Constructing Large Proposition Databases

Peter Exner Pierre Nugues
Lund University
Department of Computer science
Lund, Sweden
Peter.Exner @cs.Ith.se, Pierre.Nugues @cs.lth.se

Abstract
With the advent of massive online encyclopedic corpora such as Wikipedia, it has become possible to apply a systematic analysis
to a wide range of documents covering a significant part of human knowledge. Using semantic parsers, it has become possible
to extract such knowledge in the form of propositions (predicate—argument structures) and build large proposition databases from
these documents. This paper describes the creation of multilingual proposition databases using generic semantic dependency pars-
ing. Using Wikipedia, we extracted, processed, clustered, and evaluated a large number of propositions. We built an architecture to
provide a complete pipeline dealing with the input of text, extraction of knowledge, storage, and presentation of the resulting propositions.

Keywords: Semantic Parsing, Ranking Algorithm, Proposition Database

1. Introduction

With the advent of massive online encyclopedic corpora
such as Wikipedia, it has become possible to apply a
systematic analysis to a wide range of documents cov-
ering a significant part of human knowledge. Using se-
mantic parsers or related techniques, it has become pos-
sible to extract such knowledge in the form of propositions
(predicate—argument structures) and build large proposition
databases from these documents.

While most approaches focus on shallow analysis and do
not capture the full meaning of a sentence, semantic pars-
ing goes deeper and discovers more information from text
with a higher accuracy. Christensen et al. (2010) showed
that using a semantic parser in information extraction can
yield a higher precision and recall in areas where shallow
syntactic approaches had failed. This deeper analysis can
be applied to discover temporal and location-based propo-
sitions from documents.

The accuracy of semantic parsers comes at a higher cost
in terms of execution time. However, in the recent years,
statistical parsing and especially semantic parsing have be-
come increasingly time-efficient in analyzing text, while
maintaining superior accuracy.

This paper describes the creation of multilingual proposi-
tion databases using generic semantic dependency parsing.
Using a broad domain encyclopedic corpus, Wikipedia, we
extracted, processed, clustered, and evaluated a large num-
ber of propositions. We built an architecture to provide a
complete pipeline dealing with the input of text, extrac-
tion of knowledge, storage, and presentation of the result-
ing propositions. Furthermore, our system is able to handle
large-scale extractions, wide domains, and multiple input
languages. Wherever possible, the handling of information
is automated such that manual labor is kept to a minimum.
We believe proposition databases like the one we con-
structed, combined with other lexical databases, can be key
components in semantic search technology, machine trans-
lation, and question answering (QA) systems.

2. Extracting Propositions

The creation of a proposition bank can be achieved through
the manual annotation of a corpus (Palmer et al., 2005) or
the application of an automatic parser (Banko et al., 2007).
In this paper, we focus on the creation of a proposition
database using generic semantic dependency parsing. We
built a system that provides a complete pipeline from the in-
put of text, the extraction of knowledge, to the storage and
presentation of the extracted propositions. The manual han-
dling of information is minimized by automating the data
flow between the subcomponents of the system. Further-
more, the system is able to handle large-scale extractions,
wide domains, and multiple input languages.

Wikipedia is a popular reference work covering a large ar-
ray of topics and articles written in multiple languages. To
create a proposition bank with high-quality propositions,
we designed a ranking algorithm that assigns scores based
on the redundancy of the propositions. We carried out this
work in four main steps, whose goal was to:

e Construct a semantic parsing framework to scale to
large heterogeneous corpora (i.e. corpora ranging
from 100,000 to a few million articles).

e Parse a substantial part of Wikipedia and create large,
semantically annotated, and multilingual proposition
databases.

e Create a ranking algorithm that extracts high-quality
propositions.

e Construct an interface to query the proposition
database.

3. System Architecture

We created a framework for multilingual proposition ex-
traction including both English and Chinese corpora. The
framework uses a complete semantic parsing pipeline and
modular language models, where new languages can be
added without the need of reworking extraction algorithms

3836

SR

<<type>> <<type>>
Content Content
Provider Processor

Complete
SRL

Wikipedia
Database

<<type>>

Complete
SRL

Storage

Provider

Wikipedia 1 SQlite CoNLL
Content Storage Storage
Provider English Chinese Provider Provider

Parsed
Data CoNLL

Files

Figure 1: An overview of the parser.

or patterns. Figure 1 shows an overview of the parsing
framework.

The parsing pipeline is supplied with content that can eas-
ily be extended to various corpora. The Wikipedia content
provider reads articles from a Wikipedia database and then
uses a language specific filter to remove markups and other
items that would otherwise impede the process of parsing.

Wikipedia is available in the form of XML dump files'
provided by the Wikimedia Foundation. Although XML
is a suitable format for sharing data, it is less suitable for
searching a certain element within the file. For this purpose,
we developed a converter that takes a Wikimedia XML file
and converts it to a SQLite? database. We have then a fast
random access to any article, something that would other-
wise not be possible using only the XML dump file. The
database also allows for the storage and individual updating
of the articles. The parsed output from the pipeline is stored
by a storage provider. We created two storage providers, a
SQLite database and a CoNLL file storage provider, for the
end storage of the semantically parsed text.

We wrote a server that communicates with computing
nodes and launches parsing jobs on the given nodes. The
server and the computing nodes communicate through a
message system similar to the message passing interface
(MPI) APL The server accepts a desired range of Wikipedia
article identifiers. These are then subdivided by the server
into suitable subranges and distributed among the comput-
ing nodes. Each node uses a complete pipeline, performing
all functions from filtering to semantic annotation, to parse
an article. After completion, the parsed article is sent back
to the server and a new article is assigned to the computing
node. This is repeated until all the desired documents have
been parsed.

Using this parsing framework, we have parsed more than
30% of the English Wikipedia in approximately 4 weeks
on a cluster of 10 machines. The statistics generated from
this data are vital in determining the focus for our efforts

"http://en.wikipedia.org/wiki/Wikipedia:Database_download
Zhttp://www.sqlite.org/

English Wikipedia
Articles 1,157,054
Sentences 23,754,110
Propositions 93,040,920

Table 1: An overview of parsing statistics.

and also the approach for creating the ranking algorithm.
Table 1 shows an overview of the number parsed articles,
sentences, and propositions.

4. Semantic Parser

The content processor uses a high-performance multilin-
gual semantic parser (Bjorkelund et al., 2010). This parser
reached high scores in the CoNLL 2009 (Hajic et al., 2009)
shared task, has fast processing time, and the code is open
source and freely available. The English data models used
in our parser have been created from the corpus provided in
the CoNLL 2008 (Surdeanu et al., 2008) shared task. The
CoNLL 2008 corpus used for training is based on an anno-
tated version of the Wall Street Journal, it is thus limited
to a narrow domain. The Chinese data models have been
created from a semantically annotated Chinese Treebank
(Palmer and Xue, 2009).

5. Proposition Database

The proposition database is used for storing parsed data,
retrieving statistics, and building Lucene indexes for the
querying interface. It provides a unified schema for stor-
ing and retrieving propositions. This schema is designed
to handle semantically annotated sentences as defined by
CoNLL 2008 (Surdeanu et al., 2008). It is in this sense
a generic structure capable of handling parsed data from
more than one parsing configuration. It is also suitable for
providing simple statistics, such as the number of proposi-
tions, by means of SQL queries. Figure 2 shows the data
model.

The proposition database also features a simple API, which
allows the creation of databases, as well as storing and re-

3837

Data Model

Content Argument Yield
” id id
*
.‘ - 1 word_id 1 1. argument_id
identifier) .
predicate_id label
ieO\L/JiEC\'oen label startindex
1 yield endindex
O“*
0.* 1
Sentence Word !
” id Predicate
* 1. R

content_id ! 1-7lindex ! !]id

index form word_id

text lemma sense

Figure 2: An overview of the data model

trieving propositions. The API makes good use of trans- # Argumentl Predicate Argument2 Count
actions, ensuring data integrity by making sure that parsed 1 equations describe.01 laws 5
content is stored in its entirety. 2 methods describe.01 approach 2
The database aggregator assembles the many smaller 3 papers describe.01 algorithm 1

databases created by the parsing jobs into one large
database. The smaller databases are read one by one from a
folder and added to the final database. This large database
is more suitable for data processing tasks such as retrieving
statistics and building the Lucene index.

For distribution purposes, we also store the parsed articles
in individual files using CoNLL 2008 annotation. Since
the CoNLL 2008 annotation has a large recognition and
use in NLP tools, we believe that by providing the parsed
Wikipedia articles in this format we encourage and facili-
tate the reuse of data.

6. Ranking Algorithm

The occurrence of erroneous extractions is a problem found
in all extraction systems. In order to filter out less likely
propositions, we have developed a ranking algorithm based
on the redundant occurrences of propositions in text.

Our ranking algorithm assigns a score to propositions based
on their redundancy. Propositions are considered to be re-
dundant if more than one proposition has the same predi-
cate and its arguments have the same headword. We create
the score by dividing the number of redundant propositions
by the total number of propositions for a certain predicate.
This score is then assigned to the propositions having that
predicate.

As an example, consider the data shown in Table 2. We
have two tuples with redundancy #1 and #2, together they
have (5+2) = 7 propositions. In all, there are (5+2+1) =8
propositions for the predicate, describe. This gives a redun-
dancy score of 7/ 8 = 87.5%.

This algorithm can be used for ranking semantic searches
and also to create new corpora containing higher quality
propositions. An overview of the types and number of

Table 2: An example of predicate argument distribution
where #1 and #2 are redundant and #3 is a hapax.

redundant propositions created by our ranking algorithm
based on 10% of parsed data can be seen in Table 3
Although our algorithm assigns a score to only a small
subset of propositions, we believe a higher yield can be
achieved through the use of a coreference solver and other
lexical databases.

Type Distribution
All propositions with two arguments 54.9%
Propositions with redundancy 29.2%
All (Noun, Verb, Noun) Propositions 7.8%
(Noun, Verb, Noun) Propositions without 6.0%
redundancy

(Noun, Verb, Noun) Propositions with re- 1.7%
dundancy

(Noun, Verb, Noun) Unique propositions 0.4%
with redundancy

Table 3: The number of propositions grouped by proposi-
tion type, based on 10% of parsed data.

7. Querying Interface

We developed a web-based query interface to the proposi-
tion databases. The interface allows the use of temporal
and location based searches. This makes use of the seman-
tic properties of the proposition database and creates new
possibilities in semantic search.

3838

Figure 3 shows an example of a search. It is possible
to search for propositions from the English and Chinese
Wikipedia. Searches are made by entering the predicate
and arguments in lexical form. For instance, to search for
who built the pyramids, one enters the lemmatized form of
built, build, into the predicate field. Figure 4 shows the
results of the query, the arguments in the sentences are col-
ored differently depending on their semantic roles.

The query interface to the proposition databases is avail-
able from this location: http://barbar.cs.lth.
se:8071/

8. Conclusion & Application

In this paper, we described an end-to—end framework
for extracting, storing, ranking, and querying predicate—
argument structures from large heterogeneous corpora. We
implemented a parsing framework, capable of performing
parallel extraction on multiple computing nodes. Using
this framework we parsed 30% of the English Wikipedia,
extracted about 93,000,000 predicate—argument structures
and stored them in a proposition database. We also explored
a ranking algorithm that scores propositions based on their
redundancy. Applied to a subset of extracted propositions,
we believe the ranking algorithm can be used in ranking se-
mantic searches and also to create new corpora containing
higher quality propositions.

We believe that the ranking algorithm could be improved
using a coreference solver that would tie pronouns such as
she, he, or it to person or organization names. In the fu-
ture, we also plan to parse the complete Wikipedia corpus
in English and other languages.

The resulting proposition database has been used in a sep-
arate project to investigate the use of semantic parsing to
extract events from text (Exner and Nugues, 2011). By us-
ing predicate-—argument structures extracted from 10% of
the English Wikipedia and a converter using VerbNet the-
matic roles, we produced 27,500 events in the LODE RDF
format (Shaw et al., 2009).

9. Acknowledgments

This research was supported by Vetenskapsradet, the
Swedish research council, under grant 621-2010-4800, the
European Union’s seventh framework program (FP7/2007-
2013) under grant agreement N® 230902, and the
eSSENCE research program.

10. References

Michele Banko, Michael J. Cafarella, Stephen Soderland,
Matthew Broadhead, and Oren Etzioni. 2007. Open
information extraction from the web. In Manuela M.
Veloso, editor, IJCAI, pages 2670-2676.

Anders Bjorkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntactic
and semantic dependency parser. In COLING (Demos),
pages 33-36. Demonstrations Volume.

Janara Christensen, Mausam, Stephen Soderland, and Oren
Etzioni. 2010. Semantic role labeling for open infor-
mation extraction. In Proceedings of the NAACL HLT
2010 First International Workshop on Formalisms and

Methodology for Learning by Reading, FAM-LbR ’10,
pages 52-60.

Peter Exner and Pierre Nugues. 2011. Using semantic role
labeling to extract events from wikipedia. In Proceed-
ings of the Workhop on Detection, Representation, and
Exploitation of Events in the Semantic Web (DeRiVE
2011), pages 38—47, Bonn.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antonia Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian Pado,
Jan étépének, Pavel Stranak, Mihai Surdeanu, Nian-
wen Xue, and Yi Zhang. 2009. The conll-2009 shared
task: syntactic and semantic dependencies in multiple
languages. In Proceedings of the Thirteenth Conference
on Computational Natural Language Learning: Shared
Task, CoNLL °09, pages 1-18.

Martha Palmer and Nianwen Xue. 2009. Adding semantic
roles to the Chinese Treebank. Natural Language Engi-
neering, 15(1):143-172.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The Proposition Bank: an annotated corpus of semantic
roles. Computational Linguistics, 31(1):71-105.

Ryan Shaw, Raphaél Troncy, and Lynda Hardman. 2009.
LODE: Linking open descriptions of events. In 4th Asian
Semantic Web Conference, pages 153—-167, December 6-
9.

Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluis
Marquez, and Joakim Nivre. 2008. The conll-2008
shared task on joint parsing of syntactic and semantic
dependencies. In Proceedings of the Tvelfth Conference
on Computational Natural Language Learning, CoONLL
’08, pages 159-177.

3839

Wiki-SRL

Search individual fields:

AO:

Predicate: build

Al: pyramids

AM-LOC:

AM-TMP:

English Statistics: Chinese Statistics:
Articles: 378453 Articles: 1781
Sentences: 13428 114 Sentences: 91 099
Propositions: 33 694 899 Propositions: 341 695

Figure 3: Searching the proposition database.

build pyramids (2)

1. build the pyramids,;

2 build pyramids,,

building Pyramids (3)

3. building the Pyramids,

4. building pyramids , . cohmns , and such structures

5 building pyramids |

built pyramids (3)

6. built huge pyramids,, and temples

7. the Giza pyramids,,, built

8. Egypt 's great pyramids | built

build pyramids atop (1)

9. build new temple pyramids , atop,,; o older ones

acrobats build pyramids (1)

10. the acrobats,, themsehves build human pyramids ,

cards huild is (1)

11 hold four Hero and/'or Wonder cards, build the Pyramids Mare Nostrum is | intended by the designer to be a more playable version of Civilization
Children build pyramids (1)

12. Children,, build " Lambertus pyramids,, " of branches , decorated with lanterns and lamps around which they dance and sing traditional songs (known as Lambertussingen or Kaskenspiel)
He build first (1)

13. He, , build the first,, of the pyramids . a step pyramid for him at Saqgara
humans build pyramids (1)

14 ancient humans,,, build pyramids, |
it build pyramids in (1)

15. it,, build totally useless pyramids,,; in,, ;... order to stimulate the economy , raise aggregate demand . and encourage full employment
Olmecs build pyramids (1)

16. The Olmecs,; build pyramids |
pharachs build pyranuds (1)

17 Middle Kingdom pharachs,,, build pyramids,,

Figure 4: Results from searching the proposition database.

3840

