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Abstract
Among the linguistic resources formalizing a language, morphological rules are among those that can be achieved in a reasonable
time. Nevertheless, since the construction of such resource can require linguistic expertise, morphological rules are still lacking for
many languages. The automatized acquisition of morphology is thus an open topic of interest within the NLP field. We present an
approach that allows to automatically compute, from raw corpora, a data-representative description of the concatenative mechanisms of
a morphology. Our approach takes advantage of phenomena that are observable for all languages using morphological inflection and
derivation but are more easy to exploit when dealing with concatenative mechanisms. Since it has been developed toward the objective
of being used on as many languages as possible, applying this approach to a varied set of languages needs very few expert work. The
results obtained for our first participation in the 2010 edition of MorphoChallenge have confirmed both the practical interest and the
potential of the method.
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1. Introduction
Because morphological rules are still lacking for many lan-
guages, the automatized acquisition of morphology is an
open topic which interest has been attested by an annual
challenge(Kurimo et al., 2010) dedicated to this task.
In this paper, we present an approach that allows to auto-
matically compute, from raw corpora, a data-representative
description of the morphology of concatenative languages,
i.e., a description of morphological mechanisms that rely
on prefixes and suffixes.
Our approach takes advantage of phenomena that are ob-
servable for all languages using morphological inflection
and derivation but are more easy to exploit with concatena-
tive mechanisms. Among these phenomena, a frequency-
related occurrence of the forms inflected or derivated from
a same lemma is highlighted and intensively exploited.
Since this approach is implemented with mostly straightfor-
ward and parameters-free formulas and has been developed
toward the objective of being used on as many languages as
possible, applying this approach to a varied set of concate-
native languages requires very few expert work.
The whole approach works as a sequence of filters refining
a list of morphological rules.

The main contributions of this piece of research are:

1. to highlight a frequency related phenomenon,

2. to present several filters general enough to be adapted,

3. to describe a sequential combination of these filters
and an evaluation of its results.

The main objective of this paper is to complete a previous
one(Nicolas et al., 2010) by providing more details, more
examples and better explanations.

2. Related work
As the results presented have been obtained at the 2010 edi-
tion of MorphoChallenge, we focus on methods that are di-
rectly or indirectly connected to the different editions.
The approaches for the automatic acquisition of morpho-
logical knowledge can be classified among two types: the
ones that build shallow morphological analyzers and the
ones that acquire morphological knowledge and apply it.
Within the first type, the methods described in Creutz and
Lagus (2005) and Goldsmith (2006) are the most referenced
ones. In Goldsmith (2006), the authors introduce the con-
cept of MDL (Minimum Description Length) which relies
on the idea of encoding/factorizing a corpora with a set of
morphemes as small as possible, i.e., the better the affixes
and stems are identified, the better the corpora will be en-
coded/factorized. In Creutz and Lagus (2005), the authors
also start with an MDL-approach but eventually use a com-
bination of a Maximum Likelihood and Viterbi algorithms
to better encode/factorize the forms. It has been later ex-
tended in Kohonen et al. (2009) in an attempt to handle
allomorphy.
In a different manner, in Golenia et al. (2009), MDL is used
to first determine a set of candidates stems. The remaining
substrings of the forms are considered as candidates affixes
and split into letters to be later agglomerated as affixes ac-
cording to a metric based on the substrings’ frequencies.
In Spiegler et al. (2010) as in Bernhard (2008) and Ke-
shava (2006), the authors describe methods that originate
from Harris’ approach (1955) and its follows-up (Hafer and
Weiss, 1974; Déjean, 1998). These approaches focus on
transition probabilities and letter successor variety. The
method described in (Demberg, 2007) follows the algo-
rithm in Keshava (2006) and corrects important drawbacks.
Among them is a drawback due to a statement with a direct
bias towards languages that make an intensive use of the
empty suffix such as English.
Within the second type of methods that, as we do, explic-
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itly list morphological knowledge and apply it, we have in-
ventoried six other methods (Lavallée and Langlais, 2010;
Bernhard, 2010; Can and Manandhar, 2009; Lignos et al.,
2009; Monson et al., 2008; Dasgupta and Ng, 2007). In
Lavallée and Langlais (2010), the authors identify analo-
gies, e.g., “live” is for “lively” what “cordial” is for “cor-
dially”. Each analogy receives a weight according to the
number of times where the analogy is attested and the num-
ber of times the analogy could apply.
In Lignos et al. (2009), the approach is similar except that
the weight is computed with the number of shared candi-
date stems and the number of letters of the affixes.
Oppositely, in Bernhard (2010), all possible pairs of words
are compared and morphological analogies are identified
according to the edition distance. The analogies are then
used to link forms and a clustering algorithm is performed
to group the forms of a given lemma.
In Can and Manandhar (2009), the authors first achieve a
clustering method so as to group forms with similar syn-
tactic behaviors. Morphological rules are then detected by
analogy between sets of forms in different clusters. Each
morphological rule receives a score computed with the
number of common stems.
In Monson et al. (2008), the authors build paradigms in a
“brute-force” fashion controlled by thresholds.
In Dasgupta and Ng (2007), the authors extend the ap-
proach described in Keshava (2006) by adding several fea-
tures to better handle compound affixes, related form occur-
rence when cutting and allomorphy. The method described
is similar to ours in the sense that it sequentially refines a
list of candidate affixes and gradually improves its quality.
As in Keshava (2006), the method applies overall on lan-
guages that make intensive use of the empty suffix.

3. General definitions and informations
Some of the computations are done thanks to letter trees
(see fig. 1). An affix is said to occur on a given node if it has
been combined with a (prefix or suffix) substring of a form
and the letters of this substring label a path from the root to
this node. An affix combined with n different substrings in
n different forms will thus occur on n different nodes.
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Figure 1: Simplified example of a letter tree. Suffixes “ed”
and “ing” occur on gray nodes with stems “us” and “caus”.

As a shortcut, a form is designated as frequent if its fre-
quency is above the average frequency.

Since only raw text is provided as input, when referring to
the lemmas of the forms, we actually abstractly do so in
order to better explain our approach.
In this paper, morphological rules are fairly simple/naive.
They consist in adding an affix to a given stem with no
character deletion or substitution. Linguistic phenomena
that modify the stem are acquired as different morphologi-
cal rules than the ones they are derivated from.
We call morphological family a set of morphological rules.
Although our examples focus on suffixes, the approach ap-
plies indifferently on prefixes or suffixes.
Finally, all substrings starting or ending a form are marked
with a “#” at their beginning or their end.

3.1. Frequency related phenomenon
In a given text, some lemmas are more frequent than others.
When considering a given lemma in a language, the prob-
abilities for its inflected or derivated lexical forms to occur
in a text increase with the frequency of the whole lemma.
In other words, the more a lemma is frequently used in a
corpus, the more probable it is to encounter a more diver-
sified sample of its related lexical forms. For example, the
various forms related to the lemma to talk are usually easier
to encounter than the ones related to the lemma to orate.
Therefore, the more frequent a form is, the more chances
there are to find its morphologically related forms. This
phenomenon applies to most kind of text, be it specialized
or general, except of course those describing exhaustively
the lexical forms related to some designed lemmas.
There exist aspects, such as the style of the writer or the
type of the corpora, that affect the ratio among morpholog-
ically related forms. For example, autobiographies favor
the use of the first person singular.
Nevertheless, it does not alter the global chances of oc-
currences of the whole set of forms belonging to a same
lemma. Consequently, it does not alter the fact that the
more frequent a form is, the more chances there are to find
some morphologically related forms within the corpus.

4. Global overview
The approach can be summarized as follows.

1. Establish an over-covering “naive” list of candidate af-
fixes, i.e., substrings that may be affixes.

2. Detect pairs of candidate affixes that are related within
morphological families. For example, for a family
with three affixes A,B and C, detect the pairs {A,B},
{B,C} and {A,C}.

3. group pairs occurring on a same node to build morpho-
logical families. For instance, group the pairs {A,B},
{B,C} and {A,C} present on a same node to build a
family {A,B,C}.

4. Filter incorrect morphological families.

5. Split compound affixes, i.e, split suffix “ingly#” into
“ing#+ly#”.

6. Detect what substrings connect stems and split com-
pound stems, i.e, detect that “-” can connect stems and
split “brother-in-law” into “brother + in + law”.
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5. Identifying candidate affixes
This first step is designed to save computations for the more
precise and computationally-intensive later filters. It com-
putes a naive list of candidate affixes with the substrings
ending or starting the forms. For example, when looking
for suffixes, “aive#”, “ive#”, “ve#”, “e#” and “#” shall be
generated from the form “naive”.
The list is then filtered “permissively”, i.e, we avoid strict
criteria such as a maximum length of characters. A candi-
date affix is kept when fulfilling the following conditions.

1. It occurs in at least one sub-tree present at least twice
in the whole tree.

2. It occurs in at least one node covering a frequent word.

3. It is more likely to be an affix than the substrings it
is combined with, i.e, it is combined with more sub-
strings than the substrings it is combined with are
themselves combined with other substrings1.

4. It occurs more frequently on nodes with other sub-
strings than it occurs alone.

5. It occurs at least twice with another candidate affix.

6. Identifying pairs of candidate affixes
6.1. Leading idea
This filter aims at identifying pairs of related affixes, i.e.,
pairs of affixes that both belongs to one or several same
families. It relies on two considerations.
First, a morphological family covers at least two affixes2 3.
The second relies on the frequency related phenomenon de-
scribed in sect. 3.1. as well as on a specific characteristic of
concatenative mechanisms that allows to take advantage of
this phenomenon more easily.
Indeed, contrarily to other kind of mechanisms, concatena-
tive ones do not alter much the stem4. When inserting all
lexical forms in a tree, the related forms of a lemma will
follow a same path from the root until they pass the last
common letter of the stem and spread in different branches
according to their respective affix.
Consequently, all related forms of a lemma occur on a
same last common node formalizing the frontier between
the stem and the affixes. In order to find the related candi-
date affixes of a candidate affix aff, one only needs to pay
attention to the nodes where aff occurs. This aspect allows
to keep the search space in reasonable boundaries and ex-
ploit more easily the frequency related phenomenon.
Indeed, if aff truly belongs to a family fam, the more fre-
quent a form containing aff is, the more chances there are
for its morphologically related forms to be also present in

1We thus previously compute for any starting and ending sub-
strings the number of substrings it is combined with.

2The empty string is considered as an affix, e.g., the form
“think#” has a stem “think” and the empty suffix “#”.

3We do not consider lemmas that only cover one form since
morphological rules are unnecessary.

4Concatenative phenomena that do modify the stem, such as
allomorphy, are actually acquired as different morphological rules
than the ones they are derivated from.

the corpus. Therefore, the more probable it is for aff to
occur on the corresponding node with other affixes of fam.
For example, since the different forms of the lemma “to
talk” are more likely to occur than the ones of “to orate”,
“ing#” is more likely to co-occur on the node corresponding
to “talking” with more related suffixes than on the node cor-
responding to “orating”. Such phenomenon should globally
apply to most pairs of nodes in the list.
Therefore, by sorting on frequency the nodes where a cor-
rect candidate affix occurs, we observe a progressively in-
creasing co-occurrence rate with other affixes of the family.
On the other hand, if the candidate affix is incorrect and/or
has no relation with some random candidate affixes with
which it co-occurs on some nodes, the co-occurrence rates
shall be chaotic.

6.2. Practical application
A list of nodes where each candidate affix aff occurs is
computed and then sorted according to the frequency of the
form containing it.
This list is then split in sublists with the condition that
the average frequency of a sublist si is mult times higher
(mult > 1) than the previous sublist si−1

5. We then com-
pute for each candidate affixes co-appearing with aff a co-
occurrence rate ratei over each sublist and a score inc

inc = sumpos +mult ∗ sumneg

where sumpos is the sum of the positive value ratei −
ratei−1, whereas sumneg is the sum of the negative ones.
If mult is superior to 1, negative progressions impact inc
more than positive ones do. Therefore the ratei values
have to globally increasing so as for inc to be positive. The
co-occurrence is thus considered as increasing when inc is
positive. Candidates with no increasing co-occurrence with
other candidates are discarded.

6.3. Incorrect englobing or englobed pairs
One must note that this filter can identify pairs of incorrect
candidate affixes because of correct ones. Indeed, any cor-
rect affix X related to an affix Y can allow the incorrect can-
didate affixes subX and subY starting with a same substring
sub to be considered as related since their co-occurrence
rate will also be an increasing one. For example, the En-
glish suffixes “ing#”/“ed#” can allow “ming#”/“med#” to
be considered as related. We later refer at these type of
pairs as incorrect englobing pairs.
The same fact applies for two incorrect affixes Z and W
and two correct and related affixes subZ and subW starting
with a same substring sub. For example, the pair of English
suffixes “es#”/“ed#” can allow “s#”/“d#” to be considered
as related. We later refer at these type of pairs as incorrect
englobed pairs.

7. Morphological families
7.1. Building morphological families
Once pairs are identified, we recursively process the tree
and build morphological families by grouping the pairs
present on each node. A basic approach could be to merge

5The first sublist is the set of nodes corresponding to the forms
with the lowest frequency.
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together all the pairs found on a node. For example, if the
pairs {A,B}, {B,C} and {A,C} are present on a same
node, this basic approach would build a family [A,B,C].
Nevertheless, it is not rare for two different families to
be present on a same node. For example, the Spanish
verbs “sentir” (to feel) and “sentar” (to sit) belong to two
different families but share the same stem “sent”. The
basic approach is thus likely to build incorrect families that
merge together several families.

In order to avoid such problem, the following iteration is
applied on each node until no candidate affixe remains:

1. each candidate affix “votes” for the other candidate af-
fixes with which it shares a pair;

2. a family is built with the pairs of the candidate affix
that has received most votes;

Several different families present on a same node will not
be merged together unless their most “popular” affixes
are the same. Since a same family can be built on several
nodes, we record for each the nodes where they have been
built.

Four kinds of families can be generated:

1. correct complete or incomplete families,

2. incorrect ones brought by incorrect englobing pairs,

3. incorrect ones brought by incorrect englobed pairs,

4. completely incorrect ones.

7.2. Cutting forms
Because it is also used when filtering families, we now de-
tail the algorithm that we used to cut forms . However, one
must note that the set of families provided to the algorithm
depends on the step of the approach in which it is used.
Morphological families are used to split every word as pre-
fix(es) + stem + suffix(es). A family is said to apply on a
node if it covers n (n > 1) substrings6 occurring on the
node and thus generates a possible set of n cuts, one for
each covered form occurring on the node.
For each form included in several possible sets of cuts, a
choice is achieved by eliminating them sequentially accord-
ing to three criteria:

• the greatest number of cuts,

• the smallest distance from the root to the node,

• the largest size for the corresponding family.

The first criteria relies on the idea that the more forms are
covered by a family, the more correct the resulting set of
cuts is. The second one favors longer affixes. Finally, the
third one emphasizes the fact that larger families are usually
the most accurate ones.
If after those tree steps, more than one set remains, we sim-
ply select the first one. Indeed, since the remaining sets

6A family is not applied if not covering at least two forms.

cover as much forms, cut on the same node and the fam-
ilies that have been applied are all equivalent in size, the
competing families are likely to be sub-families of a non-
acquired bigger family.

7.3. Filtering morphological families
Filtering on sub-families
This filter directly addresses the incomplete families and
the completely incorrect ones. As explained in sect. 3.1.,
depending on the lemma, more or less related forms are
found in the input corpus and thus, more or less complete
families are generated. A correct family of n affixes shall
appear in sub-families with n, n-1, ...,1 of its affixes. A
family with n affixes is thus kept if “validated” by the oc-
currence of at least one family with n-1 of its affixes7. For
instance, a family [A,B,C] is validated if any of the fami-
lies [A,B], [B,C] or [A,C] is generated. All families val-
idating another one are discarded (mostly sub-families) as
well as families that have not been validated (mostly the
biggest completely incorrect families).
One must notice that if two equivalent families with n+1
affixes sharing n of their affixes are generated, this filter
will keep both unless a family with n+2 affixes covering
them appears.
Also, this filter is not effective with incorrect families
brought by incorrect englobing or englobed pairs. Indeed,
the sub-families of the correct families they are derivated
from will provide the incorrect sub-families necessary to
pass this filter.
It also proved to be less effective over small completely
incorrect families since they require less sub-families to be
validated. These small incorrect families are usually built
from infrequent forms with no other related forms present
in the corpus.

Filtering on frequent forms
This filter tends to compensate the previous filter regarding
small completely incorrect families. It relies on the idea
that morphological families are frequency-independent,
i.e., they apply indifferently on frequent or infrequent lem-
mas. A correct family should thus cover at least, in one
of the nodes from which it has been built from, one of the
forms considered as frequent.

Filtering englobing families
This third filter follows the idea that the letters common to
all related forms should belong to the stem. It thus tackles
the incorrect families brought by incorrect englobing pairs
by simply rejecting all families composed of affixes starting
with an unique common first letter.
For example, [r, rs, ring, red] is a family acquired with the
incorrect candidate stem “bothe” and shall not be kept.

Filtering dominated families
We call dominated families the ones that are never selected
by the cutting algorithm because they have less affixes than
the families they compete with or they only apply on node
that occur too deep in the tree. These dominated fami-
lies are mostly non-filtered sub-families or incorrect ones
brought by englobed pairs.

7Families with two affixes are automatically validated.
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Indeed, englobed pairs are found deeper in the tree than
the correct pairs they are “derivated from”. Consequently,
the family built from englobed pairs cannot cover the other
affixes since they are in different sub-trees.
For example, let us consider a family [ab, ac, bd, be] built
thanks to the pairs {ab, ac},{bd, be},{ab, bd}, etc. The
pairs {ab, ac},{bd, be} can allow the incorrect englobed
pairs {b, c},{d, e} to be identified and the families [b, c] and
[d, e] to be built. Those two incorrect families shall always
be dominated by [ab, ac, bd, be].
We thus run the cutting algorithm with all the families and
discard the ones that have not even been selected once.

8. Splitting compound affixes
The affixes acquired can either be singleton like the English
suffixes “ing#” and “ly#” or compound as “ingly#”.
If an affix aff3 in a family fam1 is to be split as two affixes
aff1 and aff2, we consider that aff3 is obtained by refining
an affix aff1 with a family fam2 containing the affix aff2.
We thus consider that aff1 as some kind of “stem” where
fam2 can apply. Consequently, there should be other affixes
in fam1 obtained by refining aff1 with other affixes of fam2.
Therefore, we list the other affixes in fam that could be a
“stem” for aff3 by following the idea that they should be
more present than absent on the nodes where aff3 occurs.
For example, for every node where the suffix “ingly#” oc-
curs, one can also expects to find the suffix “ing#”.
We then apply the cutting algorithm as if we were dealing
with regular forms. The family that covers most elements,
including aff3, is selected, aff3 is split as aff1+aff2 and the
process is recursively applied on aff2.

9. Splitting compound stems
So as to split compound stems, we first determine what sub-
strings can connect them. For example, in order to split the
compound stems of the form “grand-mother”, we need to
identify the substring “-” as a valid “connector”. We could
observe that these connectors act like double-affixes since
they tend to connect two surrounding stems the same way
suffixes are connected to the first one and prefixes are con-
nected to the second one.
We also observed that, if enough data are provided, the
most frequent forms tend to be identified along with con-
nectors as “fake” affixes and provide an useful occasion to
guess those connectors. For example, in English, the sub-
strings “#grand”, “#first-” are identified as prefixes whereas
the substrings “-based#”, “man#” are identified as suffixes.
So as to identify the fake affixes and extract the correspond-
ing connector, we apply the cutting algorithm to all the
forms. We then establish two lists of starting and ending
substrings corresponding to the combination of the stems
with the prefixes and suffixes they have been found with.
For example, if the English stem “appear” is found with
the prefixes and suffixes “#re”, “#dis”, “ing#” and “ed#”,
the substrings “#reappear”,“#disappear”,“appearing#” and
“appeared#” are used as starting and ending substrings.
We then identify all the prefixes containing starting sub-
strings and all the suffixes containing ending substrings.
The part of these “fake” affixes that do not belong to the
starting or ending substrings are considered as candidate

connectors. A connector is kept if it is both found in one
fake prefix and one fake suffix. For example, in our exper-
iments on English, the connector “-” has been found in the
“fake” prefix “#first-” and in the “fake” suffix “-based#”.
Finally, the stem of a given form is split if the form com-
bines a starting substring, a connector and an ending sub-
string. For example, the English stem for the form “speed-
boats” was split into the two stems of the forms “speed”
and “boats” since “speedboats” combines the starting sub-
string “#speed”, the empty connector and the ending sub-
string “boats#”.

10. Samples of morphological families

e# , eable# , ed# , ement# , ements# , er# , ers# , es# , ing# , ment#
# , ’s# , -like# , ed# , er# , er’s# , ers# , ers’# , ing# , s#
e# , ed# , er# , er’s# , ers# , ers’# , ership# , es# , ing#
e# , ed# , es# , ing# , ion# , ions# , ions’# , or# , ors#

Figure 2: Sample of English suffix families acquired
e# , en# , end# , ende# , enden# , ender# , endes# , er# , ern# , t# ,
te# , ten# , ung# , ungen#
e# , en# , end# , ende# , endem# , enden# , ender# , endes# , er# , t# ,
te# , ten# , ung# , ungen#
# , e# , en# , end# , ende# , enden# , ender# , endes# , er# , t# , te# ,
ten# , ung# , ungen#
# , e# , em# , en# , er# , ere# , erem# , eren# , erer# , eres# , es# ,
este# , esten#

Figure 3: Sample of German suffix families acquired

As one can observe above, the families can be numerous
and include indifferently inflections and derivations.

11. Comparison with related works
.

11.1. General discussion
Most approaches, devised and tested with the languages un-
derstood by their authors, tend to require adaptations when
applied on another language. If these adaptations are not
trivial, so as to know whether the results are relevant or
not, the person using the tool needs both competences to
adapt and tune the tool and to understand the morphology
of the acquired language. Obviously, such competences can
drastically reduce the range of users to a smaller number of
skilled ones. Our approach has been developed towards the
objective of avoiding such restriction.
It is achieved by following the idea that various phenomena
can be exploited without narrowing too strictly at a given
moment the search space. The search space is thus nar-
rowed by a succession of filters, each one taking advantage
of a given phenomenon. Each filter follows the idea that if
the language has a certain aspect then the filter should be
able to at least reduce the search space to a certain degree
where its relevance/coherence are not/less subject to bias.
Indeed, in every step of our method, there is a certain “cau-
tion” regarding the criteria applied. This “caution” intends
to guarantee the application of our approach with no for-
mula adaptation or variable tuning. For instance, no maxi-
mum length is set for candidate affixes; morphological fam-
ilies require at least two affixes (not three or more); their
suffixes shall start with at least two (not three or more) dif-
ferent letters; a form is cut if only one (not two or more)
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other possibly related form appears; no prior knowledge,
even fairly global such as the hyphen for compounding, is
provided; etc.

11.2. Step-by-step comparison
Candidates affixes
Other approaches generally consider the entire set of pos-
sible affixes and let the following steps handle them or di-
rectly restrict them with a maximum length of characters.
In Golenia et al. (2009), the candidate affixes are the sub-
strings that are not part of previously detected stems.

Pairs of candidates affixes
Only methods that list morphological rules intend to explic-
itly identify relatedness between candidates affixes. The
relatedness is often characterized by a score. Morpholog-
ical rules are either filtered according to a given threshold
(Lavallée and Langlais, 2010; Bernhard, 2010; Dasgupta
and Ng, 2007) or their score do not allow them to correctly
compete when cutting forms (Lignos et al., 2009).

Morphological families
Building set of affixes is considered in three methods
(Goldsmith, 2006; Can and Manandhar, 2009; Monson et
al., 2008). Among these, two (Goldsmith, 2006; Can and
Manandhar, 2009) report rather small sets.
On the other hand, Monson et al. (2008) exploits, as we do,
the concept of subsets of affixes in order to validate bigger
set of affixes. The construction and filtering of completely
incorrect sets, small correct ones and incorrect ones brought
by englobing pairs are controlled by thresholds. They how-
ever do not deal with families brought by englobed pairs.

Cutting forms
Regarding methods that explicitly list morphological rules,
a cut is usually considered, as we do, when two related form
occur. One exception is the method described in Dasgupta
and Ng (2007) that allows the absence of related form ac-
cording to the frequency of the form to cut. Such approach
partially implies the frequency-related occurrence of mor-
phologically related forms.
The other methods do not explicitly require related affixes
(Goldsmith, 2006; Creutz and Lagus, 2005; Spiegler et al.,
2010; Keshava, 2006), or a common stem for two forms.
They rather compute, for every possible cut, a score that
tends to be higher when the cut is on the frontier between
stem and affix. For these methods, the occurrence of other
related forms in the corpus is therefore not requested but
they do participate in scoring whether a certain substring
might be a true stem or not.
If various morphological analyses are possible, other ap-
proaches either select several analysis above a certain
threshold (Golenia et al., 2009; Spiegler et al., 2010;
Lavallée and Langlais, 2010; Lignos et al., 2009; Bernhard,
2010; Monson et al., 2008), or they produce unambiguous
analysis by selecting, as we do, analysis that maximize a
given criteria or score(Creutz and Lagus, 2005; Keshava,
2006; Dasgupta and Ng, 2007).

Splitting compound affixes
Except in Dasgupta and Ng (2007), other approaches that
do intend to handle compound affixes(Creutz and Lagus,
2005; Spiegler et al., 2010; Keshava, 2006; Lavallée and

Langlais, 2010; Lignos et al., 2009; Can and Manand-
har, 2009), simply cut shorter affixes when possible and
reiterate the process on the remaining substrings. Conse-
quently, most approaches are likely to over-cut the French
form “parleras/(you) will speak” before the last ’s’ since
the French form “parlera/(he) will speak” exists and the
concatenation of an ’s’ is a correct morphological rule.

Splitting compound stems
The approaches that intend to handle compound stems
(Creutz and Lagus, 2005; Spiegler et al., 2010; Lignos et
al., 2009; Can and Manandhar, 2009) often rely, as we do,
on the idea that the contained stems should be more fre-
quent than the compound stem itself. However, this deci-
sion is usually determined according to the frequencies of
the forms involved in the choice when we actually take ad-
vantage of the affixes found with the contained stem. Such
frequency-based approach is more likely to fail when fac-
ing compound stems, such as “basketball”, that tend to be
more frequent than their contained stems.
Except in Lignos et al. (2009), no other method identifies
connectors strings but rely on the occurrence of smaller
forms to split a bigger one. Thus, no other method ac-
tually identify substrings dedicated to the composition of
stems such as the hyphen 8 or the “o” in French (“lati-
noaméricain/latin-american”).

12. Evaluation
12.1. MorphoChallenge
Fortunately for the morphology acquisition task, an an-
nual challenge focusing on morphological analysis from
raw data has been organized every year from 2005 until
2010(Kurimo et al., 2010). This challenge provides a set of
evaluation tools which represent a consensual way to esti-
mate the quality of an approach. In order to feed these tools,
one needs to produce morphological analysis of forms as
sequence of morpheme labels. In our evaluations, we di-
rectly used the generated stems and affixes as morpheme
labels, i.e, our labels are spelling-motivated ones.
As explained on the 2010 edition website (Mik, 2010),
since the task involves unsupervised learning, the evalua-
tion tools provided do not expect the algorithms to come up
with morpheme labels that match the linguistic ones. How-
ever, it expects for two forms containing a same morpheme
according to participants’ algorithms to also have a com-
mon morpheme in the gold standard.
Nevertheless, it is important to take into account that
the morpheme labels provided by the gold standard are
syntactically-motivated and not affix specific. For instance,
the English suffix “s#” indicates the plural of a noun or the
third person singular of a verb and is thus designed in the
gold standard with two different labels. Therefore, since
our approach is unable to generate syntactically-motivated
labels, incorrect pairs of words shall be identified in the
morphological analysis where they have morphemes with
identical spelling-motivated labels. This phenomenon is
known as syncretism. In a similar but opposite way, there
can be several affixes for a single label. For example, the

8Many methods, although unsupervised, consider the com-
pounding effect of the hyphen as a basic prior knowledge.
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English suffixes “s#” and “es#” can both represent the third
person singular of a verb and are then designed by the
same label when they occur in the gold standard. There-
fore, once again, since our approach is unable to generate
syntactically-motivated labels, many pairs of words having
morphemes with syntactically-motivated and equivalent la-
bels shall be identified in the gold standard but not in the
morphological analysis where they shall be designed with
different spelling-motivated labels. This phenomenon is
known as allomorphy. Since all morphologies are ambigu-
ous at some point, no method relying on spelling-motivated
labels can achieve a perfect score.
In addition to the previous two phenomena (syncretism and
allomorphy), the sophisticated evaluation methods handle
two other phenomena: morphophonology and ambiguity.
Morphophonology occurs when applying a morphological
rule alters the surface form of stems or affixes. For ex-
ample, in the word “wives”, the stem-final ’f ’ of wife is
modified when the plural suffix is added.
Ambiguity happens with homonyms. For example, the
French form “fiche” has two possible morphological analy-
sis: one relating it with the verb “ficher/to file” and another
one relating it with the common noun “fiche/card”.
Just like the other methods, ours is unable to deal with syn-
cretism, allomorphy and ambiguity. Only two unsupervised
method intends, to some extent, to handle allomorphy (Ko-
honen et al., 2009; Dasgupta and Ng, 2007). Our approach
does however handle morphophonology, provided that the
phenomenon is regular-enough to be acquired as a differ-
ent morphological family. Nevertheless, it just transfers the
problem to allormorphy. For example, the pair of forms
“wife/wives”, “knife/knives” or “shelf/shelves”, allows to
create the pair of related affixes fe#, ves# . Consequently,
the pairs of forms are correctly analyzed as having the same
stem. But on the other hand, the corresponding suffixes rep-
resent a new case of allomorphy for the singular and plural
labels of common nouns.

12.1.1. MorphoChallenge’s evaluation metrics
An important change in the 2010 edition has been the adop-
tion for future challenges of a new metric named EMMA
(Spiegler and Monson, 2010) instead of the MC metric (Ku-
rimo et al., 2009) used so far. This decision has been mo-
tivated by the fact that EMMA correlates far better with the
performance of real-world NLP processing tasks which em-
bed the morphological analyses than the MC metric does.
This new evaluation metric does bring an important change
since it barely correlates with the older MC metric. Indeed,
EMMA presents the same advantages as the MC metric but
is not susceptible to two types of gaming that have im-
pacted previous MorphoChallenge competitions: ambigu-
ity Hijacking and shared morpheme padding.
As explained in (Spiegler and Monson, 2010), the MC met-
ric is not robust when providing ambiguous analysis: it
tends to boost recall without harming much precision.

12.2. Results
Our approach has been essentially developed by studying
the results produced for French, Spanish and English. Nev-
ertheless, our evaluations have been computed over En-

glish, German and Turkish. It is important to note that no
tuning has been performed from a language to another9.
The 2010 edition has introduced a new semi-supervised
contest that allows to take advantage of a part of the gold
standard. A direct consequence has been a reduced number
of participants for the fully unsupervised task (only seven).
In addition, because some training corpora or gold standard
have changed since the last edition, a direct comparison be-
tween the results of the 2009 and 2010 results for the unsu-
pervised methods remains subjective.

MC EMMA
F-Measure Rank F-Measure Rank

Best MorphAcq Best MorphAcq
English 64 59 4 81 78 ∼= 3
German 47 37 5 65 61 2
Turkish 45 31 4 49 46 3

Figure 4: Evaluation results.

As one can observe, our approach never manage to surpass
the state of the art. The MC metric actually gave us very
poor scores. On the other hand, the EMMA metric placed
our method among the best methods participating.
As we are unable to understand Turkish and German, the
detailed study of our results mainly focused on English.
This study showed that most of our cuts are performed as
expected, i.e., right on the border of the stems.
As explained, the evaluation tools logically take into ac-
count allomorphy and syncretism. Consequently, our
biggest loss of recall is our inability to recognize
syntactically-equivalent affixes and group them under a
same label. In a similar but opposite manner, our main loss
of precision is our inability to split a same affix in two syn-
tactically different labels.
The same comment should also apply for Turkish and Ger-
man. However, the lower recall obtained for both Turkish
and German could also be a consequence of a still unidenti-
fied drawback. Indeed, whereas these morphologically rich
languages rely more on inflection than English does, the
sizes of the biggest families obtained for Turkish (10) and
German (14) seemed rather small when compared with the
size of the biggest one obtained for English (10).

13. Future work
We need first to understand why bigger families could not
be generated for Turkish and German. Although it is still
unsure, it is likely to be a problem due to data sparsity.
A fairly interesting feature would be to generate morpho-
logical analysis based on syntactically-motivated labels and
not, as we currently do, spelling-motivated ones. This could
allow us to deal with syncretism, allomorphy and the am-
biguity brought by homonyms. The study of the state-of-
the-art regarding automatic construction/induction of part-
of-speech tagger should provide us tracks.
This unsupervised method could also be extended to a
semi-automatic one that reuses already-validated morpho-
logical rules. Such extension would enhance the results by
factorizing the generated families and orientate the acqui-
sition towards missing morphological rules. A similar idea
has actually been performed to acquire derivational rules

9The mult variable mentioned in sect. 6. had been set to 2.
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and links between lemmas by relying on two high-coverage
French and Spanish sets of morphological rules(Walther
and Nicolas, 2011).
Finally, this methods has only been used on concatena-
tive mechanisms because we could easily restrict the search
space when looking for related affixes. If some equiva-
lent restriction could be generalized, we could extend the
method to infixes.

14. Conclusion
As confirmed by our experiments and the results presented
above, the approach already fulfills its initial goal of ac-
quiring from a raw corpus a data-representative descrip-
tion of the concatenative mechanisms of a morphology. As
the samples of morphological families provided show, any-
body interested in building a description of the concatena-
tive mechanisms can rely on it to guide and ease its efforts.
Just like MorphoChallenge’s evaluation tools have pointed
out, there are still several aspects that can be improved.
Fortunately, the sequential combination of filters provides
a convenient way to perform upgrades.
The results obtained with the EMMA metric situates our
method relatively close to the state-of-the-art without ever
surpassing it. The fact that these results have been obtained
without any tuning confirms both its potential and its prac-
tical interest.
We therefore believe that it can already be a great help when
building a new resource and even more when dealing with
languages with few documentation.
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