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Abstract
We consider a non-intrusive computer-vision method for measuring the motion of a person performing natural signing in video
recordings. The quality and usefulness of the method is compared to a traditional marker-based motion capture set-up. The accuracy of
descriptors extracted from video footage is assessed qualitatively in the context of sign language analysis by examining if the shape of
the curves produced by the different means resemble one another in sequences where the shape could be a source of valuable linguistic
information. Then, quantitative comparison is performed first by correlating the computer-vision-based descriptors with the variables
gathered with the motion capture equipment. Finally, multivariate linear and non-linar regression methods are applied for predicting the
motion capture variables based on combinations of computer vision descriptors. The results show that even the simple computer vision
method evaluated in this paper can produce promisingly good results for assisting researchers working on sign language analysis.
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1. Introduction
When analysing sign language videos, linguists routinely
segment the stream of signing into signs and inter-sign tran-
sitions (for a discussion, see (Jantunen, 2013)). The seg-
mentation has been traditionally done by observing, from
the video, the visible changes in the direction of the move-
ment of the signer’s active hand, corresponding to the mo-
ments when the speed of the hand is at its slowest. Recently,
many researchers have started to enhance the segmentation
process with quantitative measurement concerning the hand
movement (e.g. (Duarte and Gibet, 2010; Jantunen, 2013)).
For this task, the most accurate method has always been
considered to be motion capturing.
However, because motion capture cannot be used for pre-
recorded material and is always tied to laboratory set-
tings, we have in our previous work introduced a computer-
vision-based method that enables researchers to track and
measure the motion of the hand and other articulators on
the basis of the video only (Jantunen et al., 2010; Karppa
et al., 2011). In this paper, we evaluate the accuracy of this
method by comparing its results to the speed measurements
obtained through motion capture. The comparison is based
on one 52-second-long recording of continuous signing in
Finnish Sign Language, collected with the motion capture
equipment. During recording of that data, the movements
of the signer were also recorded with a digital video camera
directly facing him, and our computer-vision-based motion
analysis has been applied to this video.

After calculating a number of features describing the mo-
tion of the articulators in the video material, these val-
ues were qualitatively compared with their motion cap-
ture counterparts. Finally, a quantitative analysis was per-
formed by calculating correlations between the motion cap-
ture measurements and the video-based motion values and
their multivariate regression combinations. The results
show an encouragingly good agreement between the mo-
tion capture and video-based data.

2. Methods for analysing sign language
material

2.1. Motion capture recordings
The motion capture data used in the experiment was
recorded with an eight-camera optical motion capture sys-
tem (ProReflex MCU120) at a frame rate of 120 Hz by
tracking the three-dimensional positions of 20 small ball-
shaped markers attached to the signer’s upper torso, head,
and each arm and hand as illustrated in Figure 1f. How-
ever, in the present study, only the data derived from the
ulnar and radial wrist markers and the index finger marker
of the active hand were used in the analysis.
The Matlab Motion Capture Toolbox (Toiviainen and
Burger, 2010) was used for further processing of the data.
After filling the gaps that had occurred during the record-
ing, the active hand wrist centroid segment was calculated
on the basis of the ulnar and radial wrist marker data. The
final processing step included the calculation of the speed
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Figure 1: (a)–(e) Processing stages in the video analysis: (a) face detection, (b) detection of skin-coloured regions, (c) skin
blob detection, (d) fitting of ASM active shape models, (e) KLT interest point tracking. (f) The skeleton model used with
the motion capture equipment.

(i.e., the magnitude or Euclidean norm of the velocity data)
of the wrist segment. In the present study, the results of the
computer-vision-based method were compared to this mag-
nitude data, as well as to the speed of the right index finger
marker.

2.2. Computer-vision-based analysis
Figure 1 illustrates the main processing stages of our
computer-vision-based method that was used for extract-
ing motion descriptors from the video in the present study.
The signer’s face was first detected (Figure 1a) by using the
Viola-Jones cascade face detector (Viola and Jones, 2001).
As the next step, skin-coloured regions were located by
using a detector based on multiple multivariate Gaussian
distributions in the HSV colour space (Figure 1b). From
the skin detector output, interconnected skin pixel regions
were extracted using elementary image processing opera-
tions. Heuristic rules were used for determining whether
the regions corresponded to either of the hands or the face
region of the signer, or their combinations (Figure 1c).
The computer-vision-based analysis extracts two comple-
mentary sets of motion descriptors from the video. Firstly,
a separate point distribution model (PDM) (Cootes et al.,
1992) was constructed for describing each of the three mod-
elled body parts (both of the hands and the head). The
point distribution models were used as a basis for active
shape models (ASM) (Cootes et al., 1995) that track the
body part poses and shapes between consecutive frames of
video (Figure 1d), giving arise to a set of 18 descriptors for
each frame.
As another motion analysis method, local motions in the

detected skin regions were estimated by detecting distinc-
tive corner points (Figure 1e) and tracking them with the
Kanade-Lucas-Tomasi (KLT) algorithm (Shi and Tomasi,
1994) . For each frame of the video, the movements of the
tracked points were summarised with 35 descriptors.

3. Comparison of video analysis results and
motion capture recordings

3.1. Qualitative observations
The first step in comparing the velocity estimates produced
by the two methods was qualitative inspection of the corre-
spondence between the wrist velocity magnitude derived by
motion capture and one of the statistics extracted by com-
puter analysis: the active hand ASM velocity magnitude.
For this purpose, velocity graphs describing both of them
were imported into ELAN annotation software1. In ELAN,
the graphs were time-aligned with the video of the sign-
ing and manually created annotation cells corresponding to
signs and transitions.
The actual comparison was done by visually observing the
degree of congruence of the line graphs during the first
eight seconds of the signing, corresponding to the first full
sentence of the story as seen in Figure 2. Three features
were observed from the graphs for both signs (n=18) and
transitions (n=17): the number of peaks, the direction of
the line, and the domain of the main parabola(s) of the line.
The two lines were treated congruent if all three features
were identical, relatively congruent if one or two features

1 http://www.lat-mpi.eu/tools/elan/

2422



Figure 2: ELAN screenshot of the first eight seconds of the video used in the qualitative analysis. The curves show the
wrist marker speed W|v| and the ASM centroid speed ASM |v|.

were identical, and incongruent if none of the features were
identical.

The main results of the qualitative analysis are given in Ta-
ble 1. The results show that, of the total of 35 analysed
sequences, two thirds fell into categories congruent and rel-
atively congruent, and one third was classified as incongru-
ent. Reflecting perhaps the qualitative difference between
signs and transitions (Jantunen, 2013), the graphs associ-
ated with signs included more cases of pure congruence
and incongruence whereas graphs associated with transi-
tions showed mostly relative congruence. However, for
both signs and transitions, incongruent cases were in mi-
nority, and the most congruent feature in the graphs was the
one describing the overall shape of the main parabola(s).

A more detailed analysis of the data revealed that move-
ments along the depth dimension were the primary cause
of incongruence in the results; all the incongruent cases—
both signs and transitions—included this type of move-
ment whereas in the most congruent cases such movements
were not noticeably present (see Figure 2). This was ex-
pected (Jantunen et al., 2010; Karppa et al., 2011) as the
computer-vision-based method operates in the 2D space
lacking the dimension of depth, inherently present in the
3D motion capture.

signs transitions
congruent 5 3
relatively congruent 5 11
incongruent 8 3

Table 1: Graph congruence for signs and transitions.

3.2. Quantitative analysis
In the quantitative part of the analysis, we first calcu-
lated the numerical correlation between the wrist marker
speed W|v| and the active hand active shape model veloc-
ity ASM |v|, the same quantities that were already studied
in the qualitative analysis. Then, we extended the analy-
sis to contain all the 53 video-based descriptors, including
the horizontal and vertical interest point speed descriptors
KLT

∑
vx and KLT

∑
vy , respectively. From the motion

capture measurements we additionally used the active hand
index finger marker velocity components Fvx and Fvy .
We studied exhaustively the agreement between all pairs
of the above-mentioned motion capture measurements and
video-based descriptors alone, and also formed multivariate
regressors from the descriptors for predicting the values of
the motion capture measurements. The level of agreement
was measured with energy-normalised correlation and used
for assessing the usefulness of the descriptors. To achieve
this, all motion capture measurements and predictions were
z-normalised by subtracting their average values and nor-
malising their variance to unity. As the multivariate regres-
sion methods require training samples, the data was divided
into training and test parts and the correlations were mea-
sured only in the latter half.

3.3. Correlations between individual variables
Here, each computer-vision-based descriptor was corre-
lated individually against every motion capture variable.
A selection of most relevant correlation coefficients is pre-
sented in Table 2.
The highest correlation (0.507) with respect to the wrist
marker speed was shown by the descriptor measuring the
active hand ASM centroid velocity, which is also the de-
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Figure 3: The index finger horizontal motion capture veloc-
ity component Fvx and the sum of horizontal KLT interest
point velocity components KLT

∑
vx plotted aligned.

W|v| Fvx Fvy
ASM |v| 0.507 −0.142 0.222
KLT

∑
vx −0.175 0.704 0.227

KLT
∑

vy −0.167 0.221 0.673

Table 2: Correlations between motion capture features
(columns) and computer-vision-based descriptors (rows).

scriptor used in the qualitative analysis above and shown in
Figure 2. This descriptor was closely followed by a interest
point statistic measuring the average speed of tracked KLT
interest points with a correlation of 0.475.
The index finger’s horizontal and vertical velocity compo-
nents had a strong match with the corresponding KLT in-
terest point velocity component sums, indicating that those
descriptors may be reasonably useful as such. This was
indeed expected since the fingers contain more area suited
for interest point detection than the wrist area. The hor-
izontal velocity component descriptors are shown aligned
for a portion of the data in Figure 3 and as a scatter plot in
Figure 4.
Out of the eight most strongly correlating descriptors, seven
were based on tracked points and only one on ASMs. It is
interesting that some of the strongly correlating variables
measure motion of the non-active hand, which thus seems
to correlate with the motion of the active hand. Another
interesting observation is that the number of tracked points
has a strong negative correlation with the target velocity.
This is explained by the fact that the tracker more often
loses track of fast moving points. The magnitudes of cor-
relation show that the descriptors may be reasonably useful
even individually.

3.4. Multivariate regression
Regression was first performed linearly using different sub-
sets of explaining variables. The best results were obtained
using both interest point tracking and ASM descriptors of
the active hand motion together. For the wrist marker speed
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Figure 4: A scatter plot of the horizontal motion capture
velocity of the active index finger Fvx as the function of the
corresponding KLT

∑
vx descriptor.

W|v|, the predicted signal had correlation of 0.700, which
is clearly stronger than that of any single descriptor. Sets
of point-tracking-based descriptors outperform the sets of
ASM descriptors, but combining both kinds of descriptors
would appear to give the best results. On the contrary, for
the index finger velocity components, Fvx and Fvy , the re-
sults did not improve very much compared to the univariate
case; correlations for the regressed test set were 0.705 and
0.702, respectively. Neither shows a significant improve-
ment, suggesting that the descriptors may be as useful as
they can be on their own. Predictions made in this manner
for the right hand index finger marker horizontal velocity
can be seen in Figure 5.
Some of the descriptors turned out to be irrelevant and
noise-like for the linear prediction task, and using all of the
variables led to rather modest correlation of 0.439 for the
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Figure 5: A part of the test data (blue) of the horizontal
velocity component Fvx of the index finger marker with the
multiple linear regression plotted on it (red).
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Figure 6: A part of the test data (blue) of the vertical ve-
locity component Fvy of the index finger marker with the
OP-ELM prediction plotted on it (red).

wrist velocity, which is worse than with the best individ-
ual regressor variables. The non-active hand descriptors do
not contribute to the prediction quality when also the active
hand descriptors are used, even though they do correlate
somewhat strongly with the target variable individually.
Next, non-linear multivariate regression with the OP-
ELM (Miche et al., 2010) method was used for predicting
the motion capture variables. For the three motion capture
variables, W|v|, Fvx and Fvy , the corresponding correla-
tions when regression was performed with OP-ELM were
0.707, 0.704, and 0.706, respectively. In terms of corre-
lation, the results were thus very similar to those with lin-
ear regression, which might indicate that linear methods are
powerful enough for extracting all the information present
in the computed motion descriptors. Predictions for the fin-
ger marker vertical velocity can be seen in Figure 6.

4. Conclusions
The qualitative and quantitative analysis of the data demon-
strates that the presented computer-vision-based motion
analysis produces promisingly accurate results. The de-
scriptors based on interest point tracking and an active
shape model contain complementary information that can
be usefully combined to improve the quality of the motion
analysis and the prediction of the articulator speeds.
The results show that our computer-vision-based motion
tracking method is already an effective supportive tool in
the annotation and analysis of sign language. The method
tracks the motion of articulators at an accuracy encourag-
ingly similar to that of traditional motion capture technol-
ogy. The results of the qualitative analysis suggest that the
main differences in the correspondences of measurements
based on these two methods may eventually be fairly pre-
dictable, i.e. caused by dimensional differences.
Our plan is to develop the method further and test it with
varied video material. This work will include, for example,
a more detailed modelling of articulators through which we
expect to obtain more precise information concerning, for
example, hand-internal movements and facial gestures.
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