among the related work, many (Bielsa and Donnell, 

2002; Aouladomar, 2005; Gil, 2010) have studied the 

topological, grammatical and semantic patterns of 

instructional language to identify essential components of 

procedures and their interrelated information. However, 

very few have addressed automatically acquiring 

procedural knowledge from instructions, except Paris et 

al. (2002) and Gil et al. (2011), which are limited in 

certain ways.  

This paper makes two contributions towards the research 

on automatic procedural knowledge acquisition from 

texts. Firstly, we introduce a formal representation of 

procedural knowledge and we describe how the 

representation can be used to facilitate tasks such as 

question answering, documentation generation, and 

procedure automation. Secondly, we introduce a method 

of automatically extracting procedural knowledge from 

natural language instructional texts based on natural 

language processing techniques. This is then evaluated in 

three domains. The experiments have shown that, despite 

the high level of regularities in instructional language as 

discovered in previous studies, annotating instructions is a 

non-trivial task. Even human annotators have found it 

difficult to annotate certain procedural elements. As a 

result, the automatic extraction system has achieved good 

accuracy on some types of procedural elements, but also 

suffered from reduced accuracy where substantial 

exceptions are found. To encourage future research, we 

make available some of these corpora and their 

annotations. To our knowledge, this is the first annotated 

instruction corpus that is publicly available. 

The remainder of this paper is organised as follows. 

Section 2 discusses the motivations for this work in 

details, and proposes requirements for building automated 

procedural knowledge acquisition systems. Section 3 

reviews state-of-the-art and discusses their limitations. 

Section 4 introduces the proposed semantic representation 

and Section 5 proposes a method for automatic procedural 

knowledge acquisition based on NLP techniques. Section 

6 describes corpus preparation, experiments and 

discussion, followed by a conclusion in Section 7. 

2. Motivations 

Automatic procedural knowledge acquisition has broad 

application in practice. From the human users’ 

520



perspective, procedural knowledge can be used in 

automatic user documentation generation (Paris et al., 

2002; Paris et al., 2005), or support procedural question 

answering (Murdock et al., 2007).  In the area of process 

automation, procedural knowledge can be formalised as 

workflows or programs, which are used by a workflow 

engine or procedure program to automatically monitor 

context parameters and control the procedure execution. 

Usually, such data must be authored manually and require 

certain level of expertise. The capability of automatically 

acquiring procedural knowledge from instructions and 

generating executable procedures would be a desirable 

feature (Fritz and Gil, 2011; Gil, 2010) in automation 

systems.  

Although traditionally workflows and automated 

procedures are primarily used in business contexts for 

process controlling (Tang and Hwang, 1996; Muehlen, 

2001), recent research (Mühlhäuser, 2008) has introduced 

similar ideas in consumer environments. It has been 

argued that new products today are equipped with 

increasing amount of functionalities, accompanied with 

increasing complexity and difficulty of tasks associated 

with them. Researchers of smart products and smart 

environments have advocated equipping products with 

procedural knowledge and reasoning capabilities to 

enable them to guide users through complex tasks and 

provide necessary support, such as handling exceptions, 

proposing substitutions, and delegating sub-procedures 

(e.g., “pre-heat the oven” in a recipe) to intelligent agents 

that can automate certain parts of a procedure. For 

instance, in a ubiquitous “smart” kitchen environment, a 

central workflow engine monitors the state of a 

procedure, while “talking” to other intelligent devices 

such as oven, kettle, and food processor, to request for 

certain service and delegate parts of the procedure. In 

such an environment, different “smart” consumer devices 

possess specific procedural knowledge about carrying out 

certain tasks (e.g., pre-heat oven, blending), and 

manipulates parts of a procedure. The central 

management agent (workflow engine) controls the overall 

process, being able to request certain services and 

delegates part of a procedure; while the execution logic of 

each part is fulfilled by each distributed devices. To 

realise this scenario, an effective approach to acquiring 

procedural knowledge from traditional sources – 

instructions – is critical.  

However, as mentioned before, acquiring procedural 

knowledge from human natural language instructions is a 

challenging task. On the one hand, natural language 

instructions are not interpretable by machines; on the 

other hand, they often contain imperfections, which may 

hinder the automatic acquisition process. In the following, 

we propose several requirements for a procedural 

knowledge acquisition system: 

 A formal structured representation of procedure 

defines elements of procedures and their relations. 

This structured representation can support enabling 

machine interpretation (e.g., reasoning, monitoring), 

and the elements may correspond to programmable 

elements in a procedure program. Ideally, the 

representation should be domain-independent so it 

can be applied in any domains. 

 Natural language processing techniques that can 

automatically process instructions and generate 

structured representation of procedures according to 

the semantic representation. 

 Robustness in handling imperfections in 

instructional language: The system should capture, 

and ideally rectify errors or missing information 

found in instructions. 

3. Related Work 

Many works (Kosseim and Lapalme, 1998; Bielsa and 

Donnell, 2002; Aouladomar, 2005) have analysed 

instructional texts to study the topological and 

grammatical structures of instructions, which identify 

semantic elements of a procedure. These are often 

referred to as “semantic analysis” of instructions. The 

studies resemble an annotation process, where 

instructions are segmented into related expressions 

according to their underlying procedural semantics or 

functions.  It has been found that instructional language is 

often highly organised and consists of a confined set of 

grammar and vocabularies. Despite the extensive 

coverage of domains and large amount of documents 

studied in these works, none has studied the difficulty of 

annotating human instructions, or made the corpora 

available as reference for future work. Gil (2010) 

analysed instructions as means of learning procedures and 

has shown that procedures can be very complex and 

instructions can be difficult to interpret. Human 

instructions are naturally plagued with imperfections, 

such as omissions, inconsistencies, and errors. These have 

created challenges in learning procedures from 

instructions.  

While these studies address language analyses of 

instructions and representation of procedures, research on 

automatic procedural knowledge acquisition from 

instructions is scarce. Brasser and Linden (2002) and 

Paris et al. (2002) applied natural language processing 

techniques to automatically analyse instructions, extract 

lexical segments corresponding to certain procedural 

elements and create a structured representation in the 

form of “task models” – a key element of model-based 

user interface design. The representational model builds 

on top of state-of-the-art representations of procedures of 

instructions, including concepts such as task elements 

(steps), conditions, purposes, actions, objects of actions, 

their locations and instruments. Among these, only a 

limited set are dealt with by the system and tested. The 

outputs however, are not structured workflows or 

procedures, but rather semi-structured texts.  

Gil et al. (2011) proposed an interactive system that helps 

non-programmer users to translate natural language 

instructions to executable procedures, while handling 

certain ambiguities and omissions in instructions. The 

system relies on substantial prior domain knowledge, in 

the forms of controlled vocabularies and paraphrase 

521



patterns.  A set of controlled vocabularies (e.g., actions, 

objects) are pre-defined with respect to the domain of 

interest, such that the system prompts users to use 

“known” vocabularies rather than introducing new terms 

when writing instructions. Paraphrase patterns are lexical 

patterns to match segments of instructions to pre-defined 

program code. For example “descend to a new position 

with latitude=[X]” is mapped to a function that takes 

“latitude” as argument and serves the “descending” 

action. Heuristic and deductive reasoning are applied to 

fill or prompt for missing information in original 

instructions. The system is later combined with 

learning-by-demonstration in a framework for assisting 

end-user programming in Fritz and Gil (2011). The major 

limitation of this approach is its heavy dependence on 

prior domain knowledge. Although ultimately it is 

essential to encode domain knowledge for process 

automation, we view the learning process as two 

independent sub-processes: one identifies generic 

procedural elements and creates a structured 

representation; the other further processes them by 

attaching domain-specific knowledge to enable automatic 

execution. The first process can be generalisable to any 

instructions thus benefiting any domains; also, it can 

facilitate the next sub-process. 

4. Representation of Procedural 
Knowledge 

In this section, we discuss a semantic representation of 

procedural knowledge in order to support various tasks. 

Previous studies such as Aouladomar (2005), Bielsa and 

Donnell (2002), Delpech and Saint-Dizier (2008), Gil et 

al. (2011), Kosseim and Lapalme (1998) and Paris et al. 

(2002) have proposed different formalisations of 

procedures. The formalisation defines a structured 

representation of procedures by specifying semantic 

elements of a procedure and their interrelated 

information. We propose a generic representation shown 

in Figure 1, which as we shall show, can support a number 

of tasks related to procedural knowledge. 

 

Figure 1. The formal representation of a procedure. 

 

We define a procedure as an ordered sequence of steps. A 

step may be activated when certain pre-condition is 

satisfied. Likewise, the step may reach its end state when 

certain post-condition is satisfied. Pre-condition and 

post-condition are further decomposed to subject (e.g., 

oven) and property (e.g., temperature=200C). A step may 

have an individual objective to achieve, which is 

represented by purpose. A step consists of: an action verb, 

which represents the core activity or action (e.g., blend, 

pre-heat); actee, which refers to the object(s) involved; 

instrument, which refers to the mechanisms used for 

performing the activity; and action modifier, which are 

constraints on the activity. Action modifiers are 

sub-classed into three generic types, temporal parameters 

(TemporalParam) describe the duration of an action, such 

as “10 minutes”; spatial parameters (SpatialParam) 

describe directional and location change, such as “pull the 

handle upwards”, “strain the juice into the glass”, “; 

quantitative parameters (Quant.Param) generalize 

expressions of quantitative amount, such as “10 ml”, “five 

strawberries”, “click twice. Figure 2 shows example 

instructions and their structured representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example instructions and corresponding 

structured representation 

 

This generic representation of procedures can be used to 

support different tasks related to procedural knowledge, 

such as documentation generation, procedural question 

answering and procedure automation.  

Documentation generation: According to Gil (2010), 

creating comprehensive and comprehensible instructions 

and user documentations is not a trivial task. Procedures 

can be very complex and natural language instructions are 

“naturally plagued with omissions, oversights, 

unintentional inconsistencies, errors, and simply poor 

design”. We argue that the proposed formal representation 

of procedures can support human authors in this process 

by specifying the necessary elements in a procedure and 

their interrelated information. In fact, some work on 

Natural Language Generation has already explored the 

usage of a “task model” – simplified procedure formalism 

Turn on the heater until temperature reaches 26C. 

 ActionVerb= “turn on” 

Actee = “heater” 
Post-condition= Subject: temperature; Property: 26C 

To make the paste, blend the chick pea for 1 minute using a 
blender. 

 Purpose= “make the paste” 

ActionVerb= “blend” 
Instrument= “blender” 
Actee = “chick pea” 
ActionModifier-TemporalParam= “1 minute” 
 

Set the oven to 200C/Gas mark 6. 

 ActionVerb= “set” 

Actee = “oven” 
ActionModifier-Quant.Param= “200C” OR  “gas 
mark 6” 

522



– to guide users in the creation of documentation (Paris et 

al., 2002; Paris et al., 2005).  

Question answering: Recent research has shown that 

procedural questions are the second largest set of queries 

on search engines (De Rijke, 2005). Delpech and 

Saint-Diezer (2008) has proposed to parse procedural 

texts into structured representations to support procedural 

question answering. The representation identifies key 

information elements in a procedure such as titles, advices 

and goals, which can be used by search engines to locate 

important information. Our proposed representation is 

even more fine-grained, supporting more specific 

questions related to a procedure such as “what tools are 

required to perform the task” (instrument), and “how do I 

know when to move on to the next step” (pre-/post- 

condition). These are crucial information to support users 

through a task. 

Procedure automation: The generic representation can 

be coupled with domain-specific knowledge in order to 

support procedure automation as illustrated in the 

scenarios of SmartProducts (Mühlhäuser, 2008). The 

scenarios depict a ubiquitous environment in which a 

number of smart devices that each has certain 

functionalities can communicate and collaborate to assist 

users to complete a procedure in a distributed manner. For 

example, in a smart kitchen environment, the overall 

sequence of a recipe process can be coordinated by a 

central device. For each step, it broadcasts the metadata 

across the network to other devices. Devices are equipped 

with domain knowledge, and are able to recognise data 

that describe its functionalities. For example the step with 

an ActionVerb “blend” and a parameter “1 minute” can be 

recognised by a smart food processor which matches the 

action to its functionality “blend” with the timing 

parameter of “1 minute”. It then sets up these parameters 

automatically and responds to the central coordinating 

device to request for user attention and task delegation. 

Upon receiving the nonfiction the user simply places the 

ingredients into the food processor to trigger the process, 

and then continues with other sub-tasks.  

One essential step to enable this intelligent behaviour is a 

structured representation of procedures that specifies key 

information with adequate level of details, as well as the 

capability to automatically extract such structured 

representations from legacy data. As it is clear in the 

example, our formalisation of procedures provides 

essential support for this purpose. 

5. Automatic Extraction from Texts 

Our method of automatic procedural knowledge 

extraction from texts employs natural language parsing to 

partition sentences into related segments, from which a 

set of finite-state grammars are applied to extract 

procedural elements defined in Figure 1. Next, simple 

rule-based reasoning is applied to resolve certain types of 

omissions and ambiguities in instructions. 

 

Natural language parsing: In this process, full syntactic 

parsing is applied to individual sentences to identify the 

grammatical segments and their hierarchical relations. 

The parsing process takes an input sentence and produces 

a tree representation of the grammatical segments of a 

sentence, as shown in Figure 3.  

Figure 3. Parsing result of an example sentence using 

the Stanford Parser. S=sentence; SBAR=subordinate 

clause; VP=verb phrase; NP=noun phrase; 

PP=propositional phrase; CC=Coordinating conjunction. 

For the complete reference of the tagset, see Taylor et al. 

(2003). 

 

In Figure 3, a sentence (S) is divided into branches of 

compositional segments, each of which is then further 

divided into lower level grammatical segments. We 

extract verb phrases (VP) from the first level branch of the 

parse tree as expressions of core activities, denoted by 

VP-expr. Additionally, each VP-expr may have associated 

contextual information, such as the SBAR (“When the 

engine is cold”) segment in Figure 3. These segments are 

also extracted with respect to their VP-expr, and we define 

these expressions as “VP contextual expression”, denoted 

by VP-cntxt. Other types of grammatical segments that 

may serve as VP-cntxt include prepositional phrases (PP), 

adverb phrases (ADVP), simple declarative clauses (S), 

and noun phrases (NP) in case the concerning verb phrase 

has an actor. Figure 4 shows some examples. 

 

 

 

 

 

Figure 4. Examples of VP-cntxt. All parsing results are 

obtained using the Stanford Parser. 

 

Note that VP-cntxt may be at the sibling level of a 

VP-expr (SBAR in Figure 3), or as branch of a VP-expr 

(PP in Figure 3). Apparently, the examples show that 

VP-expr and VP-cntxt contain lexical information that can 

be processed to identify the structured elements of a 

procedure. For this purpose, VP-expr and associated 

VP-cntxt are submitted to the next extraction process, 

which is a finite-state grammar that makes use of the 

resulting parse tree. 

The finite-state extraction grammar consists of sets of 

rules that exploit the grammatical stereotypes discovered 

in earlier studies. For example, an SBAR that begins with 

“if” or “when” often indicates an expression of 

conditions; a sentence that starts with “to” followed by a 

<PP>For safety reasons</PP >, disable the front airbag 
system by… 

<S>To enable debugging mode</S>, hit “Ctrl + F9”.  

523



verb phrase often indicates an expression of a purpose. 

We refer to these words as markers. The extraction 

grammar searches for markers within VP-expr and 

VP-cntxt using regular expression patterns. If a marker is 

found, the segment is further analysed grammatically to 

classify the expressions into one of the elements in Figure 

1, and extract structured contents. Figure 5a and 5b show 

examples of simplified extraction grammar for VP-expr 

and VP-cntxt. 

Figure 5a. Example extraction grammar for VP-expr and 

the VP-cntxt it contains. Rectangles represent components 

defined in Figure 1; underlines represent segments in the 

parse tree; [square brackets] represent a pattern to be 

fulfilled; (round brackets) represent words and phrases 

from sentences; bold texts correspond to the texts shown 

in Figure 3. 

Figure 5b. Example extraction grammar for VP-cntxt 

using same notations as in Figure 5a. 

 

Although our method for procedural elements extraction 

is based on the similar principles as Brasser and Linden 

(2002) and Paris et al. (2002), the essential difference is 

that it relies on syntactic parsing and analyses texts based 

on constituents of a parsing tree while Brasser and 

Linden, and Paris et al. employed WordNet to classify 

verbs and nouns and grammatical heuristics to recognise 

procedural elements at per-token level. The advantages of 

the parsing-based method are two-fold. Firstly, different 

parsers built for particular domains can be easily plugged 

in to cope with varying vocabularies (especially verbs) 

across domains. Secondly, parsers based on statistical 

models generally have high accuracy in grammatical 

analysis, which improves the overall accuracy of 

procedural analysis. General purpose statistical parsers 

are usually available for many different languages, such 

as English, Spanish and Portuguese. 

 

Rule-based reasoning is applied to resolve omissions 

and ambiguous references in instructions and populate 

corresponding procedural components: 

 Missing actees, arguments of actions. 

 Missing subjects in conditions. 

 Ambiguous references like “it”, “them”. 

We adopt a simple rule that makes inference based on the 

context of a step. If an actee is missing, or denoted by a 

reference word, the rule simply assigns the actee from the 

previous step; similarly, for subject of pre- and 

post-conditions, the rule simply assigns the actee from the 

main step that the condition is associated with. For 

example, the second instruction in Figure 6 will be 

assigned the actee “chicken” found in the first instruction 

to form a complete step of a procedure. 

 

 

 

Figure 6. Example instruction with missing actee 

6. Evaluation and Discussion 

This section describes experiments for evaluating the 

automatic procedure extraction. As mentioned before, 

there are no public data available for the studies of 

procedural knowledge acquisition. Therefore, we firstly 

describe the corpus preparation process, in which we 

gather instructions from three domains, and create gold 

standard annotations according to the proposed 

representation; next, we explain the methodology for 

evaluating the automatic procedural knowledge extractor 

and show results. 

6.1 Data preparation 

We collected 30 cooking recipes from the BBC recipe 

website
1
, 30 car maintenance instructions from Fiat car 

manual
2

 and eHow.com, and 14 example procedure 

descriptions from the A380 maintenance manual
3
. The 

instructions in the Aircraft Manufacturing domain are 

more complicated since they often involve multiple 

sub-procedures. For instructions with sub-procedures, we 

separated the descriptions of the sub-procedures from 

their parent procedures, thus transforming the 14 

examples into 25 instructions. On average, each 

instruction contains 5.3 statements, each containing an 

average of 13 tokens (i.e., words and symbols separated 

by spaces). For the kitchen and the car domains, on 

average, each instruction contains 9 statements, each 

containing an average of 12 tokens.  

In order to evaluate the automatic extraction system, we 

ask human annotators to create a gold standard against 

which the automatically generated content is compared. 

Since the system automatically segments instructions and 

classifies them into the components defined in the 

semantic representation, human annotators are requested 

to do the same by annotating the segments using an 

annotation tool. For each domain, three annotators are 

invited to perform the task, and a subset (25%) of the 

corpus is used for studying Inter-Annotator-Agreement 

following the approach in Hripcsak and Rothschild 

(2006). 

                                                           
1
 http://www.bbc.co.uk/food/recipes/ 

2
 http://aftersales.fiat.com/elum/SelectModel.aspx?mark 

ID=1&lan guageID=1 
3
 Due to data distribution policies, this part of the data is 

unavailable to the public. 

1. Season the chicken with salt and thyme. 

2. Griddle for 10 minutes.  

524

http://www.bbc.co.uk/food/recipes/
http://aftersales.fiat.com/elum/SelectModel.aspx?mark%20ID=1&lan%20guageID=1
http://aftersales.fiat.com/elum/SelectModel.aspx?mark%20ID=1&lan%20guageID=1


Essentially, this is similar to the analyses in previous 

studies such as Kosseim and Lapalme (1998), Brasser and 

Linden (2002), Aouladomar (2005) and Gil (2010), who 

classified segments of instructions according to their 

semantics and studied their statistical distribution. 

However, as mentioned before, none of these have made 

their corpora or annotations available, nor studied the 

difficulty of annotation in the process. In fact, as indicated 

by the IAA for annotating procedural elements in Table 1, 

annotating instructions is a non-trivial task. Even human 

annotators have found it difficult to annotate certain 

procedural elements, particularly instrument and spatial 

parameter. 

 

Procedural 
component 

Total in 
the 

corpora 

Sampled 
average 

IAA 

Condition (pre, post) 113 0.82 

Purpose 75 0.82 

Instrument 84 0.78 

ActionVerb 751 0.95 

Actee 732 0.89 

TemporalParam 51 0.96 

QuantitativeParam 24 0.89 

SpatialParam 149 0.81 

Table 1. Data statistics and IAA 

 

Examples of ambiguities include “Brush the chicken with 

olive oil”, for which one annotator considers “chicken” 

and “olive oil” both being the actee of the action verb 

“brush”, while another treats “olive oil” as instrument. 

Another typical example is “Heat the oil on a griddle pan 

over a high heat”, for which annotators disagree on 

annotating instrument (griddle pan v.s. high heat or both). 

These have shown that analysing and annotating 

instructions is not an easy task, and in many cases, cannot 

be accomplished by simple pattern matching as suggested 

in previous works. On the contrary, annotators apply their 

background knowledge to make inferences and reasoning, 

which will cause inter-annotator disagreement. There is 

no clear difference in IAA between the three domains, 

which possibly suggests that the representational model 

and their distribution in corpus are generic. 

To our knowledge, this is the first work that has reported 

an analysis of the difficulty in annotating instructions. The 

corpora are available from: 

http://staffwww.dcs.shef.ac.uk/people/Z.Zhang/resources

/instructionAnnotation.zip.   

6.1 Results and discussion 

The data are used to evaluate the output produced by the 

finite-state extraction grammar. The results are shown in 

Table 2. In addition, as discussed before, the only other 

study that has reported a similar evaluation is Paris et al. 

(2002). The authors used a corpus of 9 instructions from 

the software documentation domain. As a comparison, we 

also summarise the evaluation in the rightmost column in 

Table 1. Although we were unable to obtain the corpus for 

a truly comparative evaluation, we believe the results are 

still useful reference. 

 

Procedural 
component 

F1 Paris et al. 
2002 

Condition (pre, post) 76.4 54.5 

Purpose 76.1 30.2 

Instrument 68.3 - 

ActionVerb 89.4 77.6
4
 

Actee 86.2 

TemporalParam 97.3 - 

QuantitativeParam 84.1 - 

SpatialParam 73.2 - 

Table 2. Experiment Results 

 

As shown in Table 2, our method in general has achieved 

high accuracy in this task. Compared against the results 

by Paris et al. (2002), the proposed extraction method 

achieved significant improvement in accuracy. We 

believe this is due to the robustness of syntactic parsing 

and the extraction grammar built on top of it. It is 

particularly difficult to extract instances of instrument and 

spatial parameter. Careful analysis show that a large 

proportion of errors are due to miss-alignment between 

the extraction patterns and their semantics. For instance, 

in examples like “fry … in a pan” and “blend … in a food 

processor”, “pan” and “food processor” have been 

classified as spatial parameter due to the marker word 

“in”. In some cases, the extraction patterns are 

insufficient. For example, in “spread the butter, followed 

by ketchup”, only “butter” is recognized as actee. This 

caused a reduction in recall, and more complex patterns 

are required to handle such situations. Meanwhile, special 

phrases and terms have caused errors in syntactic parsing. 

For example, phrases such as “stir fry”, “pan fry”, “pour 

in”, “scatter in” and “throw in” should be treated as verb 

phrases; instead, they are parsed as verbs followed by 

noun phrases, or prepositional phrases. These 

observations show that while instructional language does 

exhibit certain structural and lexical patterns, it is not 

always straightforward to apply these patterns in language 

analysis and procedural knowledge acquisition. An ideal 

system should be robust enough to account additional 

features and deal with exceptions. We also found no 

significant difference in the accuracies obtained from 

different domains, which suggests that the proposed 

representation and the extraction system are generic. 

To study the accuracy of the rule-based reasoning, we 

                                                           
4
 Paris et al. (2002) reported 77.6 for “task element”, 

which is in general equivalent to ActionVerb plus Actee in 
our model. 

525



manually analysed the output against the natural language 

instructions. Out of all resolved omissions and ambiguous 

references, the simple rules have achieved an average of 

57% accuracy across the three domains. A large 

proportion of errors are due to special verb phrases 

composed of a verb followed by a preposition, which have 

been treated as missing verb arguments. Examples of such 

include “pour in the water” and “scatter in the leaves”.   

7. Conclusion 

This paper introduced an approach and an implemented 

solution for automatic procedural knowledge acquisition 

from natural language instructions. A generic 

representation of procedural knowledge has been 

proposed to support various tasks with procedural 

knowledge. An automatic extraction system built on 

natural language processing techniques processes 

instructional texts and generates procedural knowledge 

according to the proposed representation. Meanwhile, 

certain omissions and ambiguous references in the 

instructions are resolved by simple rules.   

To verify this approach and evaluate the implementation, 

we firstly carried out corpus annotation exercise to create 

public, re-usable annotations for instructions. It has been 

shown that despite the regularities in instructional 

language discovered in the previous studies, annotating 

instructions remains a challenging task. Annotators apply 

their background knowledge and reasoning in annotation, 

which has caused inter-annotator-disagreement. We 

suggest that future research address the instruction 

annotation process with more transparency, to study the 

difficulty of such tasks. 

Using these annotations as gold standard, the automatic 

extraction system based on extraction grammar has been 

evaluated in three domains and obtained generally good 

accuracies, which significantly outperformed a similar 

previous work. This suggests that the proposed 

representation and the automatic extraction method are 

both generic, and can be applied or adapted to other 

domains for the problem of procedural knowledge 

acquisition. However, results are less satisfactory on 

instrument and spatial parameter, where IAA is the 

lowest. This shows that, despite the stereotypical patterns 

discovered in instructional languages, there is a sufficient 

level of exceptions that invalidate the method. Pattern 

based system may suffer from insufficient coverage, and 

less flexibility in coping with such exceptions. Instead, a 

more robust approach, such as statistical machine 

learning, may bring further improvement. Although this 

type of method requires a large amount of training data 

(i.e., in the form of annotated instructional texts), it is well 

known for its robustness in learning different models 

tailored for diverse data. This will be explored in the 

future. Concerning the proposed semantic representation, 

future work will aim to incorporate more complex 

procedural relations and controls, such as concurrency 

and alternatives. Attention will also be paid to supportive 

information for procedures, such as precautions and 

warnings. This kind of information is found to be very 

important in, e.g., the Aircraft Manufacturing domain. 

Often, the precaution notes include details of how a step 

of a procedure should be carried out and things to avoid. 

While these are not strictly part of a procedure, they 

comprise very important information that would ideally 

be captured. An adequate representation model should 

also capture such information. 

8. References 

Aouladomar, F. 2005. A preliminary analysis of the 

discursive and rhetorical structure of procedural texts. 

In Symposium on the Exploration and Modeling of 

Meaning 

Bielsa, S., Donnell, M. 2002. Semantic functions in 

instructional texts: a comparison between English and 

Spanish. In Proceedings of the 2nd International 

Contrastive Linguistics Conference, p.723-732 

Brasser, M., Linden, K. 2002. Automatically eliciting task 

models from written task narratives. Fourth 

International Conference on Computer-Aided Design 

of User Interfaces 

Delpech, E., Saint-Dizier, P. 2008. Investigating the 

Structure of Procedural Texts for Answering How-to 

Questions, in LREC2008 

De Rijke, M. 2005. Question Answering: What’s Next? In 

the 6th International Workshop on Computational 

Semantics 

Frantzi, K., Ananiadou, S. Tsujii, J. 1998. The 

C-value/NC-value method of automatic recognition for 

multi-word terms. Proceedings of the Second European 

Conference on Research and Advanced Technology for 

Digital Librarie 

Fritz, G., Gil, Y. 2011. A formal framework for combining 

natural instruction and demonstration for end-user 

programming. In Proceedings of the 16th international 

conference on intelligent user interfaces 

Gil, Y. 2010. Human Tutorial Instruction in the Raw. 

Submitted for publication, Available from 

http://www.isi.edu/~gil/gil-ker10.pdf. 

Gil, Y., Ratnakar, V., Fritz, C. 2011. TellMe: Learning 

procedures from tutorial instruction. In Proceedings of 

the 16th international conference on intelligent user 

interfaces. 

Hripcsak, G., Rothschild, A. 2005. Agreement, the 

F-measure and reliability in information retrieval: In 

Journal of the American Medical Informatics 

Association, 296-298. 

Kosseim, L., Lapalme, G. 1998. Choosing Rhetorical 

Structures to Plan Instructional Texts. In 

Computational Intelligence, vol.16 (3), pp. 1-38. 

Muehlen, M. 2001. Workflow based process controlling – 

or: what you can measure you can see. In Layna Fischer 

(Ed.): Workflow Handbook 2001. Future Strategies, 

Lighthouse Point, FL2001, pp. 61-77 

Mühlhäuser, M. (2008). Smart Products: an introduction. 

In: Constructing Ambient Intelligence - AmI 2007 

Workshops, pp. 158-164, Springer Verlag 

Murdock, V., Kelly, D., Croft, W., Belkin, N., Yuan, X. 

2007. Identifying and improving retrieval for 

526



procedural questions. In Information Processing & 

Management, 43 (1), pp. 181-203 

Paris, C., Colineau, N., Lu, S., Linden, K. 2005. 

Automatically generating effective online help. 

International Journal on E-learning, 4:83-103 

Paris, C., Linden, K., Lu, S. 2002. Automated knowledge 

acquisition for instructional text generation. In 

Proceedings of SIGDOC’02. 

Taylor, A., Marcus, M., Santorini, B. 2003. The Penn 

Treebank: An Overview. In Abeillé (2003) 

Tang, J., Hwang, S. 1996. Handling uncertainties in 

workflow applications. In Proceedings of CIKM’96 

Zhang. Z., Uren, V., Ciravegna, F. (2010). Position paper: 

A comprehensive solution to procedural knowledge 

acquisition using information extraction. In 

Proceedings of KDIR2010, Valencia, 2010. 

527


