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Abstract
We investigate the creation of corpora from web-harvestat dollowing a scalable approach that has linear query &mxtp
Individual web queries are posed for a lexicon that inclutiesisands of nouns and the retrieved data are aggregatedicallnetwork
is constructed, in which the lexicon nouns are linked adogrtb their context-based similarity. We introduce theiotof semantic
neighborhoods, which are exploited for the computationeofi@ntic similarity. Two types of normalization are propbséd evaluated
on the semantic tasks of: (i) similarity judgement, andr{@un categorization and taxonomy creation. The creatqusalong with a
set of tools and noun similarities are made publicly avédab
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1. Introduction ity of polysemous words as the similarity of their clos-
est senses. In order to improve the lexical (and sense)

Semantic similarity is the building block for numer- coverage of our corpus, we propose the aggregation of
ous applications of natural language processing, such agata harvested by a large number of individual queries.
grammar induction (Meng and Siu, 2002) and affective|n addition, we encode the corpus information by con-
text categorization (Malandrakis et al., 2011). Distri- structing a network of words, in particular nouns, linked
butional semantic models (DSMs) (Baroni and Lenci,according to their semantic similarity. Using a network
2010) are based on the distributional hypothesis of meanwo main advantages are provided: (i) associations are
ing (Harris, 1954) assuming that semantic similarity be-revealed through network edges that can not be directly
tween words is a function of the overlap of their lin- identified, and (ii) it is a parsimonious representation of
guistic contexts. DSMs can be categorized into un-the corpus. Semantic neighborhoods are exploited for the
structured (unsupervised) that employ a bag-of-wordgomputation of semantic similarity. Two types of nor-
model (losif and Potamianos, 2010) and structured thagalization are proposed that are shown to significantly
employ syntactic relationships between words (Grefenimprove performance. Two semantic tasks were adopted
stette, 1994; Baroni and Lenci, 2010). DSMs are typ-for the evaluation of the computation of semantic sim-
ically constructed from co-occurrence statistics of wordijlarity: (i) judgement of noun similarity, and (ii) noun
tuples that are extracted on existing corpora or on corporgategorization and taxonomy creation. In addition, our
specifically harvested from the web. The main utility of data, including the created corpus, the noun similarities
DSMs is the computation of semantic similarity betweenand a set of tools are available for downloading.
word pairs. A popular method for web corpus creation o .
that has been shown to perform quite well for this task 2. Semantic Similarity Computation
(losif and Potamianos, 2010) is to search for conjunctivelThe basic idea here is the computation of semantic sim-
AND web queries in search of documents where wordlarity between words, for the construction of a lexical
pairs co-occur. However, this methodology suffers fromnetwork. The similarities were estimated according to
scalability issues, since it requires a quadratic number ofhe unsupervised paradigm of DSMs, where no linguis-
gueries with respect to the size of the lexicon. In thistic knowledge is required. The fundamental assump-
work, we investigate the estimation of semantic similar-tion here is thasimilarity of context implies similarity of
ity using lexical networks, following a corpus-based ap-meaning we expect words that share similar lexical con-
proach. In particular, a web corpus is created using inditexts will be semantically related (Harris, 1954). A com-
vidual queries, i.e.,®;". Individual queries have linear mon representation of contextual features is the “bag-of-
complexity with respect to the lexicon size, and thus theywords” model that assumes independence between fea-
are scalable to large lexicons (unlike conjunctive AND tures (Sebastiani and Ricerche, 2002).
queries). Creating a corpus with large lexical coveragd-or context-based metrics, a contextual window of size
is critical for semantic models that estimate the similar-2H + 1 words is centered on the word of interastand
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lexical features are extracted. For every instancerof approach proposed in (Resnik, 1995), the similarity of
in the corpus, théd words left and right ofv; are taken two concepts can be estimated as the similarity of their
into consideration, i.e., two closest senses. This is also in agreement with our
.y g : “common sense” (cognitive) model of semantic similar-
Vra e foa Sl wi (e for o fial, ity, when two words are mentioned, their closest senses
where f.; and f  represent the feature positions to  gre activated. We believe that an important contribution
the left of right ofw;. For a given value off, the feature  of the co-occurrence feature to semantic similarity com-
vector forw; is built asTy, # = (fw, 1, tw; 2, tw,z):  putation is thatco-occurrence acts as a semantic filter
wheret,,, i is a non-negative integer. The feature vec-ypat only retains the two closest senses
tor has length equal to the vocabulary sizeNon-zero  ypfortunately the attempt to build corpora and DSMs us-
feature valuet.,, . indicates the occurrence of vocabu- jng conjunctive AND queries does not scale to thousands
lary wordt;, within the left or right context ofv;. Note 4 words due to the quadratic query complexity. We are
that the value of., i is set by considering all occur- thys forced to investigate the alternative of using IND
rences ofw; in the corpus. The value df,, » can be  gyeries and face the sense disambiguation issues associ-
defined according to a binary scheme (losif and Potamizteq with such corpora. Corpora created via IND queries
anos, 2010). This scheme assigrie ., .« if vocabulary  are similar to a typical text corpus with one important
word ), occurs withinH positions left or right of word  gifference: the frequency of occurrence of the words in
w;, otherwisel,, . = 0. The context-based semantic oy |exicon is somewhat normalized, assuming that the
similarity metrics" between wordsv; andw; is com-  same number of snippets is downloaded for each word in
puted as the cosine distance between their correspondifge |exicon. Given the requested number of snippets, we
feature vectors: expect that rare words will be well-represented within the
Zz " " corpus. In addition, the information content of the cor-
)= k=1 wisk wjik , (1) pus pertaining to the words in the lexicon is expected to
\/Ele tfvi‘k\/zle tﬁ%k increase, i.e., the entropy rate of a unigram (zeroth order
' Markov process) model.

sH (w;, w;

for context sizel{ and vocabulary siz&€. For wordsw;,
w; that share no common context (completely dissimilar 4. Lexical Network
words}qthe corresponding semantic sim_ilar_ity sc;or@. is Using a web corpus created via IND queries on a lex-
Also s (w, w) = 1. In this work, the pairwise similar- .on 1, e construct next a semantic network encoding
ities of 8,752 nouns were computed according to (1) folhg relevant corpus statistics. The links between words
several values off . in this network are determined and weighted according to
. . . the pairwise semantic similarity. The network is defined
3. CorpusCreation using Web Queries as an undirected (under a symmetric similarity metric)
There are two main types of web queries that can be usegraphG = (NN, E') whose the set of vertice¥ includes
for corpus creation: (i) conjunctive AND queries, and (ii) the members of the lexicon, and the set of edges
individual (IND) queries. Assuming/ words in our lex-  contains the links between the vertices.
icon, in the first case all pairwise AND conjunctions are The network is a parsimonious representation of corpus
formed and the corresponding queries are posed to a wediatistics as they pertain to the estimation of semantic
engine, e.g., i; AND w;". Corpus creation via AND similarities between word-pairs in the lexicon. In addi-
queries leads to quadratic query complexityN?) in tion, the semantic network can be used to discover rela-
the number of words in the lexicon. Alternatively, one tions that are not directly observable in the data; such re-
can download documents or snippets with linear queryations emerge via thgystematic covariation of features
complexityO(N) using IND queries, i.e. ;" and similarity metrics Semantic neighborhoods play an
The main advantage of AND queries is that they con-important role in this process. The members of the se-
struct a corpus that is conditioned on word-pairs, ex-mantic neighborhoods of two words are expected to con-
plicitly requesting the co-occurrence of word-pairs in tain features of these words capturing diverse informa-
the same document. Co-occurrence is a strong indicaion at the syntactic, semantic and pragmatic level.
tor of similarity and corpora created via AND queries The identification of semantic features is also a way for
have been shown to provide very good semantic similarperforming sense discovery. Word senses play a central
ity estimates (losif and Potamianos, 2010). To better unfole in semantic similarity estimation. However, sense
derstand the role of co-occurrence as a feature in seman-
tic similarity computation, we need to revisit the very  1The maximum sense similarity assertion is widely em-
definition of semantic similarity, as it pertains to words ployed by many similarity metrics, such as the WordNet-Hase
and their senses. According to the information-theoretianetrics (Budanitsky and Hirst, 2006), achieving good rssul
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discovery through semantic neighborhoods is not feasihoods are computed according to contextual similarity,
ble if the corpus has limited lexical coverage. In thisthere is no need for the neighbors to co-occur with the
work, we alleviate this issue by aggregating data thateference nouns. In practice, the majority of them co-
are harvested for a lexicoh containing thousands of occur at the sentence level. The exceptions are enclosed
words. Also, given a largé, instances of a wordy; in square brackets in Table 1. In such cases, the respec-
can be found implicitly, i.e., within data retrieved for;, tive relations seem to have a broader semantic/pragmatic
wherew; # w;. This enables the discovery of less fre- scope, e.g., the concept of slave is somehow related with
guent senses for polysemous words, as well as, relatiordemocracy.
in which rare words participate.

5. Normalization of Neighborhoods

4.1. Semantic Neighborhoods . . .
o ] The semantic network is not a metric space under seman-
For each word (reference word) that is included in thegc gimilarity (1) because the triangle inequality is not

lexicon, w; € L, we consider a subgraph 6, Gi = gatisfied. Moreover, we expect that different words will
(Ni, E;), where the set of vertice§; includes in totah e gifferent neighborhood statistics. Based on our as-
members ofL, which are linked withw; via edgesZi.  gymption that the neigborhoods capture (to some extent)

The G; subgraph is referred to as the semantic neighye semantics of words, we suggest that the neighbor-
borhood ofw;. The members ofV; (neighbors ofw;)  hqqd differences should be taken into account during the
are selected froni according to the semantic similarity ompytation of semantic similarity. We investigated two
metric, defined by (1), with respectia, i.e., then most 5 malization schemes in order to address this issue.
similar words tow; are selected. Local Normalization. Motivated by similar approaches
from the area of multimedia (Lagrange and Tzanetakis,

Reference Ne'ghQE[s sele_cted by 2011) we applied the N-normalization (or local scaling)
nhoun s Mmetric (Zelnik-Manor and Perona, 2004), defined as
auto, truck, vehicle,
automobile car, engine, bus, . _ s(n1,no; H)
boat, [aviation], tractor, [lighting] s (na, no; H) = 35n, n; H)s(na, o, H)
1,71,N, 2,102 N,
truck, vehicle, travel, (2)
car service, price, business, wheres(n;, n;; H) is the similarity score between and
home, city, game, quality n; for a contextual window of siz&/ (computed by (1)),
water, health, family, N is the number of neighbors included in the neighbor-
food service, industry, product, hood, andr; y is the N neighbor ofr;.
market, life, quality, home Global Normalization. Z-normalization (Cohen, 1995)
nigger, slavery, servant, is employed as a type of global normalization, by con-
slave manumission, beggar, [nationalisnj],  sidering all the nouns of the network as members of the
society, [democracy], [aristocracy] semantic neighborhood. The Z-normalized similarity be-

tween two nouns is defined as
Table 1: Excerpt of semantic neighborhoods.
- H) —
| szt g ) = 2 Zin g
Some of the neighbors for four nouns computed accord- !
ing to (1) usingH = 1 are presented in Table 1. The wherey; ando; are the arithmetic mean and the stan-

nelghbc_)rs that are emphasized using bold fonts denotgard deviation, respectively, of the similarity scores be-
(lexicalized) senses of the respective reference noun

Tveen ny, and the rest nouns of the network. Also,

In general, the neighborhoods are semantically dlversegmhnj;H) is the similarity score between; andn;

capturing word senses, as well as, other types of semany. o contextual window of sizél (computed by (1)).

tic relations. We (_)bserye that the d|_scover_y of a NUM-rpe similarity computed by (3) is not symmetric, i.e.,
ber of senses via its neighborhoods is feasible for some

nouns, e.g., “automobile” and “car’. However, this is Sz, nzi H) # sz(n2,ma; H), since

not true for other nouns (‘food” and “slave”), for which s(ny,mo; H) — po

their respective senses can not be easily described by sin- sz(nz,ny; H) = > ; (4)

gle words. In addition to synonymy, taxonomic relations ?

are encoded within the neighborhoods, e.g., IsA(vehiclewherepu, ando, are the arithmetic mean and the stan-
car), PartOf(automobile, engine). Relations of associadard deviation, respectively, of the similarity scores be-
tive nature, e.g., ProducedBy(industry, food), are alsdweenns and the rest nouns of the network. The similar-
denoted by some neighbors. Given that the neighbority scores(ny,ns; H) is identical to the score used in (3).
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In this work, a symmetric similarity score was defined asof H. Overall, the performance of similarities normal-
" ized by the global scheme is significantly higher com-
sz (n1,n2; H)=max{sz(n1,n2; H),sz(n2,n1; H)}.  pared to baseline, and similarities normalized by the lo-
(5)  cal schemé. The reported correlation scores are lower
. compared to the state-of-the-art results:0(§8 for CM
6. Experimental Procedure and (losif and Potamianos, 2010), where conjunctive AND
Parameters gueries are used, and ({i)85 for RG (Baroni and Lenci,

The experimental procedure consists of the follow-2010), where linguistic knowledge is exploited. To our
ing steps. 1) Query formulation and corpus creation knowledge, these are the best reported results using indi-
As a lexicon we usedB,752 English nouns taken Vidualqueries, i.e., with linear query complexity.

2
from the SemCor3” corpus.  For each noun an 7.2. Noun Categorization and Taxonomy Creation

individual query was formulated and thk 000 top o
ranked results (document snippets) were retrieved usl "€ Performance of the similarities computed by the

ing the Yahoo! Search API (2 Feb’11). The Corpusbaseline metric and the global normalization schemes

was created by aggregating the snippets for all noundVere evaluated on noun categorization and taxonomy
2) Computation of semantic similarity The pairwise creation tasks. The similarity scores were used for the

noun similarities were computed according to (1) forconstruction of a similarity matrix upon which the
H = 1.2.3.5 3) Network creation The se- means clustering algorithm was applied. The experimen-
- Y ) Y .

mantic neighborhoods of nouns were computed foltal datasets are presented in Table 2. Regarding noun cat-

lowing the procedure described in Section 4.1. 4)egorization we used the Battig (Baroni et al., 2010) and
Similarity computation using normalization_ocal and the AP (Almuhareb and Poesio, 2005) datasets. We ex-

global normalization schemes were applied. We experiP€rimented with those nouns included in the set,0b2
mented withH =1, 2, 3, 5, and with various values ¥ nouns:49 nouns classified intd0 classes for the Battig
ranging from10 up t0200. dataset, an@1 classes includin@40 nouns for the AP
dataset. For the task of taxonomy creation we used the
7. Evaluation ESSLLI dataset (Baroni et al., 2008), which is a three-
level hierarchyf —3 —6 classes). The lowest level of the

In tlr_ns ts_ectlor:q, we eva!ijhate the p;etrfot:,\rlna?cekof the r_lorhierarchy()‘ classes) is presented in Table 2. The middle
malization schemes with respect to wo tasks: (i) SMavel includes the classemimals vegetablesandarti-

llarity judgement between nouns, and (ii) noun Catego_facts while the upper level is distinguishedliming be-

rization. The normalization-based approaches are als%gs andobjects We considered1 nouns included in
compared to the baseline method for semantic similarit3{he set oR. 752 nouns

computation. The purity of clustersP, was used as evaluation metric,
defined as (Baroni and Lenci, 2010):

7.1. Similarity Judgement

The baseline and the normalized similarity scores were 1E )

evaluated against human ratings using two standard P= P Z m?X(Cf)» (6)

datasets of noun pairs, MC (Miller and Charles, 1998), =1

and RG (Rubenstein and Goodenough, 1965). The firsiherec! is the number of nouns assigned to tHeclus-

dataset consists a8 noun pairs, while for the second ter that belong to thg!" groundtruth class. The number

dataset we usedl7 nouns pairs, also in SemCor3. The of clusters is denoted by, while ¢ is the total number

Pearson’s correlation coefficient was used as evaluatiopf nouns included in the dataset. Purity expresses the

metric. The performance of the normalized similaritiesfraction of nouns that belong to the true class, which is

(solid line) in comparison with the baseline performancemost represented in the cluster (Baroni and Lenci, 2010),

(daShed ||ne) is shown in Flgl The Correlatlon- reSUltS{aking values in the ranqe’ 1], wherel stands for per-

for the case ofy (local norm.) forH = 1 are depicted fect clustering. The results are presented in Table 3 for

in Fig.1(a) and (b), for MC and RG datasets, respectivelythe baseline similarities and the normalized similarities

The correlation is plotted as a function of the numberaccording tos’/ (global norm.) for several values &f.

of neighbors N?b.f The performance of similarity scores The performance of the normalized similarities is consis-

normalized bys" (global) with respect to MC and RG  tently better than the performance of the baseline similar-

datasets, is presented in Fig.1(c) and (d), respectivelfties. These results are close enough to the state-of-the-

The correlation scores are plotted against different walue

3Also, we experimented with various linear combinations
2http://www.cse.unt.edu/ ~rada/ of the similarity scores computed by the two normalization

p y p y
downloads.html schemes without any significant improvement in performance
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Figure 1: Correlation for the task of similarity judgemeBaseline and normalized similarities using (local) for:
(@) MC, (b) RG datasets. Baseline and normalized simiéaritisings’ (global) for: (c) MC, (d) RG datasets.

| Dataset|| # of nouns| # of classes | Description of classes |

Battig 49 10 mammals, birds, fish, vegetables, fruit
tress, vehicles, clothes, tools, kitchenware
animal, assets, atmospheric phenomenon, chemical eleoneator,
AP 240 21 district, edible fruit, feeling, game, illness1,
illness2, legal document, monetary unit, pain, physicapprty,
social occasion, social unitl, social unit2, solid, trezhicle
ESSLLI 31 6 (lowest level) birds, land animals, fruit, greens, vehicles, tools

Table 2: Datasets for noun categorization and taxonomyiorea

art results (Battig0.96, AP:0.79, ESSLLI:1-1—-0.91,  Overall, the SemSim corpus consists of approximately
(Baroni and Lenci, 2010)), which are obtained by meth-8, 752, 000 snippets that correspond 1@, 435, 600 sen-

ods exploiting linguistic knowledge. tence fragments. In general, a snippet may include
more than one sentence fragment. The vocabulary
8. Data, Tools and Resources size is1,413,775, while in total the corpus contains
In this section, we briefly describe the data that are madégg’ 510,174 tokens.
publicly available’. Tools (CParse & CosSim). CParse parses the SemSim

Data (SemSim Corpus). This is the corpus of snip- corpus and creates the context feature vectors. CosSim is
pets that were aggregated for ther52 English nouns.  fed with the feature vectors and computes similarities in
a computational efficient manner8K/s on a2.66GHz
“http://www.telecom.tuc.gr/ ~josife/ Pentium). Both tools are re-usable, e.g., for enriching
downloads.html| the existing pool of similarities, or for other corpora.
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Contextual Dataset
Window Battig AP ESSLLI Taxonomy

Size Level O Level 1 Level 2

(H) (10 classes)| (21 classes)|| (2 classes)| (3 classes)| (6 classes)
1 0.86/0.96 0.53/0.53 0.65/1 0.87/0.90 | 0.77/0.84
2 0.80/0.94 0.45/0.48 0.65/0.87 | 0.84/0.84 | 0.74/0.81
3 0.67/0.92 0.41/0.45 0.65/0.87 | 0.81/0.81 | 0.74/0.77
5 0.71/0.86 0.38/0.41 0.58/0.81 | 0.74/0.81 | 0.61/0.68

Table 3: Purity of classes: baseline similarities/sinitiles normalized by’ (global).

Resour ces (SemSim Repository). This is a repository  A. Budanitsky and G. Hirst. 2006. Evaluating WordNet-
that includes the pairwise semantic similarities of the based measures of semantic distar€emputational
8,752 nouns. The baseline similarities were computed Linguistics 32:13—47.

according to (1) forH = 1,2, 3,5. Also, the repository P. R. Cohen. 1995Empirical Methods for Artificial In-
includes the normalized (local and global) similarities, telligence MIT Press.

for a total 0f919, 170, 048 scores. G. Grefenstette. 1994 xplorations in Automatic The-
saurus DiscoveryKluwer Academic Publishers.
9. Conclusions Z. Harris. 1954. Distributional structure.Word,

10(23):146-162.

IE this work, we folflowed an un_su_ﬁ)erwsed_ apPrg_""?(;‘ fOIrE. losif and A. Potamianos. 2010. Unsupervised seman-
the computation of semantic similarity using individual . similarity computation between terms using web

queries (linear query complexity). More importantly, we ). ments. IEEE Transactions on Knowledge and
showed how to construct a large lexical network that Data Engineering22(11):1637—1647.

can reveal useful information regarding the linked words.M_ Lagrange and G. Tzanetakis. 2011. Adaptive n-
Also we investigated two normalization schemes show- normalization for enhancing music similarity. foc.

ing significant performance improvement. Last but not ICASSP

least, we make available large resources and tools, foN Malandrakis, A. Potamianos, E. losif. and

tering their re-usability. S. Narayanan. 2011. Kernel models for affective
lexicon creation. IrProc. Interspeech
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