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Abstract

The lexicon is the store of words in long-term meynény attempt at modelling lexical competence make issues of string storage
seriously. In the present contribution, we discaigew desiderata that any biologically-inspired patational model of the mental
lexicon has to meet, and detail a multi-task eu#naprotocol for their assessment. The proposedopol is applied to a novel
computational architecture for lexical storage acduisition, the “Topological Temporal Hebbian SONIE2HSOMSs), which are
grids of topologically organised memory nodes wigidicated sensitivity to time-bound sequencesttire These maps can provide
a rigorous and testable conceptual framework wittiich to provide a comprehensive, multi-task peotdor testing the perform-
ance of Hebbian self-organising memories, and gpcehensive picture of the complex dynamics betwexinal processing and the
acquisition of morphological structure.
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) form access to the lexicon, and the optional mor-

1. Introduction pheme-based access of sub-word constituents, iregult
The mental lexicon is the store of words in longrte  from application of morphological rules of on-limerd
memory, where words are coded as time series ofprocessing to the input word. If and only if accéss
sounds/letters. From this perspective, the questibn full-form fails to find any matching entry in thexicon,
word coding, storage and maintenance in time is notthe second step is taken. The approach endorsiesch d
separable from the issue of how words are accemsséd functional correspondence between principles ofngra
processed. The rich cognitive literature on shemrtand mar organisation (lexicon vs. rules), processingetates
long-term memory processes (Miller 1956; Baddeley & (storage vs. computation) and localization of thetical
Hitch 1974; Baddeley 1986, 2006; Henson 1998; Cowanareas functionally involved in word processing (tem
2001, among others) has the unquestionable merit ofporo-parietal vs. frontal areas: Ullman 2004).
highlighting some fundamental issues of coding,mmai Over the past decades, the psycholinguistic likeeahas
tenance and manipulation of time-bound constraines shed novel light on these issues, and suggestéduha
strings of symbols (letters or phonological segment face word relations constitute a fundamental donadin
thus shedding light on well-known aspects of leima morphological competence, with particular emphasis

ganisation such as primacy and recency effectsxical the interplay between form frequency, family freqoye
access (Aitchison 1987; Gupta et al. 2005), coecutrr and family size effects within morphologically-bdse
activation of families of inflectionally and deritian- word families such as inflectional paradigms (Baage

ally-related forms (Baayen et al. 1997; Taft 19y al. 1997; Taft 1979; Hay 2001; Ford et al. 2003d&ling
2001; Ford et al. 2003; Lideling & De Jong 2002; & De Jong 2002; Moscoso del Prado et al. 2004, Stem
Moscoso del Prado Martin et al. 2004), word confus- berger & Middleton 2003; Tabak et al. 2005). Howeve
ability and alignment in visual recognition (Bowefs that more than just lexical storage is involvediggested
Davis 2009; Davis 2010). In spite of their impottaratus, by interference effects between false morphological
lexical coding issues have nonetheless sufferecegmam  friends (or pseudo-derivations) such as broth anthbr,
glect by the NLP research community. Both symbaiid sharing a conspicuous word onset but unrelated imoerp
connectionist answers to the problem provide ad-hoclogically (Frost et al. 1997; Rastle et al. 2004sPet al.
built-in devices for string representation (e.giags of ~ 2008). The evidence shows that as soon as a gatten |
characters or conjunctive coding schemata) rattesn & sequence is fully decomposable into morphologioal f
principled solution to the problem of lexical stgeaand  matives, word parsing takes place automaticaliyrgo

its cognitive implications for word access and @sging  (or concurrently with) lexical look-up. This sugteshat
(Sibley et al. 2008). Moreover, to our knowleddegre differentiated brain areas devoted to language miggi
have been no systematic attempts at evaluatingwellv ~ the opportunity of using both general and spedgiffor-
lexical encoding schemata meet the requirements ofmation simultaneously (Libben 2006; Post et al. 00
contemporary linguistic and psycholinguistic memory rather than maximize processing efficiency and eoon

models of the mental lexicon. of storage.
Computer models have been successful in tacklifig di
2. Background ferent aspects of word structure, but have not laeéato

According to the dual-route approach to word preges ~ Provide, to date, a comprehensive picture of thraex
(Clahsen 1999; Prasada & Pinker 1993; Pinker &derin dynamics between computation and storage in word
1988; Pinker & Ullman 2002), recognition of a mogph ~ Processing. The currently emerging view sees word
logically complex input word involves a preliminafuil processing as the outcome of simultaneously aatiyat
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patterns of cortical connectivity reflecting (pddgire- nodes that are sensitive to the same letter type.

dundant) distributional regularities in the inptut the When a string of letters making up a word form iie-p
phonological, morpho-syntactic and morpho-semantic sented to the map one character at a time, a texingwain
levels. At the same time, there is evidence toaifgu a of BMUs is activated. Figure 1 illustrates two suem-
more complex and differentiated neuro-biologicab-su poral chains, triggered by the German verb foiges
strate for human language than connectionist onero machtandgelacht('made’ and ‘laughed’, past participle)
models can posit. shown to a 20x20 nodes map trained on 30 verb para-
T2HSOMs adhere to such a dynamic, non modular viewdigms, sampled from the CELEX German database by
of the interaction between memory and computation, decreasing values of cumulative paradigm frequelmcy.
whereby word processing and learning are primarily the figure, each node is labelled with the lether node is
conceived of as memory-driven processes. Theyfiamt most sensitive to. Pointed arrows represent terhpora
both dual-route and one-route approaches in supgort connections linking two consecutively activated esd
the view that the way words are structured in our thus depicting the temporal sequence of node dittiva
long-term memory is key to understanding the mecha-starting from the beginning-of-word symbol ‘# (dnured
nisms governing word processing. This perspectore f in the top left corner of the map) and ending to A&ti-
cuses on word productivity as the by-product of enor vation chains allow us to inspect the memory stnest
basic memory processes that must independentlysbe a that a map develops through training (see sectiéh 3
sumed to account for word learning. Secondly, @rspup Moreover, they exhibit a straightforward correlatibe-
new promising avenues of inquiry by tapping theyéar tween morphological segmentation and topological or
body of literature on short-term and long-term mes®m ganisation of BMUs on the map (see section 3.2).

for serial order (see Baddley 2007, for an overyiew
Furthermore, it gives the opportunity of using seph
cated computational models of language-independen
memory processes (Botvinick and Plaut 2006; Broval.e
2000, among others) to shed light on language-Bpeci
aspects of word encoding and storage.

3. Topological Temporal SOMs

T2HSOMSs are Self-Organizing Maps (SOMs; Kohonen
2001) augmented with first-order re-entrant Hebbian
connections that encode probabilistic expectatiover
letter strings (Koutnik 2007; Pirrelli et al. 20Herro et al.
2010, 2011a). T2HSOMs consist of grids of topolatijc
organised memory nodes which learn stored repra@sent Figure 1: BMU activation chains for gema-gelacht
tions of time-bound input stimuli through traininde- (left) and their wor-graph representation (rigt
veloping dedicated sensitivity to classes of stimupon

presentation of an input letter, all map nodesaatwated 3.1 Memory structures and memory orders

synchronously, but only the most highly activatee,ahe  Through repeated exposure to word forms encoded as
so-called Best Matching Unit (BMU), wins over thtr0  sequences of letters, a T2HSOM tends to dynamically
ers. The activation equation (1) of nadat timet is the  store strings as graph-like hierarchical structofesdes,
sum of two functions, corresponding to how close th gsych as the one in Figure 1 above, where arrowssept
stored representation in nodes to the current input weighted Hebbian connections. Note that the &f&goin
(ys(1)), and how expected it is on the basis of the inpu gemachandgelachtactivate two different BMUs, as they
shown at the previous time tickr((t)) (Ferro etal. 2011b).  are temporally preceded by different lettemsand| re-
Parametera andg in (1) weigh up the contribution of the  spectively). This is an important bias of T2HSOMs,
two functions to the overall activation score. Byilg tending to provide dedicated memory resources eéa-id
more weight tax we make the map more sensitive to the tjcg| symbols that happen to be embedded in diftere
specificcodeof the current input character (i.e. whether it contexts. In fact, it can be observed that the teafs to
is an ‘A, or a ‘B’ or whatever). Comparatively higher propagate its first-order Markovian expectationsic
values off make the map more sensitive to the timing of the twoa’s in gemachandgelachttrigger different nodes,
the current input, i.e. its position in the string. the latter nodes in turn project different expdotat on

(t) = i ) the upcoming BMUs. As a result, two different nodes
@) HO=alys; O+ By, recruited for the ensuings andh’s in both verb forms.
In the learning mode, a BMU adjusts its stored ésen- The length of the chain of dedicated nodes illdsra
tation to the current letter code and timing, arappgates  different memory strategies of the map. It can hens
adjustment to neighbouring nodes. How far propagati that this type of organisation maximises the mags
goes depends on the propagation radiusvhich de- pectation of an upcoming symbol in the input strarg
creases as learning progresses. Local propagadises  equivalently, minimises the entropy over the setrah-
the development of topologically connected clusigirs  sition probabilities from each BMU to the ensuingeo

887



This prompts a process of incremental specialisabib
memory resources, whereby several nodes are redtoit
be sensitive to contextually specific occurrencéshe
same symbol.

The tendency to store a word form through a uniguel
dedicated chain of BMUs, however, is a function) dfie
size of the map (i.e. the number of available nhdad ii)
the map’s ability to train two adjacent nodes insleg
ently (or granularity of the map), defined by thaue of
the propagation radius. Generally speaking, shertzg
memory resources leads to shorter memory ordersaand
resulting effect of memory compression.

3.2 Morphological structure, lexical processing
and storage

From a lexical standpoint, the most interesting sesn
quence of memory compression is that T2ZHSOMs eihibi
a straightforward correlation between morphological
segmentation and topological organisation of BMUSs.
Word forms sharing sub-lexical constituents tendritp

ger chains of identical or neighbouring nodes. Hort
topological distance (proximity) on the map corteta
with morphological similarity. In traditional appohes

to word segmentation, this is equivalent to alignin
morphologically-related word forms by morphological
structure. Since chains of activated nodes encime t
sequences of symbols, T2HSOMs can be said to enforc
alignment through synchrony. For example, Germast pa
participles provide a case of discontinuous morpdichl
structure. Turning back to the word-graph in Figare
gemachtandgelacht after sharing the same sequence of
BMUs for ge- part on the rootmach-andlach-to meet
again upon recognition of the suffit

This behaviour is modulated by the map parameters:

keepingp constant (e.g. 1.0), lowervalues (e.g. 0.087)
prompt a greater sensitivity to positional codiridetters,
with a tendency to assign different BMUs to the sam
symbol when shown in different contexts. The leftth
side of Figure 2 shows the memory structures fanae
gesprochen'spoken’), gesehen(‘'seen’), gesagt(‘said’)
and gefragt (‘asked’) on a map with positional coding,
with a clear bias towards developing separate aiibirr
chains. Highern values (e.g. 0.5) considerably affect this
bias, as shown by the word graph to the right gfiFé 2,
where shared past participle endings activate iickint
BMUs. The interesting implication of this behaviosr
that self-organising principles of lexical storagen go a
long way in enforcing alignment between morphologi-
cally-related chains of activation on a map. Molphge
cally-motivated alignment is known to be an impotta
preliminary step in the child’s bootstrapping of npioo-
logical information proper (Pirrelli & Herreros 200

4. Evaluating T2ZHSOMs

As Hebbian SOMs are, by their very nature, memeary d
vices, they can accordingly be probed on severahme
ory-related tasks. Nodes in a SOM can i) storerméo
tion, ii) fire concurrently upon presentation of eaput
stimulus, iii) compete for activation primacy, iggjust
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their memory store for its content to become insiregly
more similar to a particular class of stimuli, Wister in
topologically connected areas of nodes that tentieto
sensitive to the same stimuli. Accordingly, we eaalu-
ate a T2HSOM either intrinsically, for its capacityre-
code and recall stored information, or extrinsigdtr its
capacity to organise stored information into morpho
logically-sensitive structures.

In this section, intrinsic evaluation will cover dwasks:
word activation and word recall. Word activationdis-
fined as a function of the chain of BMUs which &iig-
gered by an input word. The map’s activation simigc-
curate if the information stored by each BMU atdim
matches the input stimulus shown to the map asdmee
time tick. Given an input word, its activation chab
accurate if every input character activates a retdeng
that character. Otherwise, the activation chainasac-
curate. The task thus probes the map’s abilitgtmde an
input word form accurately, by assigning each initmgm
symbol its appropriate category. Word recall, e dkther
hand, defines the map’s capacity to reinstateh@ap-
propriate order, the sequence of BMUs already atsiV
by an input wordv, on the basis of the integrated pattern
of node activation triggered hy. The task requires that
word activation is accurate but it also taps the@'max-
pectation of upcoming characters given the charsithat
were already recalled. Word recall thus probestiteon

of lexicality or lexical familiarity, and ultimatgl the
map’s ability to discriminate between stored and
non-stored forms.

Figure 2: Word-graph representatis on a tempore
(left) and spatio-temporal map (right) of Germarstpa
participles

Extrinsic evaluation, on the other hand, is intehde
assess to what extent memory structures mirrociples
of morphological organisation, by calculating howelw
topological proximity of recoded characters cotieda
with morphological identity. This can be done bath
tra-paradigmatically, by assessing the formal iascy
of regular and sub-regular paradigms, and
ter-paradigmatically, by assessing how uniformlyapa
digm cells are realised through inflectional masker

in-



4.1 Experimental design, materials and results
Two sets of 50 German verb paradigms and 50 Italian

map’s recall accuracy is calculated according &abti-
vation function. A word is taken to accurately bealled

cumulative paradigm frequency from the German Celex
database (Baayen et al. 1995) and from the Italiae-
bank (Montemagni et al. 2003) respectively. Forhbot
languages, 15 inflected forms were selected froohea
paradigm: the infinitiveif, present participlep@, Italian
“gerundio”), past participlepE), the six forms of the
present indicativeSIE-PIE) and the six forms of the past
tense HKA-PKA “prateritum” and “passato remoto”).
Each verb form was input as a letter string preddge'#’
and followed by ‘$": e.g. ‘#IST$ forist. All letters
common to the German and Italian alphabets wertbanri
in upper-case. Umlauted characters were written
lower-case digraphs (e.g. ‘#KoeNNEN$' fosnnen and
the sharp si3 as ‘ss’ (e.g. ‘#HEISSEN$’ foheiRen. In
both cases, pairs of lower-case letters were pseceas
one symbol. Letters were represented on the igyet las
mutually orthogonal, binary vector codes. Identiegtier
codes were used for upper-case letters in both &eend
Italian.

Two configurations of a 40x40 T2HSOM were trained o
the selection of 750 German verb forms, using dfie
values foro. andp in equation (1) above. The configura-
tions are hereafter referred toTasnporal(e=0.087,p=1)
andSpatio-Temporala=0.5,5=1) respectively, to make it
clear that the map is more sensitive to the consdxt
timing of input characters (temporal) or to theirding
(spatio-temporal). Likewise, 750 lItalian verb formsre
used to train a temporal and a spatio-temporal @@xap.
Overall, we trained four instances of each map igonf
ration: German temporal, German spatio-temporaial
temporal, Italian spatio-temporal. At each traingppch,
all forms were shown five times each, to maximige-r
dom order effects of input presentation. All magtémces
were trained for 100 epochs.

Experiment 1: word activation

The task is intended to assess to what extent #peaan
recode an input stimulus accurately. Each inputaittar

at timet is said to be recoded accurately by the map if it
matched (BMU)), i.e. the label associated with the BMU
at timet. For any map nodeits labell; is given by the
charactec whichi is most sensitive to. Aword is taken to
accurately be recoded if all its letters matchldiels of
the corresponding BMUs. Results are given in Figure

Experiment 2: lexical recall

After Baddeley, immediate lexical recall is moddllas
the task of reinstating a word form soon after hedn-
posed to it, an experimental protocol highlightitige
dynamic interaction between short-term integra-
tion/sustainment of memory traces and long-termagi®

of lexical information. Accordingly, a map is firskposed

to an input wordw of lengthn,,. Its resulting integrated
activation patter¥={ys,...,x}, with

@ § = max {y, ()},

is input to the same map,£1) times. At each time, the
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as

BMUs. The protocol is thus intended to assess hell w
the map can output the appropriate sequence of agmb
making upw upon presentation of the whole activation
pattern triggered bw. Results are reported in Figure 3.

99,7 P
I Il
AR 97,90 98,00 98,00

T_ltalian ST_ltalian

100 4

mrecoding

]
=]

% accuracy

recall

80 -

T_German ST_German

Figure 3: Activation/recall accuracy on German and
Italian data, averaged over multiple instances efhT
poral (T) and Spatio-Temporal (ST) maps.

Experiment 3: word alignment

The task is intended to assess how well the maploes
topologically adjacent activation chains upon sgein
forms that share morphological structure either in-
tra-paradigmatically (e.g. root-sharing forms of game
verb) or inter-paradigmatically (e.g. affix-sharifayms
belonging to different paradigms). This can beestats a
general string alignment problem arising whenever
known symbol patterns are presented in novel aeang
ments, as when human speakers are able to recdbaise
English wordbook in handbook or the German word
kommen(‘come’) andbekommetrf'’become’).

On a trained map, alignment between two words @n b
expressed analytically in terms of the topologdiatance
between their corresponding activation chains. feigt
gives the per-node topological distance of the BMU
chains of Italianvediamo(‘we see’) andcrediamo(‘we
believe’) on a spatio-temporal 40x40 Italian map.

M 0

#

¢C R E D | A $

0.53

045 059 035 -1 038 038 037

0.52 0.44

0.46

0.39

0.48

o m < #

0.46 035

0.48

®“ O = »r

E 044 0.44 RiF-XEN K] m
0.46 m 0.35 047 . .

Figure 4: Distance matrix of BMU chains for the t
Italian verb formvediamd‘we see’) andrediamo(‘we
believe’) on a spat-temporal 40x40 T2HSOW
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As the chains unfold, per-node distance progrelsive In Figure 5, we plotted the 50 German subparadigyns
narrows down, to converge on the same BMUs for theassigning each subparadigm i) the average
shared morphological endirgmo, where distance drops

to 0. Note furthermore that structure is inheregtigded
at morpheme boundaries, with an early start coomsp
ing to the shareed in the rootsved-andcred-

The next step is to approximate the distance betwee

wordsa andb in terms of the topological alignment of
their corresponding activation chains, expressedaas
function of the topological distanog of their constituent

BMUs in the distance matrix, normalised by the kbng
andn, of the two words as in equation (3):

Na Ny

(3)TD(a,b):% niz min {mij}+izi

_ min {mij}
a =1 1=1...0 Ny j=1

=1...n,

Finally, given a specific morphological family, wman
quantify its morphological consistency, by asseg$iow

well constituent parts of family members are mutual

aligned on the map.

German, 50 lemma(s): y =-0.2501 + 1.2986 - x

root alignment
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full form alignment
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Figure 5: Correlation patterns between w-based vs

intra-paradigmatic alignment between full formsais),

and ii) the average intra-paradigmatic alignmerévben

the corresponding verb roots (y axis).

The two plots are based on a temporal (top) and a
spatio-temporal (bottom) German map, both showing a
straightforward linear correlation between full rfor
alignment and root alignment. More interestinghg two
maps show differential sensitivity to idiosyncratic
sub-regular and regular paradigms, with temporgbsna
aligning highly irregular paradigms (bottom leftroer in

the plots) better than regular paradigms (top riginter),
when compared with spatio-temporal maps. Italiata da
offer a comparable pattern of results on temporal a
spatio-temporal maps, providing further evidencs the
temporal and spatio-temporal maps organise inputiwo
forms according to differently overlapping actiwati
chains (see section 5, General Discussion, for imarg
but significant differences between the two verstamns).
Mean alignment values averaged across inflectional
endings of paradigmatically-homologous verb forimes (
forms taking the same paradigm cell in differentapa
digms) are shown in Figure 6 for both German aalibh
maps. The two plots show that spatio-temporal ntaps
ganise inflected data in morphologically more cehnér
families, with alignment values on affixes (bladkckes)
being consistently higher than the correspondirigesin
temporal maps (white circles). Comparative valuas f
each paradigm cell are reported in Table 1 withrthe
p-values

German Italian
cells T ST p-value T ST p-value

i| 0.867 0.876 0.006 0.882 0.891 0.002
pA| 0.888 0.898 0.004 0.897 0.907 0.020
pE| 0.881 0.888 0.020 0.872 0.878 0.078

1SIE| 0.840 0.848 0.0100 0.851 0.853 0.753
2SIE| 0.861 0.884 0.000 0.854 0.860 0.092
3SIE| 0.838 0.845 0.023 0.841 0.839 0.347
1PIE| 0.866 0.874 0.009 0.903 0.913 0.011
2PIE| 0.847 0.853 0.035 0.887 0.889 0.438
3PIE| 0.865 0.873 0.006 0.880 0.890 0.085

1SKA| 0.836 0.843 0.025 0.857 0.863 0.007

2SKA| 0.874 0.890 0.001 0.897 0.904 0.173

3SKA| 0.837 0.845 0.019 0.842 0.850 0.171

1PKA| 0.870 0.880 0.001 0.897 0.905 0.009

2PKA| 0.865 0.872 0.061 0.896 0.908 0.007

3PKA| 0.870 0.879 0.001 0.886 0.891 0.074

root-based alignment scores in German verb paradigm

on a temporal (top) and a spi-temporal (bottom) me.
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Table 1: Mean alignment values of temporal and
spatio-temporal German and Italian maps



German, 15 paradigmatic cell(s)

0.96
° [ ]
0.941 O.
0.92 J ® .
E Q&) O _—
€ os e O ) "
= o® /,/’/
= e
& 088 [ o) /
0.86 o]
O
©
0.84
0.82 . . " L L . . .
083 084 08 08 087 088 089 [eX¢] 0.91
full form alignment
Italian, 15 paradigmatic cell(s)
[ ]
0.96
e
0.94} P
. )
@
0e2 o™
= ° o [ ]
5] 0y -
® =
g) 0.9} o e
B * O L
x et
£ oes ( -
0o e
0861 /
o -
[ ]
0841
0]
O

08 087 088 089 0.01
full form alignment

0.85 0.9

Figure 6 Paradigr-cell alignments averaged ov
temporal maps (white circles) and spatio-temporapsn
(black circles) of Germartop) and Italian (botto).

5. General Discussion

There exists a strong mutual implication betweengpr
ples of language processing — i.e. knowledge of*ho
speakers perceive and recode strings in languagethe
one hand, and linguistic data structures — or kadgg of
“what” speakers know when they learn a language — o
the other hand. T2ZHSOMs allow us to shed a shght li
on this mutual implication. As memory devices, tley
hibit a remarkable capacity of recoding an incomiroyd
form correctly, through time-bound activation ofntex-
tually appropriate BMUs. This must be a fundameateal
very robust behaviour, and a preliminary conditiorihe
development of higher-level memory structures in a
long-term store.

Experiment 1 tapped the robustness of this firstllef
processing, showing that it is based on two loal-c
straints: i) the actual code of the currently psseal input
letter, and ii) the map’s expectation for an upaugrinput
letter. Both factors play a role in processing,cagting
for the map’s capacity to perceive input signalgexly,
and to predict them on the basis of past inputad&ym his
behaviour is the result of a trade-off between isigity to
space (the signal code) and time (its contextusitipo in
the string). By modulating andg in the map’s activation
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function (1), we can control the role of the twotfas and
assess their relative contribution to the map’slveur in

the face of the same input data. As spatio-tempuoegds
are more sensitive to the (local) input, they témgber-
form consistently better in the activation task.

Results of Experiment 2 show the role of long-term
(lexical) storage in recall. This is by far a ma@mplex
task than lexical activation, as it requires thpagity to
reconstruct an appropriate sequence of BMUs fraair th
integrated pattern of activation. This required thanap
develops accurate time-bound recoding of inputagn
to maximise its internal predictive drive and mirsmthe
role of the input signal in conditioning the mapistput.
Ideally, words are maximally predicted when theg ar
recoded in the long-term store through dedicated fion
overlapping) activation chains. However, dedicated
chains take independently trained nodes and pathnti
infinite memory resources. Memory self-organisation
through training must thus strike a balance between
dedicated recoding (full form storage) and finitemory
resources.

As reported in Figure 3, temporal maps show a tecyle
to recall word forms better than spatio-temporapsja
since the former have a stronger bias towards déatic
memory chains. The marginally significant advantage
recalling German verbs over Italian verbs is mathlg to

i) Italian verb forms being longer on average t@@mman
ones (7.1 vs. 6.4 in number of letters) and iilidtapre-
senting a wider range of different word forms, doi¢he
absence of syncretism in the selected paradigmgsh®n
other hand, spatio-temporal maps exhibit a gresasi-
tivity to morphological structure, and are lessmado
develop dedicated memory chains. German verbsqrese
i) a morphological discontinuity in most (circumdit)
past participles and ii) extensive stem alternaitiostrong
forms. These phenomena may account for the marginal
advantage of Italian spatio-temporal maps over @arm
spatio-temporal maps. Figure 7 plots the overatit ro
alignment distribution of German and ltalian pagmals,
showing that Italian verbs tend to concentrate ntore
wards the regular end of the distribution than Garm
verbs do.

o
©

ot alignment

S 088
0.86F
0.84r

082F ‘

0.8t

ST_German ST_ltalian

Figure 7:Root alignment distribution of German a
ltalian paradigms. Edges ar& and 3 quartiles, central
mark is the media Outliers are plotted individuall



Experiment 3 is intended to show that memory
self-organisation is conducive to the emergencenoi-
phological structure in the lexical store. Thisnist to
suggest that memory self-organisation is everythirg
need to account for to explain acquisition of marph
logical structure, but that the capacity of alignimor-
phological constituents between morphologicallyated
word forms is a fundamental precondition to the eme
gence of word structure. This capacity is sometthiiad
must in turn be tuned up through incremental seraiy
morphologically complex strings, as it appeargtorgyly
depend on the morphology of the input language.eMor
over, perception of morphological structure cany\de-
pending on the map’s recoding strategy. A map \aith
temporal bias will tend to enforce positional reioggl
with letters recruiting different BMUs depending thir
position in the string. This makes it more diffictdr the
map to align the roots in Germaracherandgemachtas
the root is shifted by two letters in the pastiggte form.
However, if the map can make letter recoding lessi-p
tion-sensitive (as in a spatio-temporal settind)ent
alignment can be enforced between time-shiftedsroot
This is shown in Figure 8, where the two alignmabots

of the same paradignfirider) present remarkably dif-
ferent values on the past participle dependinghenré-
coding bias of the two maps.
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Figure 8: Alignment plot of thefinder paradigm on
temporal (left) and a spa-temporal (right) maj

6. Concluding remarks

T2HSOMs are biologically inspired computational mod
els of the mental lexicon and useful tools to ustierd
more of the low-level dynamics of lexical recodiagd
access. In this paper, we showed that they caifycias
sues of lexical processing and acquisition of mofph
logical structure, as they allow us to gain inssghito
their dynamic interdependency, while offering anpri
pled solution to the controversial issue of timexd
recoding in neural networks. In particular, we atded
the problem of how it is possible to provide a rimgs,
quantitative evaluation of T2HSOMs by monitoringith
behaviour on a battery of memory-related functidasks
such as lexical activation, lexical recall, and @vatign-
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ment. We showed that subtle variations in paranmsser
ting can condition a map’s behaviour consideraahd
alter its topological organisation from the pergjyecof

its emerging morphological structure.

In this context, a further research question camséhe
ability of T2ZHSOMs to perform traditional class#iton
tasks such as inflectional family membership assignt
or possible generalisation of sequence categaisadt
sequences that have not been presented in théngrain
phase. The evaluation framework presented here can
straightforwardly be extended in this directiong.eby
putting a T2HSOM to the test of recalling novel dor
forms. Further experiments will allow comparisontloé
notion of structure-aware alignment proposed heth w
other less morphologically-motivated alignment naostr
such as the Levenshtein distance or Nosofsky’s (1199
analogy. In particular, it will be interesting tesess how
well our system can discriminate between the netioh
stored word forms, non-stored but morphologicalty c
herent forms and non-stored morphologically inceher
forms, compared with other systems. The curresianesh
indicates that morphology learning should play anir
nent role in this task.
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