

PEXACC: A Parallel Sentence Mining Algorithm from Comparable Corpora

Radu Ion
Research Institute for Artificial Intelligence, Romanian Academy

13, Calea 13 Septembrie, Bucharest 050711, Romania

radu@racai.ro

Abstract

Extracting parallel data from comparable corpora in order to enrich existing statistical translation models is an avenue that attracted a
lot of research in recent years. There are experiments that convincingly show how parallel data extracted from comparable corpora is
able to improve statistical machine translation. Yet, the existing body of research on parallel sentence mining from comparable corpora
does not take into account the degree of comparability of the corpus being processed or the computation time it takes to extract parallel
sentences from a corpus of a given size. We will show that the performance of a parallel sentence extractor crucially depends on the
degree of comparability such that it is more difficult to process a weakly comparable corpus than a strongly comparable corpus. In this
paper we describe PEXACC, a distributed (running on multiple CPUs), trainable parallel sentence/phrase extractor from comparable
corpora. PEXACC is freely available for download with the ACCURAT Toolkit, a collection of MT-related tools developed in the
ACCURAT project.

Keywords: parallel sentence extraction from comparable corpora, comparable corpora, machine translation, translation models

1. Introduction

When it comes to statistical machine translation (SMT)

there is a growing need of training parallel data, especially

for language pairs that are not well represented in the

realm of Word Wide Web (WWW). Parallel corpora (PC)

acquisition from WWW has been traditionally geared

towards identifying similar structure (searching for

anchors in titles, sections, images with identical

descriptions, same inbound/outbound links, etc.) of the

parallel documents and/or their referring URLs (Zhang et

al., 2006) but recent research has been oriented towards

scoring the candidate target document as to how well it

(dictionary-) translates the source counterpart (Tsvetkov

& Wintner, 2010).

In contrast, comparable corpora (CC) are easier to collect

than PC basically because no parallel web sites are needed

to be identified a priori and no (usually complicated)

HTML parsing is required in order to identify the parallel

parts at crawling time. CC is excepted from the tedious

task of particular HTML parsing by assuming that

documents are related in some (explicitly stated) way and

thus, just collecting all the text from the HTML document

is sufficient for the crawler. We accept the definition of

CC from Munteanu & Marcu (2005): a pair of comparable

documents “… while not parallel in the strict sense, are

somewhat related and convey overlapping information”.

The relatedness of a pair of comparable documents has

been defined and experimented with in many ways among

which the membership to the same domain/topic/genre,

the same publication date/period (especially for News

documents), the appearance of the same named entities

(names of persons, geographical entities, numeric entities,

dates, times, etc.) and so on. The predominant paradigm

for acquiring CC is the cross-language information

retrieval method based on seed lists of source documents

URLs (Talvensaari et al., 2008).

The direct consequence of the nature of CC and its

collecting mechanism is the large size compared to (truly)

PC collected from the WWW. The difference is several

orders of magnitude and the size of the CC prompts for

dealing with computational challenges that are not

encountered when searching for parallel sentences in PC.

Specifically, we are referring to the positional information

of the translation units in parallel texts (paragraphs and

sentences) which constitute a natural pruning technique

when searching for parallel sentences in PC. That is, for

the i-th sentence of the source document, the sought

aligned sentence is to be found in a window of ±k

sentences around the j-th sentence of the target document

where i and j are proportional. This is not true in the case

of CC. Furthermore, if we have 𝑀 documents in the

source language and 𝑁 documents in the target language,

a parallel sentence mining algorithm should look in every

document pair from the set containing 𝑀𝑁 pairs in order

to achieve the maximum recall. But when 𝑀 and/or 𝑁

are/is large, this is not feasible and one has to pre-align the

documents in CC as to the likelihood to contain parallel

data.

PEXACC is a computationally parallel algorithm that

aims at finding parallel (translation equivalent) pieces of

text in CC at two levels of granularity: sentence and

phrase. We show that this algorithm is capable of top

performances and that it is applicable to large amounts of

CC provided that the required computational resources

are available. Furthermore, its implementation is freely

available within the ACCURAT Toolkit for extracting

MT resources from CC (Ion et al., 2011a).

2. Related work

Extracting parallel data from comparable corpora in order

to enrich existing statistical translation models is an

avenue that attracted a fair amount of research in recent

years. Generally speaking, we identified two approaches

to parallel sentence mining from CC in the existing

literature on the subject:

1. pair documents in CC (by using cross-language

2181

information retrieval techniques or translation

similarity measures); for each document pair

generate the cartesian product of the source and

target sentence sets; score (by classification or a

type of translation similarity measure) each

sentence pair from the cartesian product as to its

parallelism degree;

2. use an initial SMT system (trained on existing

parallel/comparable data) to translate every

source sentence from CC into the target

language; use standard information retrieval

techniques to find the target sentences most

similar to the translation and thus parallel to the

initial source sentence.

The main challenges in these two approaches are the

document pairing in CC and the parallelism degree

scoring function of a sentence pair which we will call the

translation similarity measure.

Munteanu & Marcu (2005) (followed in spirit by Tillman

(2009) and Quirk et al. (2007)) solved the document

pairing problem by generating target language queries

from a source document by using the first 5 most probable

translations of each word, and then interrogating a

standard IR engine to find the most similar 20 target

documents for the source document. Ion (2011b) devised

an EM algorithm to reveal the hidden document

alignments in a CC on the assumption that there are

certain word translation pairs that are very good indicators

for these alignments. Finally, Fung & Cheung (2004) use

a word translation similarity measure to discover similar

documents.

Given a pair of sentences, the first in the source language

and the last in the target language, the job of the

translation similarity measure is to assess “how parallel”

the two sentences are. Munteanu & Marcu (2005)

(followed by Tillman (2009) with an improved variation)

devised a maximum entropy classifier that will assign the

label of “parallel” or “not parallel” to the pair of

sentences. Among the features involved we can mention

the following: fertility (Brown et al., 1998), contiguous

connected spans of words, sentence lengths (with lengths

difference and lengths ratio), etc. Rauf & Schwenk (2011)

(and independently Thi Ngoc Diep et al. (2010)) use a

previously trained SMT system to translate the source

sentence into the target language and then apply MT

assessment measures such as WER (the Levenshtein

distance), TER (Snover et al. 2006) and TERp (Snover et

al. 2009) in order to monolingually see how similar is the

translation of the source sentence with the target sentence.

A radical different approach to determine if the source

sentence is similar to the target sentence is given by the

generative models of Quirk et al. (2007). They assume

that the target sentence (or phrase) is conditionally

generated by the source sentence and proceed to model

this generation probability. The parameters of the model

are the source and target words and the positions of the

source words that generated the translated target words.

3. PEXACC

PEXACC is a “Parallel phrase EXtractor from

Comparable Corpora” that belongs to the category of

extractors of type 1 defined in the previous section. That

is, it requires that documents in CC are aligned and in

order to assign a parallelism score to a pair of sentences, it

implements a trainable, language independent translation

similarity measure which is a weighted sum of translation

features. The next section describes the PEXACC

translation similarity measure at length including the

weighted sum equation, the features descriptions and the

training of the weights.

The general workflow of PEXACC is as follows (given
a pair of source and target documents):

1. split the input source and target documents into

sentences and then, if desired, into smaller parts

(loosely called ‘phrases’ throughout this

presentation) according to a list of language

dependent markers. By a “marker” we

understand a specific functional word that

usually indicates the beginning of a syntactic

constituent or a clause. For English these

markers include: prepositions, particles and

negations (the infinitive ‘to’, ‘not’), auxiliary

and modal verbs (‘have’, ‘be’, ‘can’, ‘must’),

interrogative and relative pronouns, determiners

and adverbs (‘which’, ‘what’, ‘who’, ‘that’,

‘how’, ‘when’, ‘where’, etc.) and subordinating

conjunctions (‘that’, ‘as’, ‘after’, ‘although’,

‘because’, ‘before’, etc.). An important design

decision is choosing a set of markers such that,

for the source and the target languages, the

phrases we obtain by splitting are in a 1:1

correspondence as much as possible. Thus, for

Romanian, the same types of markers can be

considered and, in most of the cases, the phrases

would align 1:1. In the next example pair of

parallel sentences (the markers are underlined,

square brackets indicate the phrases)

en: [A simple example] [will

demonstrate the splitting] [of

this sentence] [into smaller

parts].

ro: [Un exemplu elementar] [va

demonstra împărţirea acestei

propoziţii] [în părţi mai mici].

we have the following correspondences: “[A
simple example]  [Un exemplu

elementar]” (1:1 correspondence), “[will
demonstrate the splitting] [of

this sentence]  [va demonstra

împărţirea acestei propoziţii]”
(2:1) and “[into smaller parts]  [în
părţi mai mici]” (1:1).

2182

2. score each possible pair of sentences/phrases as

to their parallelism degree by using equation 1

(see the next section);

3. output all pairs of sentences/phrases for which

equation 1 gives a score larger than a predefined

threshold (default to 0.2 but the real parallelism

threshold is dependent on the type of the corpus:

parallel, strongly comparable and weakly

comparable and on the values of the weights).

The computations in the second step of PEXACC are

independent one of the other and as such, may be

executed in parallel. In its current implementation,

PEXACC is able to spread the computation of the

translation similarity measure for different sentence pairs

over multiple CPUs in order to considerably shorten the

overall computation time.

Equation 1 makes use of several feature functions that are

designed to indicate the parallelism of two

sentences/phrases 𝑠 and 𝑡. These functions are designed

to return 1 when 𝑠 and 𝑡 are perfectly parallel (i.e. 𝑡 has

been obtained from 𝑠 by translation if 𝑠 and 𝑡 were to be

presented together as a pair to a human judge). The

functions should return a value close to 0 when 𝑠 and 𝑡
are not related at all but this behavior is critically

influenced by the quality and the completeness of the

dictionary that is used (see the next section for details).

Thus, 𝑠 and 𝑡 may still be parallel but if individual words

in 𝑠 do not have the relevant 𝑡 translations in the

dictionary and/or the translations probabilities are small,

the resulting (low) score could be misleading. This is the

main reason for which we have incorporated a “relevance

feedback loop” (idea from Fung & Cheung (2004)).

Thus, steps 2—4 of the algorithm are executed for a fixed

number of times and

4. takes the output of step 3 and trains a

supplementary GIZA++ (Gao & Vogel, 2008)

dictionary on all sentence/phrase pairs with a

certain parallelism score (to minimize noise) and

adds it to the main initial dictionary. The

combination method between the main

dictionary D and the learnt one T is as follows:

 if the pair of the word translation

equivalents 𝑒 is found in both dictionaries,

its new translation probability 𝑝(𝑒)

becomes 𝑝(𝑒) = 0.7𝑝𝐷(𝑒) + 0.3𝑝𝑇(𝑒)
where 𝑝𝐷(𝑒) is the probability of 𝑒 in the D

dictionary and 𝑝𝑇(𝑒) is the probability of 𝑒

in the T dictionary;

 if the pair of translation equivalents 𝑒 is

found in either D or T but not both, leave its

probability unchanged.

4. PEXACC translation similarity measure

We have modeled the translation similarity measure as a

weighted sum of feature functions that indicate if the

source sentence/phrase is translated by the target

sentence/phrase. Given two sentences 𝑠 in the source

language and 𝑡 in the target language, then the translation

similarity measure 𝑃(𝑠, 𝑡) is

𝑃(𝑠, 𝑡) = ∑ (𝑠, 𝑡)

 (1)

such that ∑ = 1 . Each feature function (𝑠, 𝑡) will

return a real value between 0 (𝑠 and 𝑡 are not related at

all) and 1 (𝑡 is a translation of 𝑠) and contributes to the

overall parallelism score with a specific fraction that is

language-pair dependent and that will be automatically

determined by training a logistic regression classifier on

existing parallel data (to be described in subsection 4.2).

We consider that this approach is better suited to

discovery of parallel and, especially, quasi-parallel

sentences than the binary classification approach of

Munteanu & Marcu (2005) because of the fact that pairs

of sentences extracted from comparable corpora may fall

into the “strongly comparable” intermediate class which

does not exist with the “parallel”/“not parallel” binary

distinction. Furthermore, we postulate that one cannot

simply extend the number of classes of the classifier

because the levels of comparability of two sentences

correspond to a continuous, real-valued function with

values ranging from e.g. “not parallel and not related at

all” (0) to “parallel” (1).

Each of the feature functions (𝑠, 𝑡) has been designed to

return a value close to 1 on parallel 𝑠 and 𝑡 by manually

inspecting a fair amount of parallel examples in the

English-Romanian pair of languages. By negation, we

assume that the same feature functions will return a value

close to 0 for non-parallel, not-related 𝑠 and 𝑡 but this

behavior is critically influenced by the quality and

completeness of the linguistic computational resources

that we use: bilingual translation lexicons, lists of

inflectional suffixes used for stemming and lists of

stop-words. Thus, generally, a feature function that uses

one (or more) of the resources mentioned above can

falsely return a value close to 0 for parallel 𝑠 and 𝑡 due to

the fact that this decision was made in the absence of the

relevant entries in that resource. The prototypical example

here is that the translation lexicon does not contain the

relevant translations for the words in 𝑠.

Equation 1 will return a score based on the translation

similarity of the sentences but, in practice, we also apply a

length ratio filter (as Munteanu & Marcu (2005)) in order

to reject pairs of 𝑠 and 𝑡 whose lengths are

disproportionate.

Thus, if
max(|𝑠|,|𝑡|)

min(|𝑠|,|𝑡|)
> 𝑇, where |𝑠| is the length of 𝑠 in

words and 𝑇 is a language pair dependent ratio (e.g. 1.5

for English-Romanian), we assign the score of 0 to the

pair (not related at all).

2183

4.1. Features

Before being passed to the feature functions, sentences 𝑠

and 𝑡 are tokenized, functional words are identified and

content word are stemmed using language-dependent

inflectional suffixes. Given these transformations of 𝑠 and

𝑡, all features (𝑠, 𝑡) are language-independent. We use 5

features.

 1(𝑠, 𝑡) is the “content words translation strength”

feature. Given a statistical translation lexicon obtained by

e.g. applying GIZA++ on a parallel corpus
1
, we find the

best 1:1 alignment 𝐴 between content words in 𝑠 and 𝑡
such that the translation probability

2
 is maximized. If

〈𝑐𝑤
𝑠 , 𝑐𝑤𝑗

𝑡〉 is a word pair from 𝐴, 𝑝(〈𝑐𝑤
𝑠, 𝑐𝑤𝑗

𝑡〉) is the

translation probability of the word pair from the

dictionary and |𝑠| is the length (in content words) of

sentence 𝑠, then

 1(𝑠, 𝑡) =
∑ 𝑝(〈𝑐𝑤

𝑠 , 𝑐𝑤𝑗
𝑡〉)〈

 ,
 〉

|𝑠|
 (2)

This feature has a maximum value of 1 if all content

words from 𝑠 are translated in 𝑡 with the maximum

probability of 1.

 2(𝑠, 𝑡) is the “functional words translation strength”

feature. The intuition is that functional words around

content words aligned as in feature 1(𝑠, 𝑡), will also align

for parallel 𝑠 and 𝑡 because of the fact that, from a

dependency-syntactic point of view, functional words

(prepositions, determiners, articles, particles, etc.) are

usually governed by or govern nearby content words.

Mathematically, if 〈 𝑤𝑘
𝑠, 𝑤𝑙

𝑡〉 is the highest scored pair

of aligned functional words near (in a window of ±3

words) the aligned pair of content words 〈𝑐𝑤
𝑠, 𝑐𝑤𝑗

𝑡〉 from

𝐴, |𝐴| is the cardinal of the best alignment as found by

 1(𝑠, 𝑡) and 𝑝(〈 𝑤𝑘
𝑠 , 𝑤𝑙

𝑡〉) is the probability of the

functional word pair from the dictionary, then

 2(𝑠, 𝑡) =
∑ 𝑝(〈 𝑤𝑘

𝑠 , 𝑤𝑙
𝑡〉)〈

 ,
 〉

|𝐴|
 (3)

The maximal value of 2(𝑠, 𝑡) is 1 and it is reached when

for each aligned pair of content words from 𝐴, there is a

pair of functional words that align with the maximum

probability of 1.

 3(𝑠, 𝑡) is the “alignment obliqueness” feature (Tufiş et

al., 2006). Here we have redefined it to be a discounted

correlation measure because there are pairs of languages

1 To obtain the dictionaries mentioned throughout this section,
we have applied GIZA++ on the JRC Acquis corpus
(http://langtech.jrc.it/JRC-Acquis.html).
2 For two source and target words, if the pair is not in the
dictionary, we use a 0 to 1 normalized version of the
Levenshtein distance in order to assign a “translation
probability” based on string similarity alone. If the source and
target words are similar above a certain threshold
(experimentally set to 0.7), we consider them to be translations.

for which the natural word order implies crossing word

alignment links. 3(𝑠, 𝑡) also uses the alignment set 𝐴 of

content words described for feature 1(𝑠, 𝑡) from which

we derive two source and target vectors 𝑥𝑠 and 𝑥𝑡 of the

same length containing the indices 𝑖 in the ascending

order (1≤ 𝑖 ≤ |𝑠|) and 𝑗 respectively (1≤ 𝑗 ≤ |𝑡|) of

content words 𝑐𝑤
𝑠 and 𝑐𝑤𝑗

𝑡 that form an alignment pair

in 𝐴. Alignment obliqueness is computed as

 3(𝑠, 𝑡) = (,)
1

1 + 𝑒
 1

| |
min(|𝑠|,|𝑡|)

 (4)

where , is the Pearson correlation coefficient of the

𝑥𝑠 and 𝑥𝑡 vectors and (𝑥) is the absolute value

function. The second term is a modified sigmoid function

 (𝑥) =
1

1 + 𝑒 1

designed to be a discount factor with values between 0

and 1 when 𝑥 takes on values between 0 and 1. The idea

here is that if 𝐴 contains a few alignments relative to

min(|𝑠|, |𝑡|) (the size of 𝐴 is at most min(|𝑠|, |𝑡|)), then

even if , is high, 3(𝑠, 𝑡) should be small because a

few alignments usually do not indicate parallelism.

 4(𝑠, 𝑡) is the “strong translation sentinels” feature.

Intuitively, if sentences 𝑠 and 𝑡 are parallel then,

frequently, one can find content words that align near the

beginning and end of the considered sentences. 4(𝑠, 𝑡) is

a binary-valued feature which is 1 if we can find “strong”

translation pairs (probability greater than 0.2; set

experimentally) between the first 2 content words at the

beginning of 𝑠 and 𝑡 and between the last 2 content words

at the end of 𝑠 and 𝑡. 4(𝑠, 𝑡) is 0 in the opposite case.

Finally, (𝑠, 𝑡) is the “end with the same punctuation”

feature. This is also a binary-valued feature which is 1 if

both 𝑠 and 𝑡 end with the same type of punctuation:

period, exclamation mark, etc. It is also 1 if both 𝑠 and 𝑡
lack final punctuation. (𝑠, 𝑡) is 0 in the opposite case.

The observant reader has noticed by now that all the

features with the exception of (𝑠, 𝑡) are not symmetrical

(because of the fact that they are all based on the word

alignment computed in 1(𝑠, 𝑡) which is itself not

symmetrical due to the translation lexicon) and as such,

the measure from equation 1 is not symmetrical as well. In

order to have evidence from both directions, we will use

the arithmetic mean to get the final measure:

𝑀(𝑠, 𝑡) = 𝑀(𝑡, 𝑠) =
𝑃(𝑠, 𝑡) + 𝑃(𝑡, 𝑠)

 (5)

4.2. Learning the optimal weights

The weights 2 and 3 corresponding to the features

“functional words translation strength” and “alignment

obliqueness” are language-pair dependent because of the

2184

http://langtech.jrc.it/JRC-Acquis.html

specific word ordering of the source and target languages.

At the same time, 1 through 4 have to be optimized

with respect to the translation lexicon in use because of

the fact that the construction of the word alignments is

based on this dictionary. Last but not least, since 𝑃(𝑠, 𝑡) is

not symmetrical, we will have to learn different
weights from source to target and vice versa.

In order to derive a set of optimal weights for each

language pair and translation lexicon, we have trained a

standard logistic regression classifier. Briefly, the

logistic regression classifier learns the weights that

define the hyperplane (whose equation is the same as

equation 1) that best separates the positive training

examples from the negative ones. In our case, the

examples are the multidimensional points whose

coordinates are given by the feature functions (𝑠, 𝑡).

For each language pair, the training set consists of 9500

parallel sentences
3
 for the positive examples and 9500 of

non-parallel sentences (obtained from the parallel pairs by

random shuffling) for the negative examples. For the

training set in question, we also have 500 additional

parallel sentences together with 500 non-parallel

sentences (obtained by random shuffling as well) as the

test set. An example
4
 is obtained by computing all the

feature functions (𝑠, 𝑡) for the given positive (parallel)

or negative (non-parallel) 𝑠 and 𝑡.

Table 1 summarizes the derived optimal weights for

considered language-pairs (both directions).

Lang. F1/BL

en-ro 0.31 0.02 0.37 0.21 0.09 0.93/0.88

ro-en 0.31 0.01 0.37 0.20 0.11 0.93/0.91

en-de 0.31 0.02 0.3 0.17 0.2 0.94/0.89

de-en 0.35 0.02 0.28 0.16 0.19 0.96/0.92

en-sl 0.23 0.01 0.38 0.2 0.18 0.96/0.89

sl-en 0.2 0.03 0.38 0.19 0.2 0.94/0.89

en-el 0.61 0.08 0.21 0 0.1 0.99/0.98

el-en 0.47 0.08 0.28 0.07 0.1 0.98/0.98

en-lv 0.27 0.05 0.41 0.16 0.1 0.98/0.96

lv-en 0.49 0.03 0.41 0 0.07 0.99/0.96

en-lt 0.33 0.01 0.41 0.15 0.1 0.96/0.91

lt-en 0.28 0.01 0.41 0.15 0.15 0.94/0.90

en-et 0.28 0.08 0.36 0.17 0.11 0.98/0.96

et-en 0.27 0.07 0.38 0.18 0.1 0.96/0.93

en-hr 0.29 0.01 0.41 0.16 0.13 0.98/0.95

hr-en 0.25 0.02 0.44 0.17 0.12 0.98/0.97

Table 1: Optimal weights for the translation similarity
measure

The language pairs for which we trained the optimal

weighs (for both directions) are: English-Romanian

(en-ro), English-German (en-de), English-Slovene

(en-sl), English-Greek (en-el), English-Latvian (en-lv),

3
 Mostly from the News domain for all language pairs.

4
 It may be the case that an example occurs multiple times with

both labels. In this case we retain all the occurrences of the
example with the most frequent label and remove all the
conflicting occurrences of that example.

English-Lithuanian (en-lt), English-Estonian (en-et) and

English-Croatian (en-hr). The column named “F1/BL” in

Table 1 indicates the gain in F1 measure when testing the

translation similarity measure with the optimal weights on

the test set as compared to a baseline (BL) consisting of

applying the measure using fixed values of the weights

corresponding to our intuition of their importance
5

:

 1 = 0.45, 2 = 0. , 3 = 0.15, 4 = 0.15, = 0.05.

5. Experiments and results

We tested PEXACC in several scenarios:

1. in order to measure the precision, recall and F1

measure on different types of comparable

corpora, we artificially inserted noise (unrelated

sentences) into a parallel corpus in specified

proportions and checked the ability of PEXACC

to re-discover the parallel corpus in the presence

of noise; subsection 5.1 gives the details;

2. to compare PEXACC to current state of the art

parallel sentence mining from CC, we

implemented Munteanu & Marcu (2005)

maximum entropy classifier (MaxEntClass) for

English-German (Ion, 2011c) and ran the two

algorithms on the artificially-created CC

described above; we show that the task of

extracting parallel sentences from CC is

progressively more difficult as the CC type

varies from strongly comparable to weakly

comparable; subsection 5.2 describes the

experiment;

3. in order to see how PEXACC behaves on

real-world data, we have run it on a real

English-Romanian CC News corpus collected in

the ACCURAT project; subsection 5.3 presents

the results.

5.1. Computing P, R and F1

To be able to compute recall, we needed to know exactly

how many parallel sentence pairs are present in the test

CC. Since the collected CC are usually very large and

cannot be evaluated by hand, we decided to “pollute” an

existing parallel corpus with “noisy sentences” –

sentences that are drawn from the same domain but are

unrelated. The proportion of noisy sentences vs. parallel

sentences was controlled and was set to 2:1, 5:1 and 10:1.

That is, for a noise proportion of 2:1, for each pair of

parallel sentences, two pairs of noisy sentences were

added.

We performed the tests on English-German (en-de),

English-Romanian (en-ro), English-Greek (en-el) and

English-Latvian (en-lv) to have a diverse language

representation. The parallel test corpus for each language

pair is a News corpus containing 100 parallel sentence

pairs. There is a source file containing 100 sentences (one

sentence per line) and a target file containing the parallel

5 We used these values of the weights when we developed the
features.

2185

counterparts on the same line numbers. After source and

target noise sentences are added to each file (in the

specified proportion), the ordering of the sentences is

destroyed by random shuffling.

A first interesting experiment is to judge the performance

of PEXACC with the optimized weights vs. the default

values of the weights (see subsection 4.2). We ran

PEXACC with the default values and with the optimized

values for the weights on the English-German CC, 2:1

noise ratio. Figures 1 and 2 plot the precision (P), recall

(R), F1 measure (F1) and F0.2 measure for the two runs,

in percents, over the values of the translation similarity

measure (step 0.01) as computed by equation 1.

The F0.2 measure is computed as

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑅

𝛽2𝑃 + 𝑅

where 𝛽 = 0. . F0.2 weighs precision more than recall.

We have plotted F0.2 because we are more interested in

precision than recall, PEXACC main usage being for

SMT training.

When running with the default weights, the best F1

measure is 75.55% and the best F0.2 measure is 85.22%.

With the optimized weights, the best F1 is 77.55% (+2%)

and the best F0.2 is 86.21% (+1%). Comparatively

studying Figures 1 and 2, the area of the graphic delimited

by the F1 and F0.2 curves is significantly larger in the

case of the optimized weights run. This translates directly

into a better behavior of P (rapid increase) and R (slower

decrease) across the range of the translation similarity

measure values.

Tables 2 to 4 present the performance of PEXACC

exhibiting the best F1/F0.2 measures as a function of the

equation 1 translation similarity values. That is, all the

sentence pairs that are discovered by PEXACC are sorted

in the decreasing order of the translation similarity

measure and, we compute P, R, F1 and F0.2 for the top

produced results up to the considered threshold (varied

from 0 to 1 in steps of 0.01; see Figure 2 for a graphical

representation). We present the best values for F1 and

F0.2

 P R F1 P R F0.2

en-de 0.791 0.76 0.775 0.878 0.58 0.861

en-ro 0.684 0.78 0.728 1 0.38 0.94

en-el 0.864 0.83 0.846 0.971 0.67 0.954

en-lv 0.916 0.77 0.836 0.985 0.68 0.968

Table 2: PEXACC run with optimized weights on the 2:1

noise ratio test CC

 P R F1 P R F0.2

en-de 0.76 0.7 0.729 0.862 0.5 0.838

en-ro 0.819 0.59 0.686 1 0.35 0.933

en-el 0.896 0.78 0.834 0.971 0.67 0.954

en-lv 0.88 0.74 0.804 0.947 0.54 0.92

Table 3: PEXACC run with optimized weights on the 5:1

noise ratio test CC

 P R F1 P R F0.2

en-de 0.724 0.63 0.673 0.838 0.52 0.819

en-ro 0.814 0.44 0.571 0.916 0.33 0.858

en-el 0.789 0.75 0.769 0.944 0.51 0.914

en-lv 0.774 0.72 0.746 0.973 0.37 0.916

Table 4: PEXACC run with optimized weights on the

10:1 noise ratio test CC

Looking at the tables above, we can see that that the task

of finding parallel sentences becomes harder with the

increasing noise level in the CC. For instance, the

English-Romanian F1 measure drops with 15.7% when

processing CC with noise ratio 10:1 compared to CC with

noise ratio of 2:1. Comparatively, the English-Greek F1

measure drops with only 7.7% but the lower difference is

explained by the fact that the noise was automatically

introduced and thus, the length ratio of the noisy sentence

pairs has not been checked. As a consequence, in the case

of English-Greek, some of the wrong pairs were filtered

more easily.

The current implementation of PEXACC is in C#

on .NET Framework 4.0. The processing time is

dependent on the language pair because the translation

similarity measure from equation 1 computes, for each

word, a type of transliteration in order to be able to

Figure 1: P, R, F1 and F0.2 of PEXACC running with

default weights

Figure 2: P, R, F1 and F0.2 of PEXACC running with the

optimized weights

0

20

40

60

80

100

120

0
.0
1

0
.0
6

0
.1
1

0
.1
6

0
.2
1

0
.2
6

0
.3
1

0
.3
6

0
.4
1

0
.4
6

0
.5
1

0
.5
6

0
.6
1

0
.6
6

0
.7
1

0
.7
6

0
.8
1

0
.8
6

F1

F0.2

P

R

0

20

40

60

80

100

120

0
.0
1

0
.0
6

0
.1
1

0
.1
6

0
.2
1

0
.2
6

0
.3
1

0
.3
6

0
.4
1

0
.4
6

0
.5
1

0
.5
6

0
.6
1

0
.6
6

0
.7
1

0
.7
6

0
.8
1

0
.8
6

0
.9
1

F1

F0.2

P

R

2186

compare and detect similar words in the source and target

languages:

 for all languages all diacritics are replaced with

their diacritical mark free form;

 for Greek, a full transliteration is applied to get

to the Latin alphabet.

As a consequence, the number of processed sentence pairs

varies with the language pair (as measured on a single

core of an Intel i7 980 @ 3.33GHz, 16 GB DDR3 @

800MHz):

 English-Romanian: 450 sentence pairs per

second;

 English-German: 500 sentence pairs per second;

 English-Greek: 200 sentence pairs per second;

 English-Latvian: 540 sentence pairs per second.

As we already stated, PEXACC is able to distribute the

computation on available CPU or CPU cores and as such,

it is able to sustain the same sentence pair processing rate

on each of the 12 cores of the Intel i7 980 @ 3.33GHz

CPU on which we ran it. Thus, for instance, it finished

(minus the time it needed to load the resources) the

English-German processing of the 2:1 noise ratio text CC

in approximately 15 seconds: 90,000 sentence pairs to

process, 500 sentence pairs per second running on a single

core, 12 CPU cores. This means it is able to process 500 *

12 = 6,000 sentence pairs per second on 12 cores which

gives 90,000 / 6,000 = 15 seconds of processing time in

total.

5.2. Comparison with the state of the art

In order to compare PEXACC with MaxEntClass, we ran

both of them on the English-German CC constructed with

the methodology described in the previously. For

PEXACC, we give precision (P), recall (R) and F1

measure (F1) corresponding to the best F1 measure

computed as a function of the translation similarity score

from equation 1. In the case of MaxEntClass, we

considered all the output that was produced.

 2:1 5:1 10:1

MEC PXC MEC PXC MEC PXC

P 0.800 0.791 0.789 0.760 0.523 0.724

R 0.560 0.760 0.450 0.700 0.450 0.630

F1 0.658 0.775 0.573 0.729 0.483 0.673

Table 5: Comparison between the MaxEntClass (MEC)

and PEXACC (PXC) when applied on different types of

English-German CC

We can see that the performance of both algorithms

decreases significantly when asked to extract parallel

sentences from weakly comparable corpora (noise ratio

10:1) when compared to strongly comparable corpora

(noise ratio 2:1).

PEXACC has the advantage that its output can be

trimmed by imposing a certain threshold on the value of

the translation similarity measure as computed by

equation 1. Thus, above a certain threshold, the precision

of PEXACC can even be as high as 1 at a significant cost

of the recall (see Figure 2). We consider this to be an asset

of PEXACC since, as already stated, its main use is to

generate parallel data for SMT training. Furthermore, by

carefully choosing a value of this threshold, the desired

tradeoff between precision and recall (e.g. measuring

F0.2) may be achieved.

5.3. Running PEXACC on real-world data

PEXACC has been used to collect parallel sentence pairs

for SMT training in the ACCURAT project
6
. We present

its evaluated precision on an English-Romanian weakly

comparable news corpus collected in the project (version

14-02-2012) by continuously harvesting news articles

from selected URLs. The documents in the corpus are

aligned based on their titles and publication dates. Table 6

presents the corpus statistics.

 Docs. Sentences Tokens Size

en 17,845 464,961 9,309,338 53.7MB

ro 7,120 121,104 2,605,976 16.9MB

Table 6: 14-02-2012 News CC statistics

We ran PEXACC on this corpus and kept all the sentence

pairs with a translation similarity measure of at least 0.3

which are 22,352. We then sorted these pairs in

descending order and inspected them by hand from the

pair with the largest score (0.99) until the last pair with

score larger than or equal to 0.5. Table 7 presents the

results.

Threshold Precision Sentence pairs

0.9 1 22

0.8 1 166

0.7 0.99 973

0.6 0.95 3,267

0.5 0.92 7,186

Table 7: Accuracy of PEXACC on the first 7,186

sentence pairs extracted from the 14-02-2012 News CC

In Table 7, the “Sentence pairs” column shows the

number of sentence pairs that have a translation similarity

score of at least the specified value in the “Threshold”

column. We cannot compute the recall because we do not

know how may parallel sentence pairs are in the corpus.

We have inspected all produced pairs with a score of at

least 0.7. Below this threshold, we did a random sampling

of the results by selecting and evaluating 100 pairs from

each threshold range (0.7-0.6 and 0.6-0.5).

Table 7 shows that PEXACC precision is consistent with

the results reported in Tables 2 to 4.

6. Conclusion

Parallel sentence mining from comparable corpora is a

proven alternative to producing parallel data for SMT

training for under-resourced languages. We have

6
 http://www.accurat-project.eu/

2187

http://www.accurat-project.eu/

presented PEXACC, a trainable, extensible and language

independent approach to parallel sentence mining from

comparable corpora and showed that it is capable of state

of the art performances.

Currently, PEXACC (together with a derived application

based on its translation similarity measure) is used in the

ACCURAT project to mine for parallel sentence pairs in

the CC collected by the ACCURAT partners. SMT

improvement based on the extracted data is, at the time of

writing, under testing.

PEXACC is available for download in the “ACCURAT

Toolkit”, a collection of tools to extract MT-useful data

from CC. The ACCURAT project website
7
 gives all the

details.

7. Acknowledgements

This work has been supported by the ACCURAT project

funded by the European Community‘s Seventh

Framework Program (FP7/2007-2013) under the Grant

Agreement n° 248347.

8. References

Brown, P.F., Pietra, S.A.D., Pietra, V.J.D. and Mercer,

R.L. (1993). The mathematics of statistical machine

translation: parameter estimation. Computational

Linguistics, 19(2), pp. 263—311.

Thi Ngoc Diep, D., Besacier, L., Castelli, E. (2010). A

Fully Unsupervised Approach for Mining Parallel Data

from Comparable Corpora. In Proceedings of the 14th

Annual Conference of the European Association for

Machine Translation (EAMT 2010), Saint-Raphaël,

France, 27-28 May 2010.

Fung, P. and Cheung, P. (2004). Mining

Very-Non-Parallel Corpora: Parallel Sentence and

Lexicon Extraction via Bootstrapping and EM. In

Proceedings of EMNLP 2004, Barcelona, Spain. July

2004.

Gao, Q. and Vogel, S. (2008). Parallel Implementations of

a Word Alignment Tool. In Proceedings of ACL-08

HLT: Software Engineering, Testing, and Quality

Assurance for Natural Language Processing, June 20,

2008. The Ohio State University, Columbus, Ohio,

USA, pp. 49—57.

Ion, R., Pinnis, M., Ştefănescu, D., Aker, A., Paramita,

M., Su, F., Irimia, E., Zhang, X. and Ljubešić, N.

(2011a). Toolkit for multi-level alignment and

information extraction from comparable corpora.

Technical report no. D2.6 of the ACCURAT Project

(http://www.accurat-project.eu/).

Ion, R. Ceauşu, A. and Irimia, E. (2011b). An Expectation

Maximization Algorithm for Textual Unit Alignment.

In Proceedings of the 4th Workshop on Building and

Using Comparable Corpora (BUCC 2011) held at the

49th Annual Meeting of the Association for

Computational Linguistics, Portland, Oregon, USA,

7
 http://www.accurat-project.eu/

June 24th, 2011, pp. 128—135.

Ion, R., Zhang, X., Su, F., Paramita, M. and Ştefănescu, D.

(2011c). Report on multi-level alignment of

comparable corpora Technical report no. D2.2 of the

ACCURAT Project (http://www.accurat-project.eu/).

Munteanu, D.S., and Marcu, D. (2005). Improving

machine translation performance by exploiting

non-parallel corpora. Computational Linguistics, 31(4),

pp. 477–504.

Rauf, S.A. and Schwenk, H. (2011). Parallel sentence

generation from comparable corpora for improved

SMT. Machine Translation, 25, pp. 341—375.

Quirk, C., Udupa, R., and Menezes, A. (2007). Generative

Models of Noisy Translations with Applications to

Parallel Fragment Extraction. In Proceedings of the MT

Summit XI, Copenhagen, Demark, September, 2007,

pp. 321–327.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L. and

Makhoul, J. (2006). A study of translation edit rate with

targeted human annotation. In Proceedings of the 7th

conference of the Association for Machine Translation

in the Americas (AMTA 2006): visions for the future of

machine translation, Cambridge, MA, USA, pp. 223–

231.

Snover, M., Madnani, N., Dorr, B. and Schwartz, R.

(2009). Fluency, adequacy, or HTER? Exploring

different human judgments with a tunable MT metric.

In Proceedings of the Fourth Workshop on Statistical

Machine Translation, Association for Computational

Linguistics, Athens, Greece, pp. 259–268.

Talvensaari, T., Pirkola, A., Järvelin, K., Juhola, M. and

Laurikkala, J. (2008). Focused web crawling in the

acquisition of comparable corpora. Information

Retrieval, 11(5), pp. 427—445.

Tao, T., and Zhai, C.X. (2005). Mining Comparable

Bilingual Text Corpora for Cross Language

Information Integration. In Proceedings of KDD’05,

August 21-24, 2005, Chicago, Illinois, USA.

Tillmann, C. (2009). A Beam-Search Extraction

Algorithm for Comparable Data. In Proceedings of the

ACL-IJCNLP 2009 Conference Short Papers, Suntec,

Singapore, 4 August 2009, pp. 225–228.

Tsvetkov, Y. and Wintner, S. (2010). Automatic

Acquisition of Parallel Corpora from Websites with

Dynamic Content. In Proceedings of the Seventh

conference on International Language Resources and

Evaluation (LREC'10), Valletta, Malta, May 2010, pp.

3389—3392.

Tufiş, D., Ion, R., Ceauşu, A. and Ştefănescu, D. (2006).

Improved Lexical Alignment by Combining Multiple

Reified Alignments. In Proceedings of the 11th

Conference of the European Chapter of the Association

for Computational Linguistics (EACL 2006), Trento,

Italy, April 3–7 2006, pp. 153–160.

Zhang, Y., Wu, K., Gao, J. and Vines, P. (2006).

Automatic Acquisition of Chinese-English Parallel

Corpus from the Web. In Proceedings of 28th European

Conference on Information Retrieval.

2188

http://www.accurat-project.eu/
http://www.accurat-project.eu/
http://www.accurat-project.eu/

