
Mining Hindi-English Transliteration Pairs from Online Hindi Lyrics

Kanika Gupta
1*

, Monojit Choudhury
2
, Kalika Bali

2

1
NI Systems (India) Pvt. Ltd. Bangalore,

2
Microsoft Research Labs India

1
Bannerghata Road, Bangalore India,

2
“Vigyan”, 9 Lavelle Road, Bangalore India

Email: kanika.gupta@ni.com, monojitc@microsoft.com, kalikab@microsoft.com

*
 This work was done while the author was working at Microsoft Research Labs India.

Abstract

This paper describes a method to mine Hindi-English transliteration pairs from online Hindi song lyrics. The
technique is based on the observations that lyrics are transliterated word-by-word, maintaining the precise word
order. The mining task is nevertheless challenging because the Hindi lyrics and its transliterations are usually
available from different, often unrelated, websites. Therefore, it is a non-trivial task to match the Hindi lyrics to
their transliterated counterparts. Moreover, there are various types of noise in lyrics data that needs to be
appropriately handled before songs can be aligned at word level. The mined data of 30823 unique Hindi-English
transliteration pairs with an accuracy of more than 92% is available publicly. Although the present work reports
mining of Hindi-English word pairs, the same technique can be easily adapted for other languages for which song
lyrics are available online in native and Roman scripts.

Keywords: Transliteration data, Data Mining from web, Hindi-English

1. Introduction

Due to the popularity of local language songs, a huge

collection of song lyrics is available on the Web for

languages like Hindi, Bengali, Telugu, Tamil, Arabic,

Chinese, Japanese and Korean, to name a few. The lyrics

for such languages, which use non-Roman script, are

often present in both the native script and Roman

transliterated form. Therefore, this data can be potentially

mined to obtain transliteration pairs between the native

and the Roman scripts, which can be used for training and

evaluation of transliteration systems.

In this work, we describe a method to mine Hindi-English

transliteration pairs from online Hindi song lyrics. The

technique is based on the observations that lyrics are

transliterated word-by-word, maintaining the precise

word order. The mining task is nevertheless challenging

because of two reasons. First, the Hindi lyrics and its

transliterations are usually available from different, often

unrelated, websites. Therefore, it is a non-trivial task to

match the Hindi lyrics to their transliterated counterparts.

Second, there are various types of noise in lyrics data that

needs to be appropriately handled before songs can be

aligned at word level.

Transliteration has been a focus of research because of its

extensive applications in MT, IR and Input Method

Editors (IME) (Sowmya et al., 2010). On the other hand,

there are very limited publicly available datasets for

training and testing transliteration systems. The major

contributions of this work are in (a) identifying that song

lyrics is a rich and readily available source of

transliterated content which can be efficiently mined to

gather large amounts of high quality training data, and (b)

publicly sharing a 30823 Hindi-English transliteration

pairs dataset. Although the present work reports mining of

Hindi-English word pairs, the same technique can be

easily adapted for other languages for which song lyrics

are available online in native and Roman scripts.

2. Related Work

Transliteration broadly refers to sound preserving

transcription of a word or name from one language into

the script of another language (Knight and Graehl, 1998).

For example, the Hindi word मान „value‟ can be

transliterated into English as man or maan. It is a useful

technique for translating out-of-vocabulary words and

named entities in MT and Cross-lingual IR. For certain

languages, where typing in the native script is not very

popular in the cyberspace, transliteration is also used as an

input mechanism (Animesh et al., 2008; Ehara and

Kumiko, 2008; Sowmya et al., 2010). In such cases, the

user types the native language words and sentences

(usually) in Roman script, and a transliteration engine

automatically converts the Roman input back to the native

script. This input mechanism, commonly referred to as

IME, is popularly used for all Indian languages including

Hindi, Bangla, Tamil, Telugu, etc., and also, Arabic,

Chinese, Japanese and Korean to name a few. There are

several commercially available transliteration based IMEs

for Indic and other languages. Examples include

Microsoft Indic Language Transliteration

(http://specials.msn.co.in/ilit/), Quillpad

(http://www.quillpad.in/) and Google Transliteration

(http://www.google.com/transliterate/).

It is important to make a distinction between forward and

backward transliteration. While the former refers to

transliterating a word of language A (say Hindi) into the

script of language B (say English, in which case the script

is Roman), the latter is the reverse process of getting back

the word in the native script, given its transliteration in a

foreign script. Thus, the process of generating maan or

man from the word मान, is forward transliteration,

whereas the process of generating मान given man is

2459

mailto:kanika.gupta@ni.com
mailto:monojitc@microsoft.com
mailto:kalikab@microsoft.com

backward transliteration. Note that forward and backward

transliterations ideally require different datasets for

training. For instance, to train an English-to-Hindi

backward transliteration engine one would need

transliterations pairs such as “man, मान”, where the

original word is in Hindi, and its transliteration in English

is a representation of the sound (/man/ in IPA) of the Hindi

word using the English script. On the other hand, for

English-to-Hindi forward transliteration engine, one

would need instances like “man, मैन”, where the original

word of English origin – “man”, and the transliterated

word is representation of its sound (/mæn/ in IPA) in

Hindi script, i.e., मैन.

Most of the modern transliteration engines are based on

machine learning approaches (see, e.g., Li and Kumaran

(2009), Khapra and Bhattacharyya (2010), and references

therein) and therefore, their performances depend on the

quantity and quality of the training data. Klementiev and

Roth (2006) proposed one of the first methods to mine

transliteration pairs, only named entities (NEs), from

comparable corpora. Starting from an article-aligned

comparable corpus in English and Russian, they extracted

NEs from English articles, and identified a set of potential

Russian transliterations for those NEs by using an

English-Russian transliteration classifier that was trained

on a small seed corpus. The extracted pairs were then

re-ranked based on the frequency distribution of the NEs

in the English and Russian articles. After re-ranking, the

candidate pairs whose score was above a threshold were

used to further retrain the classifier. The process was

repeated with the newly trained classifier to discover

more NE transliteration pairs.

Saravanan and Kumaran (2008) applied the above model

for English and Tamil, and concluded that frequency

distribution is not a reliable feature for mining infrequent

NEs. Udupa et al. (2008, 2009) further extended the

model by using CLIR techniques to mine comparable

documents followed by an Extended Weighted HMM

(EW-HMM) based classifier adopted from (He, 2007) to

rank the NE pairs. They tested their approach on Tamil,

Kannada, Hindi and Russian, on one side and English on

the other. The Named Entities Workshop 2010 had a

shared task on mining NE transliteration pairs from linked

Wikipedia titles between English and Arabic, Chinese,

Hindi, Tamil and Russian (Kumaran et al., 2010). The

participants were provided with 1000 training instances in

each language pair as seed data.

Note that IME requires backward transliteration from

English/Roman script to other languages, whereas MT

and IR are benefitted by NE transliteration. However, NE

transliteration data is not particularly useful for training

general purpose backward or forward transliteration

engines. This is because usually there are standard

spellings for NEs in a language, which limit the extent of

variation in transliteration as compared to open domain

all-word transliteration used in IME. We are not aware of

any previous work on mining general domain all-word

transliteration pairs from the Web. Sowmya et al. (2010)

described a set of controlled user experiments through

which approximately 25000 transliteration pairs were

collected each for Hindi, Bangla and Telugu on one hand

and English on the other. This data has 6090 unique

Hindi-English transliteration pairs. Around 10000

English-Hindi NE transliteration pairs were released

during NEWS 2009 transliteration generation shared task

(Li and Kumaran, 2009).

We are not aware of any previous work on mining

domain-independent all-word transliteration pairs from

the Web. Nevertheless, there are two known datasets for

training/testing of English-Hindi transliteration systems.

Sowmya et al. (2010) described a set of controlled user

experiments through which approximately 25000

transliteration pairs were collected each for Hindi, Bangla

and Telugu on one hand and English on the other. This

data has 6090 unique Hindi-English transliteration pairs.

In another attempt to create such data, around 10000

English-Hindi NE transliteration pairs were released

during NEWS 2009 transliteration generation shared task

(Li and Kumaran, 2009).

3. Mining Hindi Lyrics Corpus

We mine Hindi-English transliteration pairs from online

Hindi song lyrics. The data is intended for training

Hindi-to-English
2

 forward and English-to-Hindi

backward transliteration engines. Figure 1 shows the

schematic of our approach. There are three major steps

involved: creation of a corpus of Devanagari and Roman

song lyrics by mining the Web, alignment of the

Devanagari and Roman songs, and finally, alignment at

the word level between Devanagari lyrics and their

Roman transliterations, which in turn generates the

Hindi-English transliteration pairs.

3.1 Crawling of song lyrics

Bollywood
3
 or the Mumbai-based Hindi film industry

produces the largest number of movies in the world every

year. Approximately 1000 movies, including

documentaries and non-commercial films, are produced

every year. Almost all Bollywood movies feature several

songs. These songs are very popular across the globe, and

in India they are the most searched items
4
. There are

several popular websites that collect and host Bollywood

song lyrics along with online radios and videos.

We crawled seven popular lyrics websites and collected

21519 and 51686 song lyrics, and 3.3 and 9 million words

in Devanagari and Roman scripts respectively. Table 1

lists the websites and number of songs and words

collected from those. We observed that the Roman

2
 Since Hindi is written in Devanagari script, and English

in the Roman script, often we will refer to the Hindi words
as Devanagari words and the English ones as the Roman
transliterations, or just Roman words for short.
3
 http://en.wikipedia.org/wiki/Bollywood

4

http://www.google.com/intl/en/press/zeitgeist2010/regio
ns/ in.html

2460

transliterations of the songs present on the two websites,

viz. smriti.com and lyricsindia.net, were in ITRANS

(Chopde, 2009), which were generated automatically

from the Devanagari lyrics. These songs are not useful for

extracting transliteration data because they are not natural

transliterations, but transcodings. Therefore, we removed

those from the corpus and for further analysis, only the

remaining 27391 songs in Roman script have been

considered. The corpus has 34640 and 74094 unique

words in Devanagari and Roman scripts respectively.

Figure 1: Schematic of the approach

200 unique Devanagari songs were randomly chosen

from the corpus along with their Roman transliterations.

These songs were manually aligned at the word level to

extract 4651 unique Hindi-English transliteration pairs

consisting of 3834 unique Hindi words. This data, which

we shall refer to as HLma, has been used as a seed corpus

to train the initial classifier.

3.2 Preprocessing for noise removal

Manual inspection of the lyrics revealed the existence of

various kinds of noise in the data that must be removed or

normalized across the songs before attempting for song or

word level alignments. The most common types of noise

are:

a) Transcriptions of solfeggio and vocalizations, which

have no standard representation (e.g., hoolalala,

hoooo lalala, hoo la la la);

b) Repetitions of lines or phrases in the song are

sometimes explicitly mentioned (e.g., dum dar

dum dar jasn jasn dum, dum dar dum dar jasn jasn

dum), sometimes mentioned only once with an

integer denoting the number of repetitions (e.g.,

dum dar dum dar jasn jasn dum – 2), sometimes

with ellipses (dum dar dum dar jasn jasn dum, dum

dar …), and sometimes repetitions are altogether

omitted;

c) Line-breaks, punctuations and even

paragraph-breaks can vary widely across the

different versions of the same lyrics;

d) Unintentional errors, such as spelling mistakes and

omission of spaces, are also quite frequent.

 Roman Devanagari

Websites song word song word
smriti.com 9.7 1.77 9.7 1.77
lyricsindia.net 11.6 1.57 11.6 1.53
10lyrics.com 5.1 0.89 0.2 0.03
lyricsmasti.com 6.6 1.64
hindilyrix.com 11.4 2.03
musicmaza.com 4.2 0.72
giitaayan.com 2.9 0.45

Total 51.7 9.00 21.5 3.34

Table 1: List of websites crawled and number of songs

(10
3
) and words (10

6
) collected

The first three types of noise create the most serious

problems for song and word level alignments.

Non-standard transcriptions for vocalization etc. are quite

difficult to standardize. However, as a pre-processing

step, we remove the other two types of noise from the

corpus as follows:

 We check for exact repetition of lines within a song.

For all such repetitions, only the first occurrence

of a line is retained; all other occurrences are

deleted from the lyrics.

 All lines that are valid prefixes of some other line

within a song are deleted.

 After executing the above two steps in succession,

we replace all punctuations, line-breaks and

paragraph-breaks within the song by spaces.

This preprocessed set of songs has been used for further

analysis.

4. Alignment at Song Level

Headings Since the songs have been crawled from

different and unrelated websites, we expect several

versions of the same song to be present in both

Devanagari and Roman scripts. It is not possible to

identify different versions of the same songs by

comparing the song titles, because titles may widely vary

2461

across websites. For instance, the same song is refered to

as “Dheemi Dheemi” in one website, “dhiimii dhiimii

bhiinii bhiinii” in two other websites, and “Dheemi

Dheemi Khushboo Hai Tera Badan” on a fourth website.

Sometime two different songs might also have the same

title. For instance, there are two different songs from the

movies “Chandni Chowk to China”, and “My Name is

Khan” with the same title “Tere naina”.

A direct comparison of first few words of the songs is also

an unreliable strategy because, more often than not, songs

begin with vocalizations or solfeggios which are very

noisy. Approximate string matching approaches, such as

edit distance based similarity metric or use of classifier

for identifying transliteration equivalents (as in

Klementiev and Roth, 2006), are also impractical because

in order to identify possible matches we need to compare

each song to 50000 other songs. Approximate string

matching algorithms or classifiers are too slow to scale up

for such large number of long strings.

Note that, after preprocessing of the lyrics, different

Devanagari versions of the same song are expected to be

identical except for, perhaps, the presence of some noise

of the first and fourth kind. On the other hand, their

Roman counterparts can still be significantly different

from each other due to natural spelling variations

generated during forward transliteration. It is important as

well as useful for us to capture these variations.

Therefore, we break the problem of song alignment into

the following two sub-problems: First, we identify all the

Devanagari versions of the same song. Since they are

expected to be identical, we retain only one of the

versions for further processing. The second sub-problem

is to align the Roman songs to one of the unique

Devanagari songs discovered in the previous step.

4.1 Aligning Devanagari Songs

Since word level comparison between every pair of songs

is inefficient and ineffective, for every Devanagari song

we first identify a small subset of other songs that could

possibly align to it. This subset is computed as follows:

Taking idea from document representation and

comparison strategies in IR, we define a vector space

model for representing Devanagari songs, where a song S

is represented by a 1000 dimensional vector vS, such that

vS [i] = count(S, wi+50)/length(S)

Here, count(S, wi+50) is the number of occurrences of the (i

+ 50)th most frequent word of the corpus in S, and

length(S) is the number of words in S. The offset 50 is

added to the index i because we consider the 50 most

frequent words in the corpus as stop words.

The similarity between two songs is defined as the cosine

of the angle between their vector representations. Since

cosine computation is very fast, we are able to compute

the similarity between every pair of Devanagari songs.

We observed that the cosine similarity between two

versions of the same song is always greater than 0.9,

though a very high cosine similarity need not always

indicate that the songs are identical. Nevertheless, for

most of the songs, there were very few (<6) candidates

with cosine similarity >0.9; this allowed us to compute

word level edit distances between a song and all its

potential matches. The costs of word insertion, deletion or

substitution were all set to 1. Two words were considered

equal if they matched exactly. Thus, for example, the

word level edit distance between एक मैं और एक त ू and

एक राधा ओ एक मीरा is 3. Two songs S and S’ were

declared identical if their word level edit distance was less

than (length(S) + length(S’))/4. Through this process we

discovered 10397 unique Devanagari songs; this implies

that there are on an average 2.15 versions of each

Devanagari song in the corpus.

All the assumptions and parameters made here ensured a

high precision for song alignment, possibly

compromising recall. This is important because by

aligning two unrelated Devanagari songs, we might lose

one unique candidate from the dataset, which is

unacceptable. However, on the other hand, if two versions

of the same song are not aligned then some of the

computations in the subsequent steps will be repeated

unnecessarily, but this will not affect the quality or

quantity of the mined data.

4.2 Aligning Roman Songs

Initially we tried a vector space representation approach

for aligning the Roman songs to one of the unique

Devanagari songs. Recall that each Devanagari song is

represented by a 1000 dimensional vector, where the

projection of vS on the ith dimension is the normalized

frequency of the word wi+50 in S. In order to map the

Roman songs into the same vector space, we need to

identify the transliterations of wi+50‟s in the Roman songs.

We used an EW-HMM model (Udupa et al., 2009) trained

on the seed corpus HLma to spot the transliteration

equivalents of wi+50‟s. It was assumed that a Roman word

r is a transliteration equivalent of wi+50 if EW-HMM(r,

wi+50) > t, where t is a user defined threshold. Please refer

to Sec. 5.1 for the details of EW-HMM training and

threshold selection. Suppose, through this process ri,1,

ri,2, …, and ri,ki are identified as possible transliterations of

wi+50, then the vector corresponding to a Roman song S‟ is

defined as

vS’[i] = [j = 1 to ki count(S’, ri,j)]/length(S’)

In an ideal situation, where every Roman transliteration is

derived from a unique Hindi word and where there is no

other noise in the data, it is easy to show that if S’ is a

transliteration of S, then vS = vS’. However, as we shall see

in Sec. 5.1, the output of the EW-HMM classifier is very

noisy for all values of t. A large number of transliteration

equivalents, ri,1 to ri,ki, were obtained for every

Devanagari word, most of which were actually not a

correct transliteration. Consequently, the cosine

similarities between the vectors of Roman and

2462

Devanagari songs were distributed quite evenly between

0 and 0.5, and it was impossible to choose a reliable

subset of Devanagari transliterations for each Roman

song. We also tried to further re-rank the ri,j‟s by

comparing bigram and trigram frequency distribution of

wi+50 and ri,j‟s in the Devanagari and Roman songs, but it

did not improve the results.

The technique that finally worked is based on a heuristic

hash function that maps a Devanagari/Roman song to a

string of n Devanagari/Roman characters. This string is

generated by concatenating up to n first letters of each

word in a song, except for those beginning with vowels, ल

/l and ह /h. Vowels, h and l are included in the string

because their transliterations are very noisy and often the

vocalizations begin with these letters. For example, if n =

5, then the song “Hoo lalala Hoo lalalalala lalala Oh ho

hoo lalala Ek bagiya mein rehti hai ek maina Poochhti hai

ki bolo kya hai kehna” will be mapped to the string

“bmrmp”. We set n to 20.

Figure 2: Plot of edit-distances between the strings

(x-axis) vs. number of song pairs (y-axis)

The strings for the Roman songs are then compared

against those for the Devanagari songs using the standard

edit distance algorithm, where cost of deletion, insertion

and substitution were all set to 1. For every Devanagari

letter (e.g., क) we manually created a list of Roman letters

(e.g., k, c, q, x) that were considered transliteration

equivalents.

Figure 2 shows the distribution of the edit distances.We

observe that for large number of Devanagari-Roman song

pairs, this value is 0; we also observed that the edit

distance was always within 10 for pairs of songs which

were real transliterations of each other. Hence, for every

Roman song, we extracted all the Devanagari songs for

which the edit distance between the hashed strings were

within 10. If this list was long, we chose up to 10 closest

matches. Each Roman song was then compared against

this list of Devanagari songs at word level. This process

ofword level comparison, which not only allows us to

identify matching songs, but as a byproduct also generates

the word-level alignments, is presented in next section.

5. Word-level Alignment

Alignment of the words between a Devanagari song and

its (possible) Roman transliterated version has been

carried out using an edit distance based approximate

string matching algorithm, where each words is treated as

a character. The similarity between two words is

measured using a HMM-based classifier for identifying

transliteration equivalents.

5.1 Classifier for identifying transliteration
equivalents

Udupa et al. (2009) described the use of EW-HMM for

generating hidden alignments between character

sequences of a word and its transliterations, and

subsequently using it as a classifier for identifying

transliteration pairs. We train an implementation of the

same EW-HMM on the HLma dataset and another 3654

unique pairs from (Sowmya et al., 2010) data. The

remaining 2436 Hindi-English transliteration pairs in

(Sowmya et al., 2010) data, which we shall refer to as

SDtest, has been used for testing. Figure 3 shows the

distribution of the confidence scores output by the

EW-HMM, which ranges from 0 to 4, on the SDtest data.

Ideally, since all the pairs in the test set are valid

transliteration equivalents, the system should output a

very high confidence score (close to 4). However, we

observe that 40% of the valid pairs have scores less than

2.5. On the other hand, sometimes the system returns very

high score for word pairs which are not really

transliteration equivalents. Therefore, it is tricky to

choose a threshold t above which a pair can be considered

as valid transliteration equivalents. For our mining task,

we set t to 2.5. Thus, the recall of the system is expected

be around 60%. The precision of the classifier was found

to be around 80%.

Figure 3: Plot of confidence score from EW-HMM

(x-axis) vs. % of word pairs with a score greater than or

equal to that value (y-axis)

5.2 Approximate string-matching algorithm

We use the same edit distance algorithm as was used for

aligning Devanagari songs (Sec 4.1); however, here two

words are assumed to match if their EW-HMM score is

greater than 2.5. The alignment algorithm is run between

a Roman song and the corresponding Devanagari

transliterations identified by the heuristic algorithm (Sec.

4.2). We assume a Roman song S’ to be the transliteration

of a Devanagari song S if the edit distance between them

is less than (length(S) + length(S’))/4. We observe that this

2463

rule-of-thumb works very well because, even though the

EW-HMM scores are not very reliable, a 60% recall

ensures that for a Devanagari song and its Roman

transliteration, the edit distance cannot be more than 40%

of length(S). On the other hand, for unrelated songs, the

edit distance is expected to be at least 60% of length(S). If

no words were common between the songs, the edit

distance would be at least 80% of length(S), but two

unrelated songs would contain at least some words, say

20%, in common and in order. Therefore, the “50% of

length(S)” threshold for edit-distance works quite well in

practice. While computing the edit distance, the algorithm

generates the optimal alignment between words of the two

songs. If according to the above rule, two songs are

declared as transliterations of each, then the

corresponding optimal alignment is used to generate the

word-level transliteration pairs.

#Variants 1 2 3-5 6-10 >10

#Words 11591 3593 2630 337 28

Table 2: Number of words having a specific number of

variations in the mined transliteration pairs

6. Quality of the Dataset

The aforementioned techniques helped us extract 30823

unique Hindi-English transliteration pairs corresponding

to 18179 unique Hindi words. Thus, on average, we found

1.7 transliteration equivalents per Hindi word. The

Hindi-English transliteration data collected by Sowmya et

al. (2010) has 6090 unique pairs for 3825 unique Hindi

words, and hence, 1.6 transliteration equivalents per

Hindi word on average. (Sowmya et al., 2010) data was

collected to ensure coverage of region and individual

specific variations. Since the average number of

variations present in our extracted dataset is comparable

to (in fact, slightly greater than) that of theirs, we can

assume that the mined transliteration pairs cover a wide

range of natural spelling variations. Table 2 reports the

number of Hindi words that has a certain number of

transliteration variants in the dataset. As we can see,

63.7% of the words have only one variation. This is

because a large number of words occur only once in the

entire song data. Table 3 shows examples of extracted

transliteration pairs. The example of मुझे nicely illustrates

the typical variation patterns in Hindi-to-English

transliteration.

 Table 3: Examples of transliteration variants in the

extracted data (words beginning with a ! and ? means

“invalid” and “not sure” respectively)

The quality of the mined dataset has been evaluated both

intrinsically and extrinsically. For an intrinsic evaluation,

a random sample of 1000 word pairs was checked

manually. The pairs were classified as “valid”, “invalid”,

and “not sure”. The last category was necessary because

sometime the transliteration, although not quite correct,

seemed quite close to a correct variant. For instance, खाना
might have been transliterated as kahna due to a typo in

the intended form khana. However, since the former

variation is more commonly used for the Hindi word

कहना, it is difficult to decide whether this pair is an

outcome some error during the alignment or due to some

noise in the lyrics data (i.e., an unintended transposition

error in this case). See Table 3 for examples of these

categories. Our evaluation revealed that 92.4%, 3.9% and

3.7% of the mined pairs are in the valid, invalid and “not

sure” categories respectively. Thus, the amount of noise in

the mined dataset is estimated to be between 4% and 8%.

7. Conclusion

In this paper, we described a method for extracting

transliteration equivalents using online song lyrics. The

mined data is of high quality and relatively noise-free.

This data can be used for training English-Hindi

backward transliteration engine for building IME for

Hindi and also for other general applications of

transliteration engines in IR and MT. The mined pairs will

also be useful for linguistic studies on spelling variations

and typing patterns in transliterated texts. This data is

available as supplementary material along with this paper

and will be distributed freely for research.

Although the present work only describes mining of

English-Hindi transliteration pairs, the method described

here is generic and applicable for mining similar data for

any language that has song lyrics or other similar contents

available online in both native and Roman scripts. This is

true for several other Indian languages such as Bangla,

Marathi, Telugu, Tamil, and also languages like Arabic,

Chinese and Japanese. It is also interesting to note that the

initial data required for bootstrapping the mining process

is rather small. We believe that due to these reasons, this

method is scalable to very low resource languages,

provided that the required data is available on the Web.

The corpus of songs collected during this work can be also

be potentially studied and mined for many other linguistic

and socio-linguistic studies. For instance, one of the

interesting observations we made on this data is the steady

rise in usage of English words in Hindi song lyrics over

the past two decades. This could be due to socio-cultural

changes as well as a shift in the target audience of the

movies. It would be interesting to investigate such

phenomena using this corpus.

8. References

N. Animesh, B. Ravikiran Rao, S. Pawandeep, S. Sudeep,

and S. Ratna. 2008. Named Entity Recognition for

Word Roman variants

मुझे mujhe, muze, !mujhse, mujeh, ?mujh, muhje,

mujhey, muzhe, muhjhe, ?mujkhe

के ke, ?kee, ?kaee, !koee, ?kie, ?khe, !que, !koe

सुलगे sulgeh, sulage, sulge

पऩघले pighale, pighle

बदन badan

2464

Indian Languages. In proceedings of IJCNLP 2008

workshop on NER for South and South-East Asian

languages.

Avinash Chopde. 2009. ITRANS version 5.31.

http://www.aczoom.com/itrans/, retrieved on Dec 15
th

2010.

Yo Ehara, and Tanaka-Ishii Kumiko. 2008. Multilingual

text entry using automatic language detection. In

Proceedings of IJCNLP 2008.

X. He. 2007. Using word dependent transition models in

HMM based word alignment for statistical machine

translation. In Proceedings of 2nd ACL Workshop on

Statistical Machine Translation.

Mitesh M. Khapra, and Pushpak Bhattacharyya. 2009.

Improving Transliteration Accuracy Using

Word-Origin Detection and Lexicon Lookup.

Proceedings of the 2009 Named Entities Workshop:

Shared Task on Transliteration (NEWS 2009), ACL.

Adam Kilgarriff, and Dekang Lin. 2010. Proc. of the

NAACL HLT 2010 6th Web as Corpus Workshop. ACL.

A. Klementiev, and Dan Roth. 2006. Weakly supervised

named entity transliteration and discovery from

multilingual comparable corpora. Proceedings of the

44th AnnualMeeting of the ACL.

Kevin Knight, and J. Graehl. 1998. Machine

Transliteration. Computational Linguistics 24 (4).

A. Kumaran, Mitesh M. Khapra, Haizhou Li. 2010.

Report on NEWS 2010 Transliteration Mining Shared

Task. Proceedings of the 2010 Named Entities

Workshop, ACL 2010, pages 21 – 28.

Haizhou Li, and A. Kumaran, M. 2009. Proceedings of

the 2009 Named Entities Workshop: Shared Task on

Transliteration (NEWS 2009). ACL.

Haizhou Li, A. Kumaran, Min Zhang and Vladimir

Pervouchine. 2010. Report on NEWS 2010

Transliteration Generation Shared Task. Proceedings of

the 2010 Named Entities Workshop, ACL 2010, pages 1

– 11.

K. Saravanan, and A. Kumaran, 2007. Some experiments

in mining named entity transliteration pairs from

comparable corpora. Proceedings of the 2nd

International Workshop on Cross Lingual Information

Access.

Sowmya V. B., Monojit Choudhury, Kalika Bali,

Tirthankar Dasgupta, and Anupam Basu. 2010.

Resource Creation for Training and Testing of

Transliteration Systems for Indian Languages.

Proceedings of the Language Resource and Evaluation

Conference (LREC) 2010, pages 2902 – 2907.

Raghavendra Udupa, K. Saravanan, Anton Bakalov, and

Abhijit Bhole. 2009. "They Are Out There, If You

Know Where to Look": Mining Transliterations of

OOV Query Terms for Cross-Language Information

Retrieval, in Proceedings of 31th European Conference

on IR Research, ECIR 2009.

Raghavendra Udupa, K. Saravanan, A. Kumaran, and

Jagadeesh Jagarlamudi. 2008. Mining Named Entity

Transliteration Equivalents from Comparable Corpora.

Proceedings of the CIKM 2008

Kun Yu and Junichi Tsujii. 2009. Bilingual dictionary

extraction from Wikipedia. In Proceedings of the

twelfth Machine Translation Summit (MT Summit XII),

pages 379–386, Ottawa, Canada, August.

2465

http://www.aczoom.com/itrans/

