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Abstract 

Extracting parallel data from comparable corpora in order to enrich existing statistical translation models is an avenue that attracted a 
lot of research in recent years. There are experiments that convincingly show how parallel data extracted from comparable corpora is 
able to improve statistical machine translation. Yet, the existing body of research on parallel sentence mining from comparable corpora 
does not take into account the degree of comparability of the corpus being processed or the computation time it takes to extract parallel 
sentences from a corpus of a given size. We will show that the performance of a parallel sentence extractor crucially depends on the 
degree of comparability such that it is more difficult to process a weakly comparable corpus than a strongly comparable corpus. In this 
paper we describe PEXACC, a distributed (running on multiple CPUs), trainable parallel sentence/phrase extractor from comparable 
corpora. PEXACC is freely available for download with the ACCURAT Toolkit, a collection of MT-related tools developed in the 
ACCURAT project. 
 
Keywords: parallel sentence extraction from comparable corpora, comparable corpora, machine translation, translation models

1. Introduction 

When it comes to statistical machine translation (SMT) 

there is a growing need of training parallel data, especially 

for language pairs that are not well represented in the 

realm of Word Wide Web (WWW). Parallel corpora (PC) 

acquisition from WWW has been traditionally geared 

towards identifying similar structure (searching for 

anchors in titles, sections, images with identical 

descriptions, same inbound/outbound links, etc.) of the 

parallel documents and/or their referring URLs (Zhang et 

al., 2006) but recent research has been oriented towards 

scoring the candidate target document as to how well it 

(dictionary-) translates the source counterpart (Tsvetkov 

& Wintner, 2010). 

 

In contrast, comparable corpora (CC) are easier to collect 

than PC basically because no parallel web sites are needed 

to be identified a priori and no (usually complicated) 

HTML parsing is required in order to identify the parallel 

parts at crawling time. CC is excepted from the tedious 

task of particular HTML parsing by assuming that 

documents are related in some (explicitly stated) way and 

thus, just collecting all the text from the HTML document 

is sufficient for the crawler. We accept the definition of 

CC from Munteanu & Marcu (2005): a pair of comparable 

documents “… while not parallel in the strict sense, are 

somewhat related and convey overlapping information”. 

The relatedness of a pair of comparable documents has 

been defined and experimented with in many ways among 

which the membership to the same domain/topic/genre, 

the same publication date/period (especially for News 

documents), the appearance of the same named entities 

(names of persons, geographical entities, numeric entities, 

dates, times, etc.) and so on. The predominant paradigm 

for acquiring CC is the cross-language information 

retrieval method based on seed lists of source documents 

URLs (Talvensaari et al., 2008). 

 

The direct consequence of the nature of CC and its 

collecting mechanism is the large size compared to (truly) 

PC collected from the WWW. The difference is several 

orders of magnitude and the size of the CC prompts for 

dealing with computational challenges that are not 

encountered when searching for parallel sentences in PC. 

Specifically, we are referring to the positional information 

of the translation units in parallel texts (paragraphs and 

sentences) which constitute a natural pruning technique 

when searching for parallel sentences in PC. That is, for 

the i-th sentence of the source document, the sought 

aligned sentence is to be found in a window of ±k 

sentences around the j-th sentence of the target document 

where i and j are proportional. This is not true in the case 

of CC. Furthermore, if we have 𝑀  documents in the 

source language and 𝑁 documents in the target language, 

a parallel sentence mining algorithm should look in every 

document pair from the set containing 𝑀𝑁 pairs in order 

to achieve the maximum recall. But when 𝑀  and/or 𝑁 

are/is large, this is not feasible and one has to pre-align the 

documents in CC as to the likelihood to contain parallel 

data.  

 

PEXACC is a computationally parallel algorithm that 

aims at finding parallel (translation equivalent) pieces of 

text in CC at two levels of granularity: sentence and 

phrase. We show that this algorithm is capable of top 

performances and that it is applicable to large amounts of 

CC provided that the required computational resources 

are available. Furthermore, its implementation is freely 

available within the ACCURAT Toolkit for extracting 

MT resources from CC (Ion et al., 2011a). 

2. Related work 

Extracting parallel data from comparable corpora in order 

to enrich existing statistical translation models is an 

avenue that attracted a fair amount of research in recent 

years. Generally speaking, we identified two approaches 

to parallel sentence mining from CC in the existing 

literature on the subject: 

1. pair documents in CC (by using cross-language 
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information retrieval techniques or translation 

similarity measures); for each document pair 

generate the cartesian product of the source and 

target sentence sets; score (by classification or a 

type of translation similarity measure) each 

sentence pair from the cartesian product as to its 

parallelism degree; 

2. use an initial SMT system (trained on existing 

parallel/comparable data) to translate every 

source sentence from CC into the target 

language; use standard information retrieval 

techniques to find the target sentences most 

similar to the translation and thus parallel to the 

initial source sentence. 

 

The main challenges in these two approaches are the 

document pairing in CC and the parallelism degree 

scoring function of a sentence pair which we will call the 

translation similarity measure. 

 

Munteanu & Marcu (2005) (followed in spirit by Tillman 

(2009) and Quirk et al. (2007)) solved the document 

pairing problem by generating target language queries 

from a source document by using the first 5 most probable 

translations of each word, and then interrogating a 

standard IR engine to find the most similar 20 target 

documents for the source document. Ion (2011b) devised 

an EM algorithm to reveal the hidden document 

alignments in a CC on the assumption that there are 

certain word translation pairs that are very good indicators 

for these alignments. Finally, Fung & Cheung (2004) use 

a word translation similarity measure to discover similar 

documents. 

 

Given a pair of sentences, the first in the source language 

and the last in the target language, the job of the 

translation similarity measure is to assess “how parallel” 

the two sentences are. Munteanu & Marcu (2005) 

(followed by Tillman (2009) with an improved variation) 

devised a maximum entropy classifier that will assign the 

label of “parallel” or “not parallel” to the pair of 

sentences. Among the features involved we can mention 

the following: fertility (Brown et al., 1998), contiguous 

connected spans of words, sentence lengths (with lengths 

difference and lengths ratio), etc. Rauf & Schwenk (2011) 

(and independently Thi Ngoc Diep et al. (2010)) use a 

previously trained SMT system to translate the source 

sentence into the target language and then apply MT 

assessment measures such as WER (the Levenshtein 

distance), TER (Snover et al. 2006) and TERp (Snover et 

al. 2009) in order to monolingually see how similar is the 

translation of the source sentence with the target sentence. 

A radical different approach to determine if the source 

sentence is similar to the target sentence is given by the 

generative models of Quirk et al. (2007). They assume 

that the target sentence (or phrase) is conditionally 

generated by the source sentence and proceed to model 

this generation probability. The parameters of the model 

are the source and target words and the positions of the 

source words that generated the translated target words. 

3. PEXACC 

PEXACC is a “Parallel phrase EXtractor from 

Comparable Corpora” that belongs to the category of 

extractors of type 1 defined in the previous section. That 

is, it requires that documents in CC are aligned and in 

order to assign a parallelism score to a pair of sentences, it 

implements a trainable, language independent translation 

similarity measure which is a weighted sum of translation 

features. The next section describes the PEXACC 

translation similarity measure at length including the 

weighted sum equation, the features descriptions and the 

training of the weights. 

 
The general workflow of PEXACC is as follows (given 
a pair of source and target documents): 

1. split the input source and target documents into 

sentences and then, if desired, into smaller parts 

(loosely called ‘phrases’ throughout this 

presentation) according to a list of language 

dependent markers. By a “marker” we 

understand a specific functional word that 

usually indicates the beginning of a syntactic 

constituent or a clause. For English these 

markers include: prepositions, particles and 

negations (the infinitive ‘to’, ‘not’), auxiliary 

and modal verbs (‘have’, ‘be’, ‘can’, ‘must’), 

interrogative and relative pronouns, determiners 

and adverbs (‘which’, ‘what’, ‘who’, ‘that’, 

‘how’, ‘when’, ‘where’, etc.) and subordinating 

conjunctions (‘that’, ‘as’, ‘after’, ‘although’, 

‘because’, ‘before’, etc.). An important design 

decision is choosing a set of markers such that, 

for the source and the target languages, the 

phrases we obtain by splitting are in a 1:1 

correspondence as much as possible. Thus, for 

Romanian, the same types of markers can be 

considered and, in most of the cases, the phrases 

would align 1:1. In the next example pair of 

parallel sentences (the markers are underlined, 

square brackets indicate the phrases) 

 

en: [A simple example] [will 

demonstrate the splitting] [of 

this sentence] [into smaller 

parts]. 

 

ro: [Un exemplu elementar] [va 

demonstra împărţirea acestei 

propoziţii] [în părţi mai mici]. 

 
we have the following correspondences: “[A 
simple example]  [Un exemplu 

elementar]” (1:1 correspondence), “[will 
demonstrate the splitting] [of 

this sentence]  [va demonstra 

împărţirea acestei propoziţii]” 
(2:1) and “[into smaller parts]  [în 
părţi mai mici]” (1:1). 
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2. score each possible pair of sentences/phrases as 

to their parallelism degree by using equation 1 

(see the next section); 

3. output all pairs of sentences/phrases for which 

equation 1 gives a score larger than a predefined 

threshold (default to 0.2 but the real parallelism 

threshold is dependent on the type of the corpus: 

parallel, strongly comparable and weakly 

comparable and on the values of the weights). 

The computations in the second step of PEXACC are 

independent one of the other and as such, may be 

executed in parallel. In its current implementation, 

PEXACC is able to spread the computation of the 

translation similarity measure for different sentence pairs 

over multiple CPUs in order to considerably shorten the 

overall computation time. 

 

Equation 1 makes use of several feature functions that are 

designed to indicate the parallelism of two 

sentences/phrases 𝑠 and 𝑡. These functions are designed 

to return 1 when 𝑠 and 𝑡 are perfectly parallel (i.e. 𝑡 has 

been obtained from 𝑠 by translation if 𝑠 and 𝑡 were to be 

presented together as a pair to a human judge). The 

functions should return a value close to 0 when 𝑠 and 𝑡 
are not related at all but this behavior is critically 

influenced by the quality and the completeness of the 

dictionary that is used (see the next section for details). 

Thus, 𝑠 and 𝑡 may still be parallel but if individual words 

in 𝑠  do not have the relevant 𝑡  translations in the 

dictionary and/or the translations probabilities are small, 

the resulting (low) score could be misleading. This is the 

main reason for which we have incorporated a “relevance 

feedback loop” (idea from Fung & Cheung (2004)). 

Thus, steps 2—4 of the algorithm are executed for a fixed 

number of times and 

4. takes the output of step 3 and trains a 

supplementary GIZA++ (Gao & Vogel, 2008) 

dictionary on all sentence/phrase pairs with a 

certain parallelism score (to minimize noise) and 

adds it to the main initial dictionary. The 

combination method between the main 

dictionary D and the learnt one T is as follows: 

 if the pair of the word translation 

equivalents 𝑒 is found in both dictionaries, 

its new translation probability 𝑝(𝑒) 

becomes 𝑝(𝑒) = 0.7𝑝𝐷(𝑒) + 0.3𝑝𝑇(𝑒) 
where 𝑝𝐷(𝑒) is the probability of 𝑒 in the D 

dictionary and 𝑝𝑇(𝑒) is the probability of 𝑒 

in the T dictionary; 

 if the pair of translation equivalents 𝑒  is 

found in either D or T but not both, leave its 

probability unchanged. 

4. PEXACC  translation similarity measure 

We have modeled the translation similarity measure as a 

weighted sum of feature functions that indicate if the 

source sentence/phrase is translated by the target 

sentence/phrase. Given two sentences 𝑠  in the source 

language and 𝑡 in the target language, then the translation 

similarity measure 𝑃(𝑠, 𝑡) is 

 

𝑃(𝑠, 𝑡) = ∑    (𝑠, 𝑡)

 

 (1) 

 

such that ∑   = 1 . Each feature function   (𝑠, 𝑡)  will 

return a real value between 0 (𝑠 and 𝑡 are not related at 

all) and 1 (𝑡 is a translation of 𝑠) and contributes to the 

overall parallelism score with a specific fraction    that is 

language-pair dependent and that will be automatically 

determined by training a logistic regression classifier on 

existing parallel data (to be described in subsection 4.2). 

 

We consider that this approach is better suited to 

discovery of parallel and, especially, quasi-parallel 

sentences than the binary classification approach of 

Munteanu & Marcu (2005) because of the fact that pairs 

of sentences extracted from comparable corpora may fall 

into the “strongly comparable” intermediate class which 

does not exist with the “parallel”/“not parallel” binary 

distinction. Furthermore, we postulate that one cannot 

simply extend the number of classes of the classifier 

because the levels of comparability of two sentences 

correspond to a continuous, real-valued function with 

values ranging from e.g. “not parallel and not related at 

all” (0) to “parallel” (1). 

 

Each of the feature functions   (𝑠, 𝑡) has been designed to 

return a value close to 1 on parallel 𝑠 and 𝑡 by manually 

inspecting a fair amount of parallel examples in the 

English-Romanian pair of languages. By negation, we 

assume that the same feature functions will return a value 

close to 0 for non-parallel, not-related 𝑠  and 𝑡  but this 

behavior is critically influenced by the quality and 

completeness of the linguistic computational resources 

that we use: bilingual translation lexicons, lists of 

inflectional suffixes used for stemming and lists of 

stop-words. Thus, generally, a feature function that uses 

one (or more) of the resources mentioned above can 

falsely return a value close to 0 for parallel 𝑠 and 𝑡 due to 

the fact that this decision was made in the absence of the 

relevant entries in that resource. The prototypical example 

here is that the translation lexicon does not contain the 

relevant translations for the words in 𝑠. 

 

Equation 1 will return a score based on the translation 

similarity of the sentences but, in practice, we also apply a 

length ratio filter (as Munteanu & Marcu (2005)) in order 

to reject pairs of 𝑠  and 𝑡  whose lengths are 

disproportionate. 

Thus, if  
max(|𝑠|,|𝑡|)

min(|𝑠|,|𝑡|)
> 𝑇, where |𝑠| is the length of 𝑠 in 

words and 𝑇 is a language pair dependent ratio (e.g. 1.5 

for English-Romanian), we assign the score of 0 to the 

pair (not related at all). 
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4.1.   Features 

Before being passed to the feature functions, sentences 𝑠 

and 𝑡 are tokenized, functional words are identified and 

content word are stemmed using language-dependent 

inflectional suffixes. Given these transformations of 𝑠 and 

𝑡, all features   (𝑠, 𝑡) are language-independent. We use 5 

features. 

 

 1(𝑠, 𝑡)  is the “content words translation strength” 

feature. Given a statistical translation lexicon obtained by 

e.g. applying GIZA++ on a parallel corpus
1
, we find the 

best 1:1 alignment 𝐴 between content words in 𝑠 and 𝑡 
such that the translation probability

2
 is maximized. If 

〈𝑐𝑤 
𝑠 , 𝑐𝑤𝑗

𝑡〉 is a word pair from 𝐴, 𝑝(〈𝑐𝑤 
𝑠, 𝑐𝑤𝑗

𝑡〉) is the 

translation probability of the word pair from the 

dictionary and |𝑠|  is the length (in content words) of 

sentence 𝑠, then 

 

 1(𝑠, 𝑡) =
∑ 𝑝(〈𝑐𝑤 

𝑠 , 𝑐𝑤𝑗
𝑡〉)〈   

 ,   
 〉  

|𝑠|
 (2) 

 

This feature has a maximum value of 1 if all content 

words from 𝑠  are translated in 𝑡  with the maximum 

probability of 1. 

 

 2(𝑠, 𝑡) is the “functional words translation strength” 

feature. The intuition is that functional words around 

content words aligned as in feature  1(𝑠, 𝑡), will also align 

for parallel 𝑠  and 𝑡  because of the fact that, from a 

dependency-syntactic point of view, functional words 

(prepositions, determiners, articles, particles, etc.) are 

usually governed by or govern nearby content words. 

Mathematically, if 〈 𝑤𝑘
𝑠,  𝑤𝑙

𝑡〉 is the highest scored pair 

of aligned functional words near (in a window of ±3 

words) the aligned pair of content words 〈𝑐𝑤 
𝑠, 𝑐𝑤𝑗

𝑡〉 from 

𝐴, |𝐴| is the cardinal of the best alignment as found by 

 1(𝑠, 𝑡)  and 𝑝(〈 𝑤𝑘
𝑠 ,  𝑤𝑙

𝑡〉)  is the probability of the 

functional word pair from the dictionary, then 

 

 2(𝑠, 𝑡) =
∑ 𝑝(〈 𝑤𝑘

𝑠 ,  𝑤𝑙
𝑡〉)〈   

 ,   
 〉  

|𝐴|
 (3) 

 

The maximal value of  2(𝑠, 𝑡) is 1 and it is reached when 

for each aligned pair of content words from 𝐴, there is a 

pair of functional words that align with the maximum 

probability of 1. 

 

 3(𝑠, 𝑡) is the “alignment obliqueness” feature (Tufiş et 

al., 2006). Here we have redefined it to be a discounted 

correlation measure because there are pairs of languages 

                                                           
1 To obtain the dictionaries mentioned throughout this section, 
we have applied GIZA++ on the JRC Acquis corpus 
(http://langtech.jrc.it/JRC-Acquis.html). 
2 For two source and target words, if the pair is not in the 
dictionary, we use a 0 to 1 normalized version of the 
Levenshtein distance in order to assign a “translation 
probability” based on string similarity alone. If the source and 
target words are similar above a certain threshold 
(experimentally set to 0.7), we consider them to be translations. 

for which the natural word order implies crossing word 

alignment links.  3(𝑠, 𝑡) also uses the alignment set 𝐴 of 

content words described for feature  1(𝑠, 𝑡) from which 

we derive two source and target vectors 𝑥𝑠 and 𝑥𝑡 of the 

same length containing the indices 𝑖  in the ascending 

order (1≤ 𝑖 ≤ |𝑠| ) and 𝑗  respectively (1≤ 𝑗 ≤ |𝑡| ) of 

content words 𝑐𝑤 
𝑠 and 𝑐𝑤𝑗

𝑡 that form an alignment pair 

in 𝐴. Alignment obliqueness is computed as 

 

 3(𝑠, 𝑡) =    (   ,  )
1

1 + 𝑒
 1 

| |
min(|𝑠|,|𝑡|)

  
 (4) 

 

where    ,   is the Pearson correlation coefficient of the 

𝑥𝑠  and 𝑥𝑡  vectors and    (𝑥)  is the absolute value 

function. The second term is a modified sigmoid function  

 

 (𝑥) =
1

1 + 𝑒 1    
 

 

designed to be a discount factor with values between 0 

and 1 when 𝑥 takes on values between 0 and 1. The idea 

here is that if 𝐴  contains a few alignments relative to 

min(|𝑠|, |𝑡|) (the size of 𝐴 is at most min(|𝑠|, |𝑡|)), then 

even if    ,   is high,  3(𝑠, 𝑡) should be small because a 

few alignments usually do not indicate parallelism. 

 

 4(𝑠, 𝑡)  is the “strong translation sentinels” feature. 

Intuitively, if sentences 𝑠  and 𝑡  are parallel then, 

frequently, one can find content words that align near the 

beginning and end of the considered sentences.  4(𝑠, 𝑡) is 

a binary-valued feature which is 1 if we can find “strong” 

translation pairs (probability greater than 0.2; set 

experimentally) between the first 2 content words at the 

beginning of 𝑠 and 𝑡 and between the last 2 content words 

at the end of 𝑠 and 𝑡.  4(𝑠, 𝑡) is 0 in the opposite case. 

 

Finally,   (𝑠, 𝑡) is the “end with the same punctuation” 

feature. This is also a binary-valued feature which is 1 if 

both 𝑠  and 𝑡  end with the same type of punctuation: 

period, exclamation mark, etc. It is also 1 if both 𝑠 and 𝑡 
lack final punctuation.   (𝑠, 𝑡) is 0 in the opposite case. 

 

The observant reader has noticed by now that all the 

features with the exception of   (𝑠, 𝑡) are not symmetrical 

(because of the fact that they are all based on the word 

alignment computed in  1(𝑠, 𝑡)  which is itself not 

symmetrical due to the translation lexicon) and as such, 

the measure from equation 1 is not symmetrical as well. In 

order to have evidence from both directions, we will use 

the arithmetic mean to get the final measure: 

 

𝑀(𝑠, 𝑡) = 𝑀(𝑡, 𝑠) =
𝑃(𝑠, 𝑡) + 𝑃(𝑡, 𝑠)

 
 (5) 

4.2.   Learning the optimal weights 

The weights  2 and  3  corresponding to the features 

“functional words translation strength” and “alignment 

obliqueness” are language-pair dependent because of the 
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specific word ordering of the source and target languages. 

At the same time,  1  through  4  have to be optimized 

with respect to the translation lexicon in use because of 

the fact that the construction of the word alignments is 

based on this dictionary. Last but not least, since 𝑃(𝑠, 𝑡) is 

not symmetrical, we will have to learn different    
weights from source to target and vice versa.  

 

In order to derive a set of optimal weights for each 

language pair and translation lexicon, we have trained a 

standard logistic regression classifier. Briefly, the 

logistic regression classifier learns the    weights that 

define the hyperplane (whose equation is the same as 

equation 1) that best separates the positive training 

examples from the negative ones. In our case, the 

examples are the multidimensional points whose 

coordinates are given by the feature functions   (𝑠, 𝑡). 
 

For each language pair, the training set consists of 9500 

parallel sentences
3
 for the positive examples and 9500 of 

non-parallel sentences (obtained from the parallel pairs by 

random shuffling) for the negative examples. For the 

training set in question, we also have 500 additional 

parallel sentences together with 500 non-parallel 

sentences (obtained by random shuffling as well) as the 

test set. An example
4
 is obtained by computing all the 

feature functions   (𝑠, 𝑡) for the given positive (parallel) 

or negative (non-parallel) 𝑠 and 𝑡. 
 

Table 1 summarizes the derived optimal weights for 

considered language-pairs (both directions). 

 
Lang.                F1/BL 

en-ro 0.31 0.02 0.37 0.21 0.09 0.93/0.88 

ro-en 0.31 0.01 0.37 0.20 0.11 0.93/0.91 

en-de 0.31 0.02 0.3 0.17 0.2 0.94/0.89 

de-en 0.35 0.02 0.28 0.16 0.19 0.96/0.92 

en-sl 0.23 0.01 0.38 0.2 0.18 0.96/0.89 

sl-en 0.2 0.03 0.38 0.19 0.2 0.94/0.89 

en-el 0.61 0.08 0.21 0 0.1 0.99/0.98 

el-en 0.47 0.08 0.28 0.07 0.1 0.98/0.98 

en-lv 0.27 0.05 0.41 0.16 0.1 0.98/0.96 

lv-en 0.49 0.03 0.41 0 0.07 0.99/0.96 

en-lt 0.33 0.01 0.41 0.15 0.1 0.96/0.91 

lt-en 0.28 0.01 0.41 0.15 0.15 0.94/0.90 

en-et 0.28 0.08 0.36 0.17 0.11 0.98/0.96 

et-en 0.27 0.07 0.38 0.18 0.1 0.96/0.93 

en-hr 0.29 0.01 0.41 0.16 0.13 0.98/0.95 

hr-en 0.25 0.02 0.44 0.17 0.12 0.98/0.97 

Table 1: Optimal weights for the translation similarity 
measure 

 

The language pairs for which we trained the optimal 

weighs (for both directions) are: English-Romanian 

(en-ro), English-German (en-de), English-Slovene 

(en-sl), English-Greek (en-el), English-Latvian (en-lv), 

                                                           
3
 Mostly from the News domain for all language pairs. 

4
 It may be the case that an example occurs multiple times with 

both labels. In this case we retain all the occurrences of the 
example with the most frequent label and remove all the 
conflicting occurrences of that example. 

English-Lithuanian (en-lt), English-Estonian (en-et) and 

English-Croatian (en-hr). The column named “F1/BL” in 

Table 1 indicates the gain in F1 measure when testing the 

translation similarity measure with the optimal weights on 

the test set as compared to a baseline (BL) consisting of 

applying the measure using fixed values of the weights 

corresponding to our intuition of their importance
5

: 

 1 = 0.45,  2 = 0. ,  3 = 0.15,  4 = 0.15,   = 0.05. 

5. Experiments and results 

We tested PEXACC in several scenarios: 

1. in order to measure the precision, recall and F1 

measure on different types of comparable 

corpora, we artificially inserted noise (unrelated 

sentences) into a parallel corpus in specified 

proportions and checked the ability of PEXACC 

to re-discover the parallel corpus in the presence 

of noise; subsection 5.1 gives the details; 

2. to compare PEXACC to current state of the art 

parallel sentence mining from CC, we 

implemented Munteanu & Marcu (2005) 

maximum entropy classifier (MaxEntClass) for 

English-German (Ion, 2011c) and ran the two 

algorithms on the artificially-created CC 

described above; we show that the task of 

extracting parallel sentences from CC is 

progressively more difficult as the CC type 

varies from strongly comparable to weakly 

comparable; subsection 5.2 describes the 

experiment; 

3. in order to see how PEXACC behaves on 

real-world data, we have run it on a real 

English-Romanian CC News corpus collected in 

the ACCURAT project; subsection 5.3 presents 

the results. 

5.1.   Computing P, R and F1 

To be able to compute recall, we needed to know exactly 

how many parallel sentence pairs are present in the test 

CC. Since the collected CC are usually very large and 

cannot be evaluated by hand, we decided to “pollute” an 

existing parallel corpus with “noisy sentences” – 

sentences that are drawn from the same domain but are 

unrelated. The proportion of noisy sentences vs. parallel 

sentences was controlled and was set to 2:1, 5:1 and 10:1. 

That is, for a noise proportion of 2:1, for each pair of 

parallel sentences, two pairs of noisy sentences were 

added. 

 

We performed the tests on English-German (en-de), 

English-Romanian (en-ro), English-Greek (en-el) and 

English-Latvian (en-lv) to have a diverse language 

representation. The parallel test corpus for each language 

pair is a News corpus containing 100 parallel sentence 

pairs. There is a source file containing 100 sentences (one 

sentence per line) and a target file containing the parallel 

                                                           
5 We used these values of the weights when we developed the 
features. 
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counterparts on the same line numbers. After source and 

target noise sentences are added to each file (in the 

specified proportion), the ordering of the sentences is 

destroyed by random shuffling. 

 

A first interesting experiment is to judge the performance 

of PEXACC with the optimized weights vs. the default 

values of the weights (see subsection 4.2). We ran 

PEXACC with the default values and with the optimized 

values for the weights on the English-German CC, 2:1 

noise ratio. Figures 1 and 2 plot the precision (P), recall 

(R), F1 measure (F1) and F0.2 measure for the two runs, 

in percents, over the values of the translation similarity 

measure (step 0.01) as computed by equation 1. 

 

 

 

 

 

 

 

The F0.2 measure is computed as 

𝐹𝛽 = (1 + 𝛽2)
𝑃𝑅

𝛽2𝑃 + 𝑅
 

where 𝛽 = 0. . F0.2 weighs precision more than recall. 

We have plotted F0.2 because we are more interested in 

precision than recall, PEXACC main usage being for 

SMT training. 

 

When running with the default weights, the best F1 

measure is 75.55% and the best F0.2 measure is 85.22%. 

With the optimized weights, the best F1 is 77.55% (+2%) 

and the best F0.2 is 86.21% (+1%). Comparatively 

studying Figures 1 and 2, the area of the graphic delimited 

by the F1 and F0.2 curves is significantly larger in the 

case of the optimized weights run. This translates directly 

into a better behavior of P (rapid increase) and R (slower 

decrease) across the range of the translation similarity 

measure values. 

 

Tables 2 to 4 present the performance of PEXACC 

exhibiting the best F1/F0.2 measures as a function of the 

equation 1 translation similarity values. That is, all the 

sentence pairs that are discovered by PEXACC are sorted 

in the decreasing order of the translation similarity 

measure and, we compute P, R, F1 and F0.2 for the top 

produced results up to the considered threshold (varied 

from 0 to 1 in steps of 0.01; see Figure 2 for a graphical 

representation). We present the best values for F1 and 

F0.2 

 

 P R F1 P R F0.2 

en-de 0.791 0.76 0.775 0.878 0.58 0.861 

en-ro 0.684 0.78 0.728 1 0.38 0.94 

en-el 0.864 0.83 0.846 0.971 0.67 0.954 

en-lv 0.916 0.77 0.836 0.985 0.68 0.968 

Table 2: PEXACC run with optimized weights on the 2:1 

noise ratio test CC 

 

 P R F1 P R F0.2 

en-de 0.76 0.7 0.729 0.862 0.5 0.838 

en-ro 0.819 0.59 0.686 1 0.35 0.933 

en-el 0.896 0.78 0.834 0.971 0.67 0.954 

en-lv 0.88 0.74 0.804 0.947 0.54 0.92 

Table 3: PEXACC run with optimized weights on the 5:1 

noise ratio test CC 

 

 P R F1 P R F0.2 

en-de 0.724 0.63 0.673 0.838 0.52 0.819 

en-ro 0.814 0.44 0.571 0.916 0.33 0.858 

en-el 0.789 0.75 0.769 0.944 0.51 0.914 

en-lv 0.774 0.72 0.746 0.973 0.37 0.916 

Table 4: PEXACC run with optimized weights on the 

10:1 noise ratio test CC 

 

Looking at the tables above, we can see that that the task 

of finding parallel sentences becomes harder with the 

increasing noise level in the CC. For instance, the 

English-Romanian F1 measure drops with 15.7% when 

processing CC with noise ratio 10:1 compared to CC with 

noise ratio of 2:1. Comparatively, the English-Greek F1 

measure drops with only 7.7% but the lower difference is 

explained by the fact that the noise was automatically 

introduced and thus, the length ratio of the noisy sentence 

pairs has not been checked. As a consequence, in the case 

of English-Greek, some of the wrong pairs were filtered 

more easily. 

 

The current implementation of PEXACC is in C# 

on .NET Framework 4.0. The processing time is 

dependent on the language pair because the translation 

similarity measure from equation 1 computes, for each 

word, a type of transliteration in order to be able to 

Figure 1: P, R, F1 and F0.2 of PEXACC running with 

default weights 

Figure 2: P, R, F1 and F0.2 of PEXACC running with the 

optimized weights 
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compare and detect similar words in the source and target 

languages: 

 for all languages all diacritics are replaced with 

their diacritical mark free form; 

 for Greek, a full transliteration is applied to get 

to the Latin alphabet. 

As a consequence, the number of processed sentence pairs 

varies with the language pair (as measured on a single 

core of an Intel i7 980 @ 3.33GHz, 16 GB DDR3 @ 

800MHz): 

 English-Romanian: 450 sentence pairs per 

second; 

 English-German: 500 sentence pairs per second; 

 English-Greek: 200 sentence pairs per second; 

 English-Latvian: 540 sentence pairs per second. 

 

As we already stated, PEXACC is able to distribute the 

computation on available CPU or CPU cores and as such, 

it is able to sustain the same sentence pair processing rate 

on each of the 12 cores of the Intel i7 980 @ 3.33GHz 

CPU on which we ran it. Thus, for instance, it finished 

(minus the time it needed to load the resources) the 

English-German processing of the 2:1 noise ratio text CC 

in approximately 15 seconds: 90,000 sentence pairs to 

process, 500 sentence pairs per second running on a single 

core, 12 CPU cores. This means it is able to process 500 * 

12 = 6,000 sentence pairs per second on 12 cores which 

gives 90,000 / 6,000 = 15 seconds of processing time in 

total. 

5.2.   Comparison with the state of the art 

In order to compare PEXACC with MaxEntClass, we ran 

both of them on the English-German CC constructed with 

the methodology described in the previously. For 

PEXACC, we give precision (P), recall (R) and F1 

measure (F1) corresponding to the best F1 measure 

computed as a function of the translation similarity score 

from equation 1. In the case of MaxEntClass, we 

considered all the output that was produced. 

 

 2:1 5:1 10:1 

MEC PXC MEC PXC MEC PXC 

P 0.800 0.791 0.789 0.760 0.523 0.724 

R 0.560 0.760 0.450 0.700 0.450 0.630 

F1 0.658 0.775 0.573 0.729 0.483 0.673 

Table 5: Comparison between the MaxEntClass (MEC) 

and PEXACC (PXC) when applied on different types of 

English-German CC 

 

We can see that the performance of both algorithms 

decreases significantly when asked to extract parallel 

sentences from weakly comparable corpora (noise ratio 

10:1) when compared to strongly comparable corpora 

(noise ratio 2:1). 

 

PEXACC has the advantage that its output can be 

trimmed by imposing a certain threshold on the value of 

the translation similarity measure as computed by 

equation 1. Thus, above a certain threshold, the precision 

of PEXACC can even be as high as 1 at a significant cost 

of the recall (see Figure 2). We consider this to be an asset 

of PEXACC since, as already stated, its main use is to 

generate parallel data for SMT training. Furthermore, by 

carefully choosing a value of this threshold, the desired 

tradeoff between precision and recall (e.g. measuring 

F0.2) may be achieved. 

5.3.   Running PEXACC on real-world data 

PEXACC has been used to collect parallel sentence pairs 

for SMT training in the ACCURAT project
6
. We present 

its evaluated precision on an English-Romanian weakly 

comparable news corpus collected in the project (version 

14-02-2012) by continuously harvesting news articles 

from selected URLs. The documents in the corpus are 

aligned based on their titles and publication dates. Table 6 

presents the corpus statistics. 

 

 Docs. Sentences Tokens Size 

en 17,845 464,961 9,309,338 53.7MB 

ro 7,120 121,104 2,605,976 16.9MB 

Table 6: 14-02-2012 News CC statistics 

 

We ran PEXACC on this corpus and kept all the sentence 

pairs with a translation similarity measure of at least 0.3 

which are 22,352. We then sorted these pairs in 

descending order and inspected them by hand from the 

pair with the largest score (0.99) until the last pair with 

score larger than or equal to 0.5. Table 7 presents the 

results. 

 

Threshold Precision Sentence pairs 

0.9 1 22 

0.8 1 166 

0.7 0.99 973 

0.6 0.95 3,267 

0.5 0.92 7,186 

Table 7: Accuracy of PEXACC on the first 7,186 

sentence pairs extracted from the 14-02-2012 News CC 

 

In Table 7, the “Sentence pairs” column shows the 

number of sentence pairs that have a translation similarity 

score of at least the specified value in the “Threshold” 

column. We cannot compute the recall because we do not 

know how may parallel sentence pairs are in the corpus. 

We have inspected all produced pairs with a score of at 

least 0.7. Below this threshold, we did a random sampling 

of the results by selecting and evaluating 100 pairs from 

each threshold range (0.7-0.6 and 0.6-0.5). 

 

Table 7 shows that PEXACC precision is consistent with 

the results reported in Tables 2 to 4. 

6. Conclusion 

Parallel sentence mining from comparable corpora is a 

proven alternative to producing parallel data for SMT 

training for under-resourced languages. We have 

                                                           
6
 http://www.accurat-project.eu/ 
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presented PEXACC, a trainable, extensible and language 

independent approach to parallel sentence mining from 

comparable corpora and showed that it is capable of state 

of the art performances. 

 

Currently, PEXACC (together with a derived application 

based on its translation similarity measure) is used in the 

ACCURAT project to mine for parallel sentence pairs in 

the CC collected by the ACCURAT partners. SMT 

improvement based on the extracted data is, at the time of 

writing, under testing. 

 

PEXACC is available for download in the “ACCURAT 

Toolkit”, a collection of tools to extract MT-useful data 

from CC. The ACCURAT project website
7
 gives all the 

details. 
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