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Abstract 
 
This paper describes a method to mine Hindi-English transliteration pairs from online Hindi song lyrics. The 
technique is based on the observations that lyrics are transliterated word-by-word, maintaining the precise word 
order. The mining task is nevertheless challenging because the Hindi lyrics and its transliterations are usually 
available from different, often unrelated, websites. Therefore, it is a non-trivial task to match the Hindi lyrics to 
their transliterated counterparts. Moreover, there are various types of noise in lyrics data that needs to be 
appropriately handled before songs can be aligned at word level. The mined data of 30823 unique Hindi-English 
transliteration pairs with an accuracy of more than 92% is available publicly. Although the present work reports 
mining of Hindi-English word pairs, the same technique can be easily adapted for other languages for which song 
lyrics are available online in native and Roman scripts. 
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1. Introduction 

Due to the popularity of local language songs, a huge 

collection of song lyrics is available on the Web for 

languages like Hindi, Bengali, Telugu, Tamil, Arabic, 

Chinese, Japanese and Korean, to name a few. The lyrics 

for such languages, which use non-Roman script, are 

often present in both the native script and Roman 

transliterated form. Therefore, this data can be potentially 

mined to obtain transliteration pairs between the native 

and the Roman scripts, which can be used for training and 

evaluation of transliteration systems.  

In this work, we describe a method to mine Hindi-English 

transliteration pairs from online Hindi song lyrics. The 

technique is based on the observations that lyrics are 

transliterated word-by-word, maintaining the precise 

word order. The mining task is nevertheless challenging 

because of two reasons. First, the Hindi lyrics and its 

transliterations are usually available from different, often 

unrelated, websites. Therefore, it is a non-trivial task to 

match the Hindi lyrics to their transliterated counterparts. 

Second, there are various types of noise in lyrics data that 

needs to be appropriately handled before songs can be 

aligned at word level.  

Transliteration has been a focus of research because of its 

extensive applications in MT, IR and Input Method 

Editors (IME) (Sowmya et al., 2010). On the other hand, 

there are very limited publicly available datasets for 

training and testing transliteration systems. The major 

contributions of this work are in (a) identifying that song 

lyrics is a rich and readily available source of 

transliterated content which can be efficiently mined to 

gather large amounts of high quality training data, and (b) 

publicly sharing a 30823 Hindi-English transliteration 

pairs dataset. Although the present work reports mining of 

Hindi-English word pairs, the same technique can be 

easily adapted for other languages for which song lyrics 

are available online in native and Roman scripts. 

2. Related Work 

Transliteration broadly refers to sound preserving 

transcription of a word or name from one language into 

the script of another language (Knight and Graehl, 1998). 

For example, the Hindi word मान „value‟ can be 

transliterated into English as man or maan. It is a useful 

technique for translating out-of-vocabulary words and 

named entities in MT and Cross-lingual IR. For certain 

languages, where typing in the native script is not very 

popular in the cyberspace, transliteration is also used as an 

input mechanism (Animesh et al., 2008; Ehara and 

Kumiko, 2008; Sowmya et al., 2010). In such cases, the 

user types the native language words and sentences 

(usually) in Roman script, and a transliteration engine 

automatically converts the Roman input back to the native 

script. This input mechanism, commonly referred to as 

IME, is popularly used for all Indian languages including 

Hindi, Bangla, Tamil, Telugu, etc., and also, Arabic, 

Chinese, Japanese and Korean to name a few. There are 

several commercially available transliteration based IMEs 

for Indic and other languages. Examples include 

Microsoft Indic Language Transliteration 

(http://specials.msn.co.in/ilit/), Quillpad 

(http://www.quillpad.in/) and Google Transliteration 

(http://www.google.com/transliterate/). 

It is important to make a distinction between forward and 

backward transliteration. While the former refers to 

transliterating a word of language A (say Hindi) into the 

script of language B (say English, in which case the script 

is Roman), the latter is the reverse process of getting back 

the word in the native script, given its transliteration in a 

foreign script. Thus, the process of generating maan or 

man from the word मान, is forward transliteration, 

whereas the process of generating मान given man is 
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backward transliteration. Note that forward and backward 

transliterations ideally require different datasets for 

training. For instance, to train an English-to-Hindi 

backward transliteration engine one would need 

transliterations pairs such as “man, मान”, where the 

original word is in Hindi, and its transliteration in English 

is a representation of the sound (/man/ in IPA) of the Hindi 

word using the English script. On the other hand, for 

English-to-Hindi forward transliteration engine, one 

would need instances like “man, मैन”, where the original 

word of English origin – “man”, and the transliterated 

word is representation of its sound (/mæn/ in IPA) in 

Hindi script, i.e., मैन. 

Most of the modern transliteration engines are based on 

machine learning approaches (see, e.g., Li and Kumaran 

(2009), Khapra and Bhattacharyya (2010), and references 

therein) and therefore, their performances depend on the 

quantity and quality of the training data. Klementiev and 

Roth (2006) proposed one of the first methods to mine 

transliteration pairs, only named entities (NEs), from 

comparable corpora. Starting from an article-aligned 

comparable corpus in English and Russian, they extracted 

NEs from English articles, and identified a set of potential 

Russian transliterations for those NEs by using an 

English-Russian transliteration classifier that was trained 

on a small seed corpus. The extracted pairs were then 

re-ranked based on the frequency distribution of the NEs 

in the English and Russian articles. After re-ranking, the 

candidate pairs whose score was above a threshold were 

used to further retrain the classifier. The process was 

repeated with the newly trained classifier to discover 

more NE transliteration pairs. 

Saravanan and Kumaran (2008) applied the above model 

for English and Tamil, and concluded that frequency 

distribution is not a reliable feature for mining infrequent 

NEs. Udupa et al. (2008, 2009) further extended the 

model by using CLIR techniques to mine comparable 

documents followed by an Extended Weighted HMM 

(EW-HMM) based classifier adopted from (He, 2007) to 

rank the NE pairs. They tested their approach on Tamil, 

Kannada, Hindi and Russian, on one side and English on 

the other. The Named Entities Workshop 2010 had a 

shared task on mining NE transliteration pairs from linked 

Wikipedia titles between English and Arabic, Chinese, 

Hindi, Tamil and Russian (Kumaran et al., 2010). The 

participants were provided with 1000 training instances in 

each language pair as seed data.  

Note that IME requires backward transliteration from 

English/Roman script to other languages, whereas MT 

and IR are benefitted by NE transliteration.  However, NE 

transliteration data is not particularly useful for training 

general purpose backward or forward transliteration 

engines. This is because usually there are standard 

spellings for NEs in a language, which limit the extent of 

variation in transliteration as compared to open domain 

all-word transliteration used in IME. We are not aware of 

any previous work on mining general domain all-word 

transliteration pairs from the Web. Sowmya et al. (2010) 

described a set of controlled user experiments through 

which approximately 25000 transliteration pairs were 

collected each for Hindi, Bangla and Telugu on one hand 

and English on the other. This data has 6090 unique 

Hindi-English transliteration pairs. Around 10000 

English-Hindi NE transliteration pairs were released 

during NEWS 2009 transliteration generation shared task 

(Li and Kumaran, 2009). 

We are not aware of any previous work on mining 

domain-independent all-word transliteration pairs from 

the Web. Nevertheless, there are two known datasets for 

training/testing of English-Hindi transliteration systems. 

Sowmya et al. (2010) described a set of controlled user 

experiments through which approximately 25000 

transliteration pairs were collected each for Hindi, Bangla 

and Telugu on one hand and English on the other. This 

data has 6090 unique Hindi-English transliteration pairs. 

In another attempt to create such data, around 10000 

English-Hindi NE transliteration pairs were released 

during NEWS 2009 transliteration generation shared task 

(Li and Kumaran, 2009). 

3. Mining Hindi Lyrics Corpus 

We mine Hindi-English transliteration pairs from online 

Hindi song lyrics. The data is intended for training 

Hindi-to-English
2

 forward and English-to-Hindi 

backward transliteration engines. Figure 1 shows the 

schematic of our approach. There are three major steps 

involved: creation of a corpus of Devanagari and Roman 

song lyrics by mining the Web, alignment of the 

Devanagari and Roman songs, and finally, alignment at 

the word level between Devanagari lyrics and their 

Roman transliterations, which in turn generates the 

Hindi-English transliteration pairs.  

 

3.1 Crawling of song lyrics 

 

Bollywood
3
 or the Mumbai-based Hindi film industry 

produces the largest number of movies in the world every 

year. Approximately 1000 movies, including 

documentaries and non-commercial films, are produced 

every year. Almost all Bollywood movies feature several 

songs. These songs are very popular across the globe, and 

in India they are the most searched items
4
. There are 

several popular websites that collect and host Bollywood 

song lyrics along with online radios and videos.  

We crawled seven popular lyrics websites and collected 

21519 and 51686 song lyrics, and 3.3 and 9 million words 

in Devanagari and Roman scripts respectively. Table 1 

lists the websites and number of songs and words 

collected from those. We observed that the Roman 

                                                           
2
 Since Hindi is written in Devanagari script, and English 

in the Roman script, often we will refer to the Hindi words 
as Devanagari words and the English ones as the Roman 
transliterations, or just Roman words for short. 
3
 http://en.wikipedia.org/wiki/Bollywood 

4
 

http://www.google.com/intl/en/press/zeitgeist2010/regio
ns/ in.html 
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transliterations of the songs present on the two websites, 

viz. smriti.com and lyricsindia.net, were in ITRANS 

(Chopde, 2009), which were generated automatically 

from the Devanagari lyrics. These songs are not useful for 

extracting transliteration data because they are not natural 

transliterations, but transcodings. Therefore, we removed 

those from the corpus and for further analysis, only the 

remaining 27391 songs in Roman script have been 

considered. The corpus has 34640 and 74094 unique 

words in Devanagari and Roman scripts respectively. 

 

 

Figure 1: Schematic of the approach 

 

200 unique Devanagari songs were randomly chosen 

from the corpus along with their Roman transliterations. 

These songs were manually aligned at the word level to 

extract 4651 unique Hindi-English transliteration pairs 

consisting of 3834 unique Hindi words. This data, which 

we shall refer to as HLma, has been used as a seed corpus 

to train the initial classifier. 

 

3.2 Preprocessing for noise removal 

Manual inspection of the lyrics revealed the existence of 

various kinds of noise in the data that must be removed or 

normalized across the songs before attempting for song or 

word level alignments. The most common types of noise 

are:  

a) Transcriptions of solfeggio and vocalizations, which 

have no standard representation (e.g., hoolalala, 

hoooo lalala, hoo la la la); 

b) Repetitions of lines or phrases in the song are 

sometimes explicitly mentioned (e.g., dum dar 

dum dar jasn jasn dum, dum dar dum dar jasn jasn 

dum), sometimes mentioned only once with an 

integer denoting the number of repetitions (e.g., 

dum dar dum dar jasn jasn dum – 2), sometimes 

with ellipses (dum dar dum dar jasn jasn dum, dum 

dar …), and sometimes repetitions are altogether 

omitted; 

c) Line-breaks, punctuations and even 

paragraph-breaks can vary widely across the 

different versions of the same lyrics; 

d) Unintentional errors, such as spelling mistakes and 

omission of spaces, are also quite frequent. 

 

 

 Roman Devanagari 

Websites song word song word 
smriti.com 9.7 1.77 9.7 1.77 
lyricsindia.net 11.6 1.57 11.6 1.53 
10lyrics.com 5.1 0.89 0.2 0.03 
lyricsmasti.com 6.6 1.64   
hindilyrix.com 11.4 2.03   
musicmaza.com 4.2 0.72   
giitaayan.com 2.9 0.45   

Total 51.7 9.00 21.5 3.34 

 

Table 1: List of websites crawled and number of songs 

(10
3
) and words (10

6
) collected 

 

The first three types of noise create the most serious 

problems for song and word level alignments. 

Non-standard transcriptions for vocalization etc. are quite 

difficult to standardize. However, as a pre-processing 

step, we remove the other two types of noise from the 

corpus as follows: 

 We check for exact repetition of lines within a song. 

For all such repetitions, only the first occurrence 

of a line is retained; all other occurrences are 

deleted from the lyrics. 

 All lines that are valid prefixes of some other line 

within a song are deleted.  

 After executing the above two steps in succession, 

we replace all punctuations, line-breaks and 

paragraph-breaks within the song by spaces. 

This preprocessed set of songs has been used for further 

analysis.  

4. Alignment at Song Level 

Headings Since the songs have been crawled from 

different and unrelated websites, we expect several 

versions of the same song to be present in both 

Devanagari and Roman scripts. It is not possible to 

identify different versions of the same songs by 

comparing the song titles, because titles may widely vary 
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across websites. For instance, the same song is refered to 

as “Dheemi Dheemi” in one website, “dhiimii dhiimii 

bhiinii bhiinii” in two other websites, and “Dheemi 

Dheemi Khushboo Hai Tera Badan” on a fourth website. 

Sometime two different songs might also have the same 

title. For instance, there are two different songs from the 

movies “Chandni Chowk to China”, and “My Name is 

Khan” with the same title “Tere naina”.  

A direct comparison of first few words of the songs is also 

an unreliable strategy because, more often than not, songs 

begin with vocalizations or solfeggios which are very 

noisy. Approximate string matching approaches, such as 

edit distance based similarity metric or use of classifier 

for identifying transliteration equivalents (as in 

Klementiev and Roth, 2006), are also impractical because 

in order to identify possible matches we need to compare 

each song to 50000 other songs. Approximate string 

matching algorithms or classifiers are too slow to scale up 

for such large number of long strings.  

Note that, after preprocessing of the lyrics, different 

Devanagari versions of the same song are expected to be 

identical except for, perhaps, the presence of some noise 

of the first and fourth kind. On the other hand, their 

Roman counterparts can still be significantly different 

from each other due to natural spelling variations 

generated during forward transliteration. It is important as 

well as useful for us to capture these variations. 

Therefore, we break the problem of song alignment into 

the following two sub-problems: First, we identify all the 

Devanagari versions of the same song. Since they are 

expected to be identical, we retain only one of the 

versions for further processing.  The second sub-problem 

is to align the Roman songs to one of the unique 

Devanagari songs discovered in the previous step. 

 

4.1 Aligning Devanagari Songs 

Since word level comparison between every pair of songs 

is inefficient and ineffective, for every Devanagari song 

we first identify a small subset of other songs that could 

possibly align to it. This subset is computed as follows: 

Taking idea from document representation and 

comparison strategies in IR, we define a vector space 

model for representing Devanagari songs, where a song S 

is represented by a 1000 dimensional vector vS, such that 

 

vS [i] = count(S, wi+50)/length(S) 

 

Here, count(S, wi+50) is the number of occurrences of the (i 

+ 50)th most frequent word of the corpus in S, and 

length(S) is the number of words in S. The offset 50 is 

added to the index i because we consider the 50 most 

frequent words in the corpus as stop words.  

The similarity between two songs is defined as the cosine 

of the angle between their vector representations. Since 

cosine computation is very fast, we are able to compute 

the similarity between every pair of Devanagari songs. 

We observed that the cosine similarity between two 

versions of the same song is always greater than 0.9, 

though a very high cosine similarity need not always 

indicate that the songs are identical.  Nevertheless, for 

most of the songs, there were very few (<6) candidates 

with cosine similarity >0.9; this allowed us to compute 

word level edit distances between a song and all its 

potential matches. The costs of word insertion, deletion or 

substitution were all set to 1. Two words were considered 

equal if they matched exactly. Thus, for example, the 

word level edit distance between एक मैं और एक त ू and 

एक राधा ओ एक मीरा is 3. Two songs S and S’ were 

declared identical if their word level edit distance was less 

than (length(S) + length(S’))/4. Through this process we 

discovered 10397 unique Devanagari songs; this implies 

that there are on an average 2.15 versions of each 

Devanagari song in the corpus. 

All the assumptions and parameters made here ensured a 

high precision for song alignment, possibly 

compromising recall. This is important because by 

aligning two unrelated Devanagari songs, we might lose 

one unique candidate from the dataset, which is 

unacceptable. However, on the other hand, if two versions 

of the same song are not aligned then some of the 

computations in the subsequent steps will be repeated 

unnecessarily, but this will not affect the quality or 

quantity of the mined data.  

 

4.2 Aligning Roman Songs 

Initially we tried a vector space representation approach 

for aligning the Roman songs to one of the unique 

Devanagari songs. Recall that each Devanagari song is 

represented by a 1000 dimensional vector, where the 

projection of vS on the ith dimension is the normalized 

frequency of the word wi+50 in S. In order to map the 

Roman songs into the same vector space, we need to 

identify the transliterations of wi+50‟s in the Roman songs. 

We used an EW-HMM model (Udupa et al., 2009) trained 

on the seed corpus HLma to spot the transliteration 

equivalents of wi+50‟s. It was assumed that a Roman word 

r is a transliteration equivalent of wi+50 if EW-HMM(r, 

wi+50) > t, where t is a user defined threshold. Please refer 

to Sec. 5.1 for the details of EW-HMM training and 

threshold selection. Suppose, through this process ri,1, 

ri,2, …, and ri,ki are identified as possible transliterations of 

wi+50, then the vector corresponding to a Roman song S‟ is 

defined as 

 

vS’[i] = [j = 1 to ki count(S’, ri,j)]/length(S’) 

 

In an ideal situation, where every Roman transliteration is 

derived from a unique Hindi word and where there is no 

other noise in the data, it is easy to show that if S’ is a 

transliteration of S, then vS = vS’. However, as we shall see 

in Sec. 5.1, the output of the EW-HMM classifier is very 

noisy for all values of t. A large number of transliteration 

equivalents, ri,1 to ri,ki, were obtained for every 

Devanagari word, most of which were actually not a 

correct transliteration. Consequently, the cosine 

similarities between the vectors of Roman and 
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Devanagari songs were distributed quite evenly between 

0 and 0.5, and it was impossible to choose a reliable 

subset of Devanagari transliterations for each Roman 

song. We also tried to further re-rank the ri,j‟s by 

comparing bigram and trigram frequency distribution of 

wi+50 and ri,j‟s in the Devanagari and Roman songs, but it 

did not improve the results. 

The technique that finally worked is based on a heuristic 

hash function that maps a Devanagari/Roman song to a 

string of n Devanagari/Roman characters. This string is 

generated by concatenating up to n first letters of each 

word in a song, except for those beginning with vowels, ल 

/l and ह /h. Vowels, h and l are included in the string 

because their transliterations are very noisy and often the 

vocalizations begin with these letters. For example, if n = 

5, then the song “Hoo lalala Hoo lalalalala lalala Oh ho 

hoo lalala Ek bagiya mein rehti hai ek maina Poochhti hai 

ki bolo kya hai kehna” will be mapped to the string 

“bmrmp”. We set n to 20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Plot of edit-distances between the strings 

(x-axis) vs. number of song pairs (y-axis) 

 

The strings for the Roman songs are then compared 

against those for the Devanagari songs using the standard 

edit distance algorithm, where cost of deletion, insertion 

and substitution were all set to 1.  For every Devanagari 

letter (e.g., क) we manually created a list of Roman letters 

(e.g., k, c, q, x) that were considered transliteration 

equivalents.  

Figure 2 shows the distribution of the edit distances.We 

observe that for large number of Devanagari-Roman song 

pairs, this value is 0; we also observed that the edit 

distance was always within 10 for pairs of songs which 

were real transliterations of each other. Hence, for every 

Roman song, we extracted all the Devanagari songs for 

which the edit distance between the hashed strings were 

within 10. If this list was long, we chose up to 10 closest 

matches. Each Roman song was then compared against 

this list of Devanagari songs at word level. This process 

ofword level comparison, which not only allows us to  

identify matching songs, but as a byproduct also generates  

the word-level alignments, is presented in next section. 

5. Word-level Alignment 

Alignment of the words between a Devanagari song and 

its (possible) Roman transliterated version has been 

carried out using an edit distance based approximate 

string matching algorithm, where each words is treated as 

a character. The similarity between two words is 

measured using a HMM-based classifier for identifying 

transliteration equivalents.  

5.1 Classifier for identifying transliteration 
equivalents 

Udupa et al. (2009) described the use of EW-HMM for 

generating hidden alignments between character 

sequences of a word and its transliterations, and 

subsequently using it as a classifier for identifying 

transliteration pairs. We train an implementation of the 

same EW-HMM on the HLma dataset and another 3654 

unique pairs from (Sowmya et al., 2010) data. The 

remaining 2436 Hindi-English transliteration pairs in 

(Sowmya et al., 2010) data, which we shall refer to as 

SDtest, has been used for testing. Figure 3 shows the 

distribution of the confidence scores output by the 

EW-HMM, which ranges from 0 to 4, on the SDtest data.  

Ideally, since all the pairs in the test set are valid 

transliteration equivalents, the system should output a 

very high confidence score (close to 4). However, we 

observe that 40% of the valid pairs have scores less than 

2.5. On the other hand, sometimes the system returns very 

high score for word pairs which are not really 

transliteration equivalents. Therefore, it is tricky to 

choose a threshold t above which a pair can be considered 

as valid transliteration equivalents. For our mining task, 

we set t to 2.5. Thus, the recall of the system is expected 

be around 60%. The precision of the classifier was found 

to be around 80%. 

 

 

 

 

 

 

 

 

Figure 3: Plot of confidence score from EW-HMM 

(x-axis) vs. % of word pairs with a score greater than or 

equal to that value (y-axis) 

5.2 Approximate string-matching algorithm 

We use the same edit distance algorithm as was used for 

aligning Devanagari songs (Sec 4.1); however, here two 

words are assumed to match if their EW-HMM score is 

greater than 2.5. The alignment algorithm is run between 

a Roman song and the corresponding Devanagari 

transliterations identified by the heuristic algorithm (Sec. 

4.2). We assume a Roman song S’ to be the transliteration 

of a Devanagari song S if the edit distance between them 

is less than (length(S) + length(S’))/4. We observe that this 
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rule-of-thumb works very well because, even though the 

EW-HMM scores are not very reliable, a 60% recall 

ensures that for a Devanagari song and its Roman 

transliteration, the edit distance cannot be more than 40% 

of length(S). On the other hand, for unrelated songs, the 

edit distance is expected to be at least 60% of length(S). If 

no words were common between the songs, the edit 

distance would be at least 80% of length(S), but two 

unrelated songs would contain at least some words, say 

20%, in common and in order. Therefore, the “50% of 

length(S)” threshold for edit-distance works quite well in 

practice. While computing the edit distance, the algorithm 

generates the optimal alignment between words of the two 

songs. If according to the above rule, two songs are 

declared as transliterations of each, then the 

corresponding optimal alignment is used to generate the 

word-level transliteration pairs.  

 

#Variants 1 2 3-5 6-10 >10 

#Words 11591 3593 2630 337 28 

Table 2: Number of words having a specific number of 

variations in the mined transliteration pairs 

6. Quality of the Dataset 

 

The aforementioned techniques helped us extract 30823 

unique Hindi-English transliteration pairs corresponding 

to 18179 unique Hindi words. Thus, on average, we found 

1.7 transliteration equivalents per Hindi word. The 

Hindi-English transliteration data collected by Sowmya et 

al. (2010) has 6090 unique pairs for 3825 unique Hindi 

words, and hence, 1.6 transliteration equivalents per 

Hindi word on average. (Sowmya et al., 2010) data was 

collected to ensure coverage of region and individual 

specific variations. Since the average number of 

variations present in our extracted dataset is comparable 

to (in fact, slightly greater than) that of theirs, we can 

assume that the mined transliteration pairs cover a wide 

range of natural spelling variations. Table 2 reports the 

number of Hindi words that has a certain number of 

transliteration variants in the dataset. As we can see, 

63.7% of the words have only one variation. This is 

because a large number of words occur only once in the 

entire song data. Table 3 shows examples of extracted 

transliteration pairs. The example of मुझे nicely illustrates 

the typical variation patterns in Hindi-to-English 

transliteration.  

 

 Table 3: Examples of transliteration variants in the 

extracted data (words beginning with a ! and ? means 

“invalid” and “not sure” respectively) 

 

The quality of the mined dataset has been evaluated both 

intrinsically and extrinsically. For an intrinsic evaluation, 

a random sample of 1000 word pairs was checked 

manually. The pairs were classified as “valid”, “invalid”, 

and “not sure”. The last category was necessary because 

sometime the transliteration, although not quite correct, 

seemed quite close to a correct variant. For instance, खाना 
might have been transliterated as kahna due to a typo in 

the intended form khana. However, since the former 

variation is more commonly used for the Hindi word 

कहना, it is difficult to decide whether this pair is an 

outcome some error during the alignment or due to some 

noise in the lyrics data (i.e., an unintended transposition 

error in this case). See Table 3 for examples of these 

categories. Our evaluation revealed that 92.4%, 3.9% and 

3.7% of the mined pairs are in the valid, invalid and “not 

sure” categories respectively. Thus, the amount of noise in 

the mined dataset is estimated to be between 4% and 8%. 

 

7. Conclusion 

In this paper, we described a method for extracting 

transliteration equivalents using online song lyrics. The 

mined data is of high quality and relatively noise-free.  

This data can be used for training English-Hindi 

backward transliteration engine for building IME for 

Hindi and also for other general applications of 

transliteration engines in IR and MT. The mined pairs will 

also be useful for linguistic studies on spelling variations 

and typing patterns in transliterated texts. This data is 

available as supplementary material along with this paper 

and will be distributed freely for research. 

Although the present work only describes mining of 

English-Hindi transliteration pairs, the method described 

here is generic and applicable for mining similar data for 

any language that has song lyrics or other similar contents 

available online in both native and Roman scripts. This is 

true for several other Indian languages such as Bangla, 

Marathi, Telugu, Tamil, and also languages like Arabic, 

Chinese and Japanese. It is also interesting to note that the 

initial data required for bootstrapping the mining process 

is rather small. We believe that due to these reasons, this 

method is scalable to very low resource languages, 

provided that the required data is available on the Web.  

The corpus of songs collected during this work can be also 

be potentially studied and mined for many other linguistic 

and socio-linguistic studies. For instance, one of the 

interesting observations we made on this data is the steady 

rise in usage of English words in Hindi song lyrics over 

the past two decades. This could be due to socio-cultural 

changes as well as a shift in the target audience of the 

movies. It would be interesting to investigate such 

phenomena using this corpus. 
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