
FreeLing 3.0: Towards Wider Multilinguality

Llu ı́s Padró Evgeny Stanilovsky
Software Department – TALP Research Center

Universitat Polit̀ecnica de Catalunya
padro@lsi.upc.edu

FreeLing project developer
stanilovsky@gmail.com

Abstract
FreeLing is an open-source multilingual language processing library providing a wide range of analyzers for several languages. It
offers text processing and language annotation facilities to NLP applicationdevelopers, lowering the cost of building those applications.
FreeLing is customizable, extensible, and has a strong orientation to real-world applications in terms of speed and robustness.
Developers can use the default linguistic resources (dictionaries, lexicons, grammars, etc.), extend/adapt them to specific domains, or
–since the library is open source– develop new ones for specific languages or special application needs. This paper describes the general
architecture of the library, presents the major changes and improvements included in FreeLing version 3.0, and summarizes some
relevant industrial projects in which it has been used.

Keywords: Language analyzers, Open source, Industrial applications.

1. Introduction
FreeLing1 is an open-source multilingual language process-
ing library providing a wide range of analysis functionali-
ties for several languages.
The FreeLing project was undertaken at the TALP research
center2 to provide advances towards general availability of
basic NLP tools and resources. That availability should en-
able faster advances in research projects and lower costs in
industrial development of NLP applications.
The project is conceived as a library that can be called from
a user application needing analysis services. The software
is distributed as open-source under a GNU General Public
License3, and dual-licensed to companies that embed it in
their commercial products.
The open-source approach has been very fruitful during the
eight years of life of the project (first version was released
on 2003). Version 2.2 has been downloaded over 88,000
times since its release in September 2010, and the source
for the alpha release for version 3.0 has been downloaded
530 times in the first five weeks it has been published. Di-
rect SVN downloads of development versions are not reg-
istered, so this figure is probably higher.
This wide user community has extended the initial three
languages (English, Spanish and Catalan) to nine (adding
Galician, Italian, Welsh, Portuguese, Asturian, and Rus-
sian) plus the diachronic variant of Spanish from 12th to
16th centuries (Śanchez-Marco et al., 2011). Also, the
open-source nature of the project and its modular architec-
ture have made it possible to include code from other simi-
lar projects, such as the Word Sense Disambiguator module
based on UKB (Agirre and Soroa, 2009).
Current version of the package supports –to different
extents– the following languages: Asturian, Catalan, En-
glish, Galician, Italian, Portuguese, Russian, and Spanish.
Functionalities covered for each languages can be found in
Table 1.

1http://nlp.lsi.upc.edu/freeling
2http://www.talp.upc.edu
3http://www.gnu.org/copyleft/gpl.html

Section 2. describes the main modules and services in
FreeLing. Next, the most relevant novelties in version 3.0
are presented in section 3., and section 4. summarizes some
of the industrial projects the library has been used in. Fi-
nally, we sketch some conclusion and future work lines.

2. Data Structures and Linguistic Analysis
Services

FreeLing is conceived as a library on top of which powerful
NLP applications can be developed, and oriented to ease the
integration of language analysis services into higher level
applications.
Its architecture consists of a simple two-layer client-server
approach: A basic linguistic service layer which provides
analysis services (morphological analysis, tagging, parsing,
...), and an application layer which, acting as a client, re-
quests the desired services from the analyzers, and uses the
result according to the application goal.
The internal architecture of the system is based on two
kinds of objects: linguistic data objects and processing ob-
jects.

2.1. Linguistic Data Classes

The basic classes in the library are used to contain linguistic
data (such as words, PoS tags, sentences, parse trees, doc-
uments...) resulting from performed analysis. Any client
application must be aware of those classes in order to be
able to provide to each processing module the right data,
and to correctly interpret the module results.

The linguistic classes supported by the current version are:

• analysis : A tuple <lemma, PoS tag, probability,
sense list>.

• word : A word form with a list of possibleanalysis
objects.

• sentence : A list of word objects known to be a com-
plete sentence, it may include also a parse tree and/or a
dependency tree.

2473

as ca cy en es gl it pt ru
Tokenization X X X X X X X X X
Sentence splitting X X X X X X X X X
Number detection X X X X X X X
Date detection X X X X X X
Morphological dictionary X X X X X X X X X
Affix rules X X X X X X X X
Multiword detection X X X X X X X X
Basic named entity detection X X X X X X X X X
B-I-O named entity detection X X X X
Named Entity Classification X X X X
Quantity detection X X X X X X
PoS tagging X X X X X X X X X
Phonetic encoding X X
WN sense annotation X X X
UKB sense disambiguation X X X
Shallow parsing X X X X X X
Full/dependency parsing X X X X X
Co-reference resolution X

Table 1: Analysis services available for each language.

• paragraph : A list of sentence known to be an in-
dependent paragraph.

• document : A list of paragraph that form a complete
document. It may contain also co-reference information
about the entity mentions in the document.

Figure 1 presents a UML diagram with the linguistic data
classes.

2.2. Processing Classes

Apart from classes containing linguistic data, the library
provides classes able to transform them, usually enriching
the structures with additional information. Figure 3 shows
an UML diagram with the processing classes described be-
low:
Most processing classes are derived from an abstract class
processor , and offer the same API (depicted in Fig-
ure 2). The API allows to analyze a sentence or a list of
sentences, and obtain the results either as enrichment of the
original data, or as a copy:
Only three modules do not follow this pattern: Those that
are used early in the analysis chain and deal with plain text
and lists of tokens before they are organized into sentences:

• lang ident : Language identifier. Receives plain text
and returns a sorted list of pairs<language,probability>.

• tokenizer : Receives plain text and returns a list of
word objects.

• splitter : Receives a list ofword objects and returns
a list ofsentence objects.

All other modules are classes derived fromprocessor ,
and offer the above described API:

• morfo : Receives a list ofsentence and morpholog-
ically annotates eachword of each sentence in the list.
This class is actually a meta-module that applies a cas-
cade of specialized processors (number detection, date/-
time detection, multi-word detection, dictionary search,

Figure 1: Linguistic Data Classes in FreeLing-3.0.

etc.) each of which is in turn aprocessor derived
class that can be called independently if needed. Avail-
able processors are:

– user map: User-defined regular expression matcher,
that allows the direct assignation of pairs lemma/PoS
to words matching certain patterns

2474

c l a s s p r o c e s s o r {
pub l i c :

/ / / c o n s t r u c t o r
p r o c e s s o r () ;
/ / / d e s t r u c t o r
v i r t u a l ˜ p r o c e s s o r () {} ;

/ / / a n a l y z e and e n r i c h s e n t e n c e
v i r t u a l vo id a n a l y z e (s e n t e n c e &)=0;
/ / / a n a l y z e and e n r i c h s e n t e n c e s i n l i s t
vo id a n a l y z e (s t d : : l i s t<sen tence> &);
/ / / a n a l y z e sen tence , r e t u r n e n r i c h e d copy
s e n t e n c e a n a l y z e (cons t s e n t e n c e &);
/ / / a n a l y z e s e n t e n c e s i n l i s t , r e t u r n e n r i c h e d copy
s t d : : l i s t<sen tence> a n a l y z e (cons t s t d : : l i s t<sen tence> &);

} ;

Figure 2: API forprocessor abstract class.

– locutions : Multiword recognizer.
– dictionary : Dictionary look-up and suffix han-

dling.
– numbers : Numerical expressions recognizer.
– dates : Date/time expressions recognizer.
– quantities : Recognized for ratio and percent-

age expressions, physical magnitudes, and monetary
amounts.

– punts : Punctuation symbol annotator.
– probabilities : Lexical probabilities annotator

and unknown word handler.
– ner : Proper noun recognizer. Two modules are

provided for this task. A fast and simple pattern–
matching module based on capitalization (which
yields an accuracy near 90%), and a NE recognizer
based on the CoNLL-2002 shared task winning sys-
tem (Carreras et al., 2002), rather slower, but with an
accuracy over 94%.

• tagger : Receives a list ofsentence and disam-
biguates the PoS of eachword in the given sentences.
If the selected analysis carries retokenization informa-
tion, the word may be split in two or more new words
(e.g. del → de+el in Spanish, orisn’t → is+not in En-
glish). FreeLing offers two PoS taggers with state-of-
the-art accuracy (97%-98%): One HMM–based tagger
implemented following (Brants, 2000) and another based
on relaxation labelling (Padró, 1998) which enables the
combination of statistical and hand-written rules.

• NE classifier : Receives a list ofsentence and
classifies allword tagged as proper nouns in the given
sentences. This module is based on the CoNLL-2002
shared task winning system (Carreras et al., 2002).

• Sense annotator : Receives a list ofsentence
and adds synset information to the selectedanalysis
for eachword .

• Word sense disambiguator : Receives a list of
sentence and ranks the possible senses for for each
word selectedanalysis in the given context. This
module is a direct inclusion of the UKB project code
(Agirre and Soroa, 2009).

• chunk parser : Receives a list ofsentence and en-
riches each of them with aparse tree . This module
consists of a chart parser, and is a reimplementation of
(Atserias and Rodrı́guez, 1998).

• dependency parser : Receives a list of parsed
sentence and enriches each of them with a
dependency tree . This module uses a set of hand–
written rules to build a dependency tree: First, comple-
tion rules are applied to transform the output of the chunk
parser into a full parse tree. Then, the tree is converted
to dependencies, and the functions are annotated. This
module is an extension of that described in (Atserias et
al., 2005).

• co-reference solver : Receives a document
formed by parsedsentence and enriches it with co-
reference information. This module is based on the sys-
tem proposed by (Soon et al., 2001).

3. What’s new in FreeLing 3.0
Version 3.0 presents some major changes that aim to make
the tool more flexible, usable, and to ease its installa-
tion. These changes can be grouped in three main types:
Changes related to multilingual support and extension,
changes to the Machine-Learning based components of the
library, and changes related to the engineering aspects of
the project.

3.1. Extending Multilingual Support

The first relevant contribution to extending the coverage of
FreeLing –with regard to the number and variety of lan-
guages it can process– is the development of linguistic data
for morphological analyzer and PoS tagger for Spanish of
12th to 16th centuries (Śanchez-Marco et al., 2011). This
work uses the default data for Spanish with appropriate
adaptations and extensions to process the orthographic vari-
ations present in ancient Spanish. Also, a corpus to train
the tagger has been developed, and the resulting tool was
successfully used in a linguistic study about the evolution
of the use of the verbhaber(to have) (Sánchez-Marco and
Evert, 2011; Śanchez-Marco, 2012)

2475

Figure 3: Processing classes in FreeLing-3.0.

Another modifications in FreeLing version 3.0 is the full
support of Unicode (UTF8) character encodings. This is a
major change, and one of the main reasons for the change
of version number.
Previous FreeLing versions supported multiple languages,
but the developer of the linguistic data for each language
should take care of which encoding should be used, and
of maintaining the consistency of the encoding for different
resource files (lexicon, grammars, multiword lists, etc.) and
configuration rules (e.g. regular expressions in tokenizer
rules) according to the selected encoding. Also, since each
language might use a different encoding, it was not easy to
integrate a language identifier able to handle texts in differ-
ent alphabets.
With the full support of UTF8 encodings, the same applica-
tion may deal with texts in different languages and alpha-
bets. This extension enabled several functionality improve-
ments:

• A new module for language identification based on
(Padŕo and Padŕo, 2004) has been integrated in the li-
brary.

• Ability to change the application locale to match the
language of the processed text, even if it is different

from the default system locale configuration.

• The regular expressions used either in configuration
files or hardwired in the code are now more expressive
and easy since POSIX extensions can be used. For
instance, the tokenizer regular expression to match a
word made of alphabetical characters in Spanish used
to be [A-Za-z áéı́ ı̈ óúüñÁÉÍ Ï Ó́ÜŨN]+ , and now can
be written as[[:alpha:]]+ . Note that this same ex-
pression can be used to match an alphabetical word
in any language or alphabet, just changing the current
locale of the application.

The use of UTF8 encoding cleared the path for develop-
ers interested in adding support for languages with non-
latin alphabets. This is the case of Russian developers,
who achieved a very complete morphological analyzer and
a competitive PoS tagger that wouldn’t have been possi-
ble in previous versions. Additionally, not only linguistic
data has been provided for Russian, but also actual code
for language-dependent modules such as number or date
recognition.

2476

3.2. Improving Machine-Learning Based Modules

Another major change in FreeLing 3.0 architecture is the
organization and content of the Machine Learning modules:
The feature extraction engine, and the learning/classifica-
tion algorithms themselves.
In previous versions, those functionalities were provided
by two libraries external to FreeLing:Omlet&Fries4. In
version 3.0 the code forOmlet library is included in the
FreeLing package, which provides a clearer code organiza-
tion, and a reduction in the number of dependencies easing
installation process.
The feature extraction module that used to be provided by
Fries library has been completely rewritten, providing a
clearer formalism for extraction rules and a more flexible
API for those developers wishing to include their own fea-
ture functions. Also, the repertoire of available ML algo-
rithms has been extended with Support Vector Machines
(SVM), thanks to the open-source projectlibSVM (Chang
and Lin, 2011). ThelibSVM code has been integrated with
FreeLing under a common wrapper with the other existing
classifiers. This integration has the additional advantageof
avoiding the addition of a new item to the list of dependen-
cies needed to build and install FreeLing.
Finally, the Named Entity Recognition and Classification
modules have been retrained using the new architecture.
Machine-learning based NE detection and classification are
now available for Spanish, English, Galician, and Por-
tuguese. Both AdaBoost and SVM models are provided
for the former two, and just AdaBoost models for the later.

3.3. Technical Modifications

The third type of changes on FreeLing library are techni-
cal issues related to the external dependency organization,
the porting to platforms other than Linux, and the use of
FreeLing in server mode.

3.3.1. External Dependencies
One important aspect of these engineering modifications is
the management of the external library dependencies re-
quired by FreeLing. This is a main reason –together with
the change to Unicode encodings described above– for the
major version number upgrade.
An important effort has been made in the direction of re-
ducing and simplifying the dependency list, in order to ease
building and installation of the library, as well as its dualli-
censing.
The dependencies of the previous versions were:

• BerkeleyDB - For fast access to on-disk dictionary
files.

• PCRE - Regular Expression management.
• libcfg+ - Option management for main program

analyzer .
• Omlet&Fries - Machine Learning modules (discussed

above).

BerkeleyDB is no longer used: Dictionaries are loaded into
RAM in either prefix trees or STL map structures. Time

4http://nlp.lsi.upc.edu/omlet+fries

performance is roughly the same, and the increase in mem-
ory consumption does not pose any problem to a modern
machine. Moreover, the greater simplicity in installation
(less dependencies, no dictionary indexing needed at in-
stallation time), and in dictionary management (no reindex-
ing needed after modifying a dictionary) pays off this small
cost.
PCRE and libcfg+ are no longer used either: The function-
alities related to regular expressions and configuration op-
tions have been transferred toboost C++ libraries5. This
has two advantages: Dependencies are unified under a sin-
gle provider, and installation is easier sincelibboost is
part of all Linux distributions.

3.3.2. MS-Windows Compilation
Using FreeLing under MS-Windows used to be a difficult
enterprise. Emulators or cross-compilers such as MinGW6

or CygWin7 had to be used, and the obtained results were
not always easily integrable in a MS-Windows application.
All C++ code in version 3.0 has been adapted to be com-
piled by MS-Visual C++. Project files are provided for that
environment, greatly simplifying the building and use of
FreeLing in MS-Windows, since obtained binaries are na-
tive libraries for that system.

3.3.3. Improved Server Mode
Finally, a minor technical improvement is the multiclient
ability that theanalyzer demonstration program presents
in the new version.
In previous versions, the server was conceived as a mean to
avoid repeatedly initializing the analysis modules if many
small files had to be processed. For that, all client requests
were served sequentially, with the consequent inefficiency
if many clients were to be used simultaneously.
In the new version, the code follows a standard Linux server
architecture: Adispatcherprocess waits for client requests
listening in a socket. When a client connection is estab-
lished, the dispatcher forks a newworkerprocess that will
take care of the client, while the dispatcher returns to listen
for new incoming requests.
This makes it possible to use FreeLing in parallel process-
ing (e.g. to process huge amounts of text in a multiproces-
sor machine, or to use it as a server in a multiuser web ap-
plication), which was not possible in the previous versions.
The server mode in previous versions was devised only as a
mean to avoid repeated start-ups if many small files had to
be processed, and all client request were attended sequen-
tially by the same server.
Nevertheless, the new server doesn’t currently limit the
maximum number of connected clients, nor has a queue
for waiting requests. Thus, applications with a potentially
massive amount of clients should adapt the server code to
safely handle a pending request queue.

3.4. Other improvements

Other interesting improvement that can be found in FreeL-
ing 3.0 are the following:

5http://www.boost.org
6http://www.mingw.org
7http://www.cygwin.com

2477

• UserMap: A new module that enables the user to de-
fine a set of regular expressions and assign to each of
them a pair<lemma,PoS> to be assigned to words/to-
kens matching the pattern. The goal of this module is
to ease the application developer the specific treatment
of cases not covered by the other library modules. For
instance, an application processingTwitter posts could
require annotating as proper nouns the tokens matching
the pattern@name. Instead of re-training the NE recog-
nizer, one can simply add an ad-hoc rule:

@[a-z][a-z0-9] * $$ NP00000
that will detect those tokens and assign them their own
form as lemma, plusNP00000 as PoS.

• Forbidden trigrams: The HMM-based tagger performs
smoothing on transition probabilities, in order to ac-
cept unobserved combinations. This smoothing allo-
cates some probability mass for any unobserved trigram,
even for linguistically impossible ones (e.g. as a deter-
miner followed by a finite verb form, or an Spanish aux-
iliary havefollowed by something other than a partici-
ple). such cases may be explicitly listed in the tagger
model file, excluding them from the smoothing process
and forcing their probability to be zero, therefore reduc-
ing the error rate of the tagger.

• GeneralNER module: Named Entity Recognition mod-
ules have been wrapped under a factory classner .
Depending on the options specified in the configura-
tion file, either a basicnp recognizer or a ML–based
bioner module is instantiated, transparently for the
calling application-

• Flexible Semantic Database: ClasssemanticDB han-
dles access to sense repository for any module requiring
access to such data (e.g.senses andukb wrap). This
class is now capable of accepting sense mapping rules
that enable to bridge between criteria and PoS tags used
in morphological dictionary and those used in the sense
repository. For instance, one can state the following con-
figuration:

<WNposMap>
N n L
J a L
R r L
V v L
VBG a F
</WNposMap>

This will cause that for words with PoS starting withN
the lemma (L) is searched in the sense repository (Word-
Net in this case) with PoSn. For words with PoS starting
with J the lemma is searched with PoSa, etc. The last
rule states that for words with PoSVBG, their form (F) is
also looked up with PoSa.

With this last rule we can achieve that a word likefalling,
which does not appear in the morphological dictionary as
adjective, but it does in WordNet, is assigned the exist-
ing adjective senses in addition to those corresponding to
verbto fall.

• Phonetics: Another new service in FreeLing is the pho-
netic codification of a word. This module uses a tran-
scription rule file that translate the text to its encoding
in SAMPA de-factostandard notation8. It is also able
to use a whole-word transcription dictionary for excep-
tions o for languages –such as English or Russian– with
a highly irregular ortography.

4. Some projects using FreeLing
Alpha releases for FreeLing 3.0 are available in the project
web page. The latest development version is also down-
loadable from project SVN. Version 3.0 has already been
used in several industrial projects, of which we briefly sum-
marize the most relevant:

• Ruby Reader: iPhone app that helps Japanese speakers
to understand English texts. Developed by CA Mobile
(http://www.camobile.com).

• Vi-Clone: Impressive virtual assistants for corporate
web pages. Some FreeLing components are being in-
tegrated in the dialog system. Vi-Clone is funding the
development of the spell correction module which will
enable FreeLing to process user dialog utterances in
non-standard writing.http://www.vi-clone.com .

• TextToSign: Translator from Spanish text to sign
language, which uses FreeLing for text processing.
http://www.textosign.es .

• Dixio: Intelligent dictionary able to help the reader of
a text providing contextualized definitions. Developed
by Semantix (http://www.semantix.com).

• Aport News: News portal using FreeLing as a pre-
processor to enrich Russian text. The annotations
are used in news classification and clustering tasks
(http://news.aport.ru).

5. Conclusions and Further Work
We have presented the main improvement and changes
undertaken in FreeLing version 3.0, and some industrial
projects it has been used in.
Thanks to this changes, and to the active community around
this project, we expect to continue improving the number of
supported languages, the provided functionalities, and the
usability of these analyzers in industrial NLP applications.
One of the most interest-awakening work lines is the inclu-
sion of a spelling correction module, which –as a part of a
robust analysis chain– will constitute a keystone for the de-
velopment of applications targeting non-standard texts such
as Internet chats, forums, micro-blogs, etc.
Other engineering–related improvement could be the devel-
opment of thread–based processors, so each module can be
run in a different thread, thus taking advantage of the par-
allel processing capabilities of modern computers.
Finally, we are considering using FOMA9 finite–state en-
gine to replace date, number, and quantities recognition
modules, which are the only language dependent C++ code
in FreeLing. This step would mean the complete indepen-
dence of FreeLing code and linguistic data, and ease the

8http://www.phon.ucl.ac.uk/home/sampa
9http://code.google.com/p/foma/

2478

development of these kind of modules both for existing and
new languages.

Acknowledgments

This work has been partially funded by the Spanish Gov-
ernment through projects KNOW-2 (TIN2009-14715-C04-
03/04) and OpenMT-2 (TIN2009-14675-C03-01), and by
the European Union through projects FAUST (FP7-ICT-
2009-4) and X-LIKE (FP7-ICT-2011-288342). We also
thank ViClone (footnotesizewww.vi-clone.com) for
funding part of FreeLing development.

6. References
Eneko Agirre and Aitor Soroa. 2009. Personalizing pager-

ank for word sense disambiguation. InProceedings of
the 12th conference of the European chapter of the As-
sociation for Computational Linguistics (EACL-2009),
Athens, Greece.

Jordi Atserias and Horacio Rodrı́guez. 1998. Tacat:
Tagged corpus analizer tool. Technical report lsi-98-
2-t, Departament de LSI. Universitat Politècnica de
Catalunya.

Jordi Atserias, Elisabet Comelles, and Aingeru Mayor.
2005. Txala un analizador libre de dependencias para
el castellano. Procesamiento del Lenguaje Natural,
(35):455–456, September.

Thorsten Brants. 2000. Tnt - a statistical part- of-speech
tagger. InProceedings of the 6th Conference on Applied
Natural Language Processing, ANLP. ACL.

Xavier Carreras, Llúıs Màrquez, and Llúıs Padŕo. 2002.
Named entity extraction using adaboost. InProceedings
of CoNLL Shared Task, pages 167–170, Taipei, Taiwan.

C.C. Chang and C.J. Lin. 2011. Libsvm : a library for sup-
port vector machines.ACM Transactions on Intelligent
Systems and Technology, 2(3):1–27, April.

Muntsa Padŕo and Llúıs Padŕo. 2004. Comparing methods
for language identification.Procesamiento del Lenguaje
Natural, (33):155–162, September.

Lluı́s Padŕo. 1998. A Hybrid Environment for Syntax–
Semantic Tagging. Ph.D. thesis, Dep. Llenguatges i Sis-
temes Inform̀atics. Universitat Polit̀ecnica de Catalunya,
February. http://www.lsi.upc.es/˜padro.

W.M. Soon, H. T. Ng, and D.C.Y. Lim. 2001. A ma-
chine learning approach to coreference resolution of
noun phrases.Computational Linguistics, 27(4):521–
544.

Cristina Śanchez-Marco and Stefan Evert. 2011. Measur-
ing semantic change: The case of spanish participial con-
structions. InProceedings of 4th Conference on Quanti-
tative Investigations in Theoretical Linguistics (QITL-4),
Berlin, Germany, March.

Cristina Śanchez-Marco, Gemma Boleda, and Lluı́s Padŕo.
2011. Extending the tool, or how to annotate historical
language varieties. InProceedings of the 5th ACL-HLT
Workshop on Language Technology for Cultural Her-
itage, Social Sciences, and Humanities, pages 1–9, Port-
land, OR, USA, June. Association for Computational
Linguistics.

Cristina Śanchez-Marco. 2012.Tracing the development
of Spanish participial constructions: An empirical study
of language change. Ph.D. thesis, Universitat Pompeu
Fabra, Barcelona, Spain. (forthcoming).

2479

