
An Adaptive Framework for Named Entity Combination

Bogdan Sacaleanu
1
, Günter Neumann

2

1
IMC AG,

2
DFKI GmbH

1
New Business Department,

2
Language Technology Department

Saarbrücken, Germany

E-mail: Bogdan.Sacaleanu@im-c.de, Günter.Neumann@dfki.de

Abstract

We have developed a new OSGi-based platform for Named Entity Recognition (NER) which uses a voting strategy to combine the
results produced by several existing NER systems (currently OpenNLP, LingPipe and Stanford). The different NER systems have been
systematically decomposed and modularized into the same pipeline of preprocessing components in order to support a flexible selection
and ordering of the NER processing flow. This high modular and component-based design supports the possibility to setup different
constellations of chained processing steps including alternative voting strategies for combining the results of parallel running
components.

Keywords: Named Entity recognition, voting, meta-model

1. Introduction

We describe a flexible and dynamic architecture for

developing platform independent Named Entities (NE)

processors based on existing open source tools. It provides

a lightweight framework, called NER-Hub, for integrating

and combining reusable text processing components like

sentence detectors, tokenizers and NE extractors.

Compared to similar platforms like GATE (Cunningham,

2011), the system provides an extended functionality of

pulling together the result of comparable components for

producing better precision and higher recall than the best of

the individual components. This distinctive feature uses a

voting mechanism to combine the results of several NE

extractors and it can be easily extended to cover other

combination approaches.

The NER-Hub framework described in this paper covers

both processing tools mandatory for NE recognition and a

voting mechanism for combining results at different stages

in the workflow. Along with the framework come

implementations of every processing step, namely

paragraph selection, sentence detection, tokenization and

NE extraction wrapped around components from

open-source projects like LingPipe [1], OpenNLP [2] and

Stanford NLP [3]. The voting framework delivers a simple

implementation of statistics-based methods for combining

the results of different NE extraction systems and it can be

easily extended to the other stages of processing.

2. System Architecture

The NER-Hub framework is based on a blackboard

architectural model (Figure 1), similar to systems such as

Hearsay-II (Erman, 1980), where the communication

between modules happens through a shared knowledge

structure that is iteratively updated by a group of specialist

Paragraph Sentence Token

Plain Text

Paragraph Sentence Token

Voter

Annotated Text

Entity

B B B

B B B

Voter Voter Voter

Token Sentence Paragraph

Figure 1. System Architecture

1244

knowledge sources. As such, the framework consists of

two major components:

• the specialist modules, also called knowledge

sources, which provide specific linguistics

expertise (i.e., paragraph and sentence detectors,

tokenizers, NE recognizers) and voting

functionality;

• the blackboard, representing a shared structure of

partial solutions and contributed information.

We distinguish between two types of specialist modules:

those enriching the information structure of the blackboard

with linguistic knowledge and those reducing partial

solutions to a final solution. These last modules, also called

voters, combine the output of similar processes (several NE

recognizers, for example) into a single one with better

evaluation figures such as precision and recall.

The shared data structure (blackboard) is a pointer-based

representation of linguistic information provided by

individual specialist modules for the input text (Figure 2).

Every knowledge source enriches the blackboard with

character-based positional annotations relative to the whole

document and to the previous processing stage where

necessary (tokenization). This general representation of

annotations makes it straightforward to extend the

processing line with further modules like co-reference

resolution and the corresponding voters, and allows for

using the framework in the context of other languages as

well.

The NER-Hub framework and its reference

implementation for the defined modules are realized as

Java OSGi bundles leveraging the benefits of a very mature

component system. As the most beneficial aspects of using

such a system in the context of text engineering are its high

adaptability and dynamicity. Regarding adaptability, OSGi

is designed from ground up to allow mixing and matching

of components. For our framework mixing available voters

it benefits the quick development of complex voting

methods and evaluating the contribution of each individual

based on the whole result. Matching of components is

relevant when adding new implementation of a given

specialist module (i.e., NE recognizer) that are

automatically found and bound in the voting process. The

OSGi model is a dynamic model as it allows installing,

starting, stopping, updating and uninstalling components

without bringing down the whole system. For our

framework it means that new system configurations can be

run simultaneously without being required to have several

instances of the same whole environment run in different

memory spaces (JVM) or even different machines, as next

releases are announced to support a distributed model as

well.

3. User interface

The user interface (Figure 3) is divided into three sections:

for providing the input text from which NEs are to be

extracted, selecting the different pre-processing and NER

tasks, and the format in which the output will be presented.

The interface offers two possibilities for specifying the

input: it can be provided in the form of a plain text file, or

directly entered in a text field.

There are four different options for displaying or returning

the result. The first two of them (see below) involve

displaying the original text with some mark-up denoting

the NEs which were recognized on the web page itself.

Therefore they are more suitable for smaller texts.

1. text with mark-up - NEs are highlighted in

different colours with the help of XSLT

transformations. The actual NE label can be seen

when the mouse cursor is over the highlighted

span (Figure 3).

2. inline XML - NEs are marked with the inline

XML tag <label>, which contain the attribute

“value” to denote the type of NE this label

represents, for instance: <label value=“person”>

John Smith</label>.

3. XML file - an XML file offered as download,

containing the original text represented as

described in 2.

4. table with indices - a table containing only the

NEs found in the text with their corresponding

begin and end indices and the name of the named

entity processor which produced this output. The

indices are relative to the sentence in which the

named entity occurs. The start index is inclusive,

the end index is exclusive.

The middle panel of the GUI provides options for choosing

processors for the different tasks: paragraph detection,

Figure 2. Blackboard data representation.

1245

tokenization, sentence detection, named entity recognition,

and voting (meta-processor). Typically only one processor

can be selected per task. In the case of named entity

recognition, one or more options can be selected, but when

only one NER is chosen, no voting is performed.

4. Combining Results by Voting

System combination as a way of improving performance

over the individual systems has been reported for different

tasks: (Van Halteren et al., 1998) describe successful

experiments for part-of-speech tagging, (Kim Sang, 2000)

presents improved performance for noun phrase

recognition, (Florian et al., 2002) demonstrate significantly

lower error rate for word sense disambiguation. Improved

results for NE recognition have been reported by (Florian

et al., 2003) and (Sigletos et al., 2005) announced better

performance for information extraction. A common factor

of these system combination approaches is the use of a

voting framework that allows different instantiations like

count-based voting, confidence-based voting and

probability-based voting. Of these voting methods the

probability-based combination of system is significantly

delivering improved performance, while simpler

statistics-based methods only improve either precision or

recall.

The current version of our NER-Hub framework includes

reference implementations for three basic voting methods,

namely length-based, count-based and confidence-based

voting. The first method returns the candidate(s) with the

longest length, whereby the empty candidates are

considered to have a length of zero. The count-based

method groups candidates by label, start index, and end

index and computes a tally. The group with the highest

counts are returned as winners (Figure 4).

The confidence-based method allows setting priority

values to individual processing units, such that the results

of a component are preferred over other results in case of

an non-deterministic case (prefer comp1 over all others if

output is comp1:x, comp2:y and comp3:z). Due to the high

adaptability feature of OSGi-based systems, these voting

methods can be called individually or mixed into a new

linear workflow.

Figure 3. User Interface.

1246

5. Status and Running Example

Currently the NER-Hub framework is fully implemented

and offering reference implementation for all modules

based on components from open-source projects like

LingPipe, Open NLP and Stanford NLP.

We demonstrate the main workflow of the system with a

practical example, namely what happens with a sample

input text in the different processing stages.

Example settings:

• Input text: John studies at Saarland University.

Marie lives in Saarbrücken.

• Processors:

o paragraph = opennlp

o sentence = lingpipe

o token = Stanford

o entity = lingpipe, stanford, opennlp

• Meta processors: voting

The input gets passed from the user interface to the

Controller and wrapped in a NerResultObject at the level

“document” with begin and end indices spanning the whole

input. The Controller then calls the different available

processors (paragraph, sentence, token, and finally name)

with it. The wrapped input is first passed to the three

components performing text pre-processing tasks.

Paragraph detection, sentence splitting and tokenization

processors each generate an intermediate NerResultObject

representation encoding the additional information they

provide. All of these results are combined in a hierarchical

structure, which gets passed to every next processor.

For this particular example, the intermediate results

generated by the pre-processors are displayed in Figure 2.

The first processor which is called, the OpenNLP

paragraph detector, returns only one paragraph, due to the

small text example. LingPipe sentence detector recognizes

the two sentences, whose NerResultObject parent is set to

the paragraph. Finally, the tokens found by the Stanford

tokenizer are assigned to their corresponding parent

sentences in the hierarchy.

Each NerResultObject in Figure 2 is additionally described

by two sets of indices indicating its position in the text. The

first set denotes the position with respect to its parent in the

hierarchy, and the second – to the original input. This is

visible at the token level, where due to the fact that the first

six tokens belong to the first sentence, and the rest to the

second, the two sets of indices describing the tokens in the

second sentence differ.

After calling all of the pre-processing components, the

Controller calls the meta processor for named entity

recognition. This processor is responsible for calling the

actual named entity recognizers, collecting the results from

them and voting on the final result. The input

NerResultObject which it receives from the Controller

already contains all the information provided by the

paragraph, sentence and token processors. The different

levels of the hierarchy can be used by each NER

individually, based on the kind of input it accepts.

The result produced by the three NERs and the final result

after voting can be seen in Figure 4. The two example

sentences illustrate the advantage of using the voting

strategy, since in this case it manages to avoid all of their

individual errors and produces the desired output.

Figure 4. Example of Count-based Voting.

Figure 5. Result of Named Entity Voting.

1247

6. Evaluation

Also part of the NER-Hub framework is an automated

testing environment based on CoNLL-2003 English news

test data for NE extraction that has been used for evaluating

various combinations of pre-processing for NE extraction

(Table 1) and the voting methods previously presented

(Table 2).

Config NE Sent Token
F-Mea
sure

Standard OpenNLP OpenNLP OpenNLP 56.24
Standard Stanford Stanford Stanford 87.12
Standard LingPipe LingPipe LingPipe 51.72
Best OpenNLP OpenNLP LingPipe 57.42
Best Stanford OpenNLP OpenNLP 89.48

Table 1. Standard vs. Best Module Combination

Evaluation of using different preprocessing modules

(sentence detector, tokenizer) for NE extraction has shown

that combining the components from different sources can

boost the performance of the whole system.

Configuration Precision Recall F-Measure

Best Individual 88.10 86.15 87.12

Best Combined 91.06 75.89 82.79

Table 2. Results of combining all NE-Recognizers

Using OpenNLP for pre-processing and combining the

results of all three NE recognizers by way of voting

(count-, confidence- and length-based in linear order)

improved the precision over the best individual module

(Stanford), but dropped in the recall score.

Compared to the best outcomes registered in the

CoNLL-2003 shared task with a precision of 88.99, a recall

of 88.54 and an F-measure of 88.76 we conclude that both a

combination of pre-processing components from different

NLP tools and a combination of the recognition results can

improve the overall performance of an integrated system.

7. Framework Extensions

We have already begun to extend NER-Hub framework

with a further component layer for the resolution of NE

co-reference. Such component is able to resolve the

referents of pronouns to corresponding Named Entities in

texts like “Peter loves Mary. He is very lucky.” We have

chosen the corresponding coref-component of

the OpenNLP toolkit, because we had already hands on

experimentation with the integration of major NE

components of OpenNLP into the framework. Later, we

will also integrate additional alternative coref-components

via the voting mechanism.

The major challenge with the integration of a

coref-component was that the sentence-based streaming

approached followed so far in NER-Hub cannot easily

expanded to the co-reference layer in the same way, as

the coref-component has to process actually any sentence

which contain a pronoun and has to check a window of

previously processed sentences. The strategy we are

currently following is a kind of compromise. Since the

co-reference algorithm is the last in the processing order it

is called once for every recognized named entity. So to be

able to process a meaningful chunk of the text, the

coref-component stores named entities, tokens and

sentences until the end of a paragraph is reached. Only then

the actual co-reference resolution takes place. With this

paragraph oriented structure the coref-component can

adapt the original streaming in a way that still yields

meaningful results without completely abandoning the

streaming-based approach. Note that the coref-component

is defined as a OSGi bundle in the same way as the

other NE components, and as such, can be selected and

exchanged (also from the user interface) in the same way.

8. Summary

We have described a framework (NER-Hub) for the design

and the implementation of a meta-system for NE

recognition as a combination of several available

state-of-the-art systems for this task - OpenNLP, Stanford,

and LingPipe. In order to combine them, a voting strategy,

aiming at achieving higher overall accuracy, was used over

their individual results. The general representation of the

shared data makes the framework suitable for other

languages for which components are readily available.

The goal of designing a flexible and easily-expandable

framework was reached with the help of OSGi, a service

platform and component model for Java. As such the final

result of our work is an easy-to-use and easy-to-expand

system, which can be accessed via a web-based user

interface and run as a web service.

Next steps regarding the presented framework are to

provide advanced voting methods (probability-based),

make it available as an open source to the community and

extend it with further modules for co-reference resolution.

9. Acknowledgements

This work has been partially funded by the EU project

Excitement (FP7-IST). The development of the system

described here has been started as part of a software project

course which took place in the winter semester 2010 at the

Saarland University. We would like to thank the

participating students Jens Illig, Charles La Rosse, Iliana

Simova, and Dominikus Wetzel. We also thank Sebastian

Barth for his support during the implementation of the

coref-layer which he did as part of a follow-up software

project in 2011.

10. References

Cunningham, H. et al. (2011). Text Processing with GATE

(Version 6). University of Sheffield Department of

Computer Science. ISBN 0956599311.

Erman. L. (1980). The hearsay-II speech understanding

system: Integrating knowledge to resolve uncertainty. In

ACM Computer Surveys, volume 12.

Florian, R., Cucerzan, S., An, I, Yarowsky, D., Schafer, C.

1248

(2002). Combining Classifiers for Word Sense

Disambiguation. In Natural Language Engineering 8, 4,

327-341.

Florian, R., Ittycheriah, A., Jing, H., Zhang, T. (2003).

Named entity recognition through classifier

combination. In Proceedings HLT-NAACL 2003 -

Volume 4 (CONLL '03), 168-171.

van Halteren, H., Zavrel, J., Daelemans, W. (1998).

Improving data driven wordclass tagging by system

combination. In Proceedings of ACL - Volume 1,

491-497.

Tjong Kim Sang, E. F. (2000). Noun phrase recognition by

system combination. In Proceedings of NAACL. San

Francisco, CA, USA, 50-55.

Sigletos, G., Paliouras, G., Spyropoulos, C. D. and

Hatzopoulos, M. (2005). Combining information

extraction systems using voting and stacked

generalization. In Journal of Machine Learning

Research, 6:1751-1782.

Systems

[1] Alias-i. 2011. LingPipe 4.1.0.

http://alias-i.com/lingpipe (accessed February, 2011).

[2] Apache Incubator. 2011. OpenNLP 1.5.0.

http://incubator.apache.org/opennlp/index.html

(accessed February, 2011).

[3] The Stanford Natural Language Processing Group.

(2011). Stanford Named Entity Recognition (NER)

1.1.1. http://nlp.stanford.edu/software/CRF-NER.shtml

(accessed February, 2011).

1249

