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Abstract
This article details work aiming at evaluating the quality of the manual annotation of gene renaming couples in scientific abstracts,
which generates sparse annotations. To evaluate these annotations, we compare the results obtained using the commonly advocated
inter-annotator agreement coefficients such as S, κ and π, the less knownR, the weighted coefficients κω and α as well as the F-measure
and the SER. We analyze to which extent they are relevant for our data. We then study the bias introduced by prevalence by changing
the way the contingency table is built. We finally propose an original way to synthesize the results by computing distances between
categories, based on the produced annotations.
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1. Introduction

Manual corpus annotation is often needed prior to Nat-
ural Language Processing (NLP) tasks, not only to train
tools, but also to create a reference for evaluation. If it
was demonstrated, among others by Alex et al. (2006)
and Reidsma and Carletta (2008), that incoherent annota-
tions lead to limited performance of the tools trained with
them, the quality of the reference is seldom justified. Only
few campaigns provide details on its creation and when
inter-annotator agreement measures are given, they are in
the form of a de facto standard, the “kappa”, from Cohen
(1960) or Carletta (1996), generally without any more pre-
cision.1

Di Eugenio and Glass (2004) showed the sensitivity of
these coefficients to inter-annotator bias and to prevalence
and the discussion remains open regarding the representa-
tivity of these coefficients and the necessity to present sev-
eral (Passonneau, 2006). Artstein and Poesio (2008) pro-
duced a very interesting and complete review of the differ-
ent computation modes for the inter-annotator agreement
and discussed their usage in NLP tasks. However, it re-
mains difficult to know which coefficient to use according
to the characteristics of the data. We present in this article
the evaluation we conducted on a manual annotation cam-
paign, applying and comparing different methods. We then
propose a new way to synthesize the results by computing
similarities between categories based on the produced an-
notations.

1For more details, refer to the introduction of (Artstein and
Poesio, 2008).

2. Overview of the Annotation Campaign
Within the framework of the Quæro program2, experts were
asked to manually annotate Bacillus Subtilis gene renam-
ing couples in a 1,843 abstracts corpus. These abstracts
were selected from Medline by a partner of the project,
using gene names databases and a set of keywords denot-
ing gene renaming relations. The resulting corpus includes
more than 400,000 tokens.
This annotation aimed at, first, building a database of Bacil-
lus Subtilis gene renaming couples, and second, training
and evaluating automatic extraction tools. It was used for
the BioNLP 2011 shared task3 and is available for use for
non-profit research purposes (see license).
This campaign allowed for the manual identification of ap-
proximately 200 renaming couples, such as:

“Inactivation of a previously unknown gene,
yqzB (renamed ccpN for control catabolite pro-
tein of gluconeogenic genes [..]”.

We organized the campaign using the methodology pro-
posed in (Bonneau-Maynard et al., 2005) and computed
the inter-annotator agreement at the very beginning of the
annotation process, in order to identify as early as possi-
ble the disagreements between annotators and modify the
guidelines accordingly. To achieve this, we had two expert
annotators (here A1 and A2) annotate the same sample of
93 files, i.e. more than 19,000 tokens, from which we then
computed the inter-annotator agreement. It is important to
note that no automatic pre-annotation was performed, as, to
our knowledge, no present tool can recognize all the gene

2http://quaero.org/
3http://www-tsujii.is.s.u-tokyo.ac.jp/

GENIA/BioNLP-ST/downloads/downloads.shtml
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names and we did not want to risk missing some not pre-
annotated renaming couples.
Those couples were manually annotated using
Cadixe (Alphonse et al., 2004), an interface designed
for named entity annotation, that does not allow for the
direct annotation of relations. We therefore annotated the
original name of the gene (Former), then its new name
(New), with corresponding ids. The rest of the text is not
annotated.It has to be noted that we are here in a very
specific situation, where the relation is so simple that it
can be reduced to tokens with ids and where the random
baseline can be identified (which is often not the case, see
for example (Alex et al., 2010) on named entities).
Obviously, some files (more than a third) do not contain
any renaming, while others detail several. We obtained in
average one renaming per file. Comparing two annotations
with standard inter-annotator agreement measures also re-
quires to define what the markables are, i.e. what is poten-
tially “annotatable“. In our case, this definition is reason-
ably simple: all the tokens are potentially marked. So, for
each annotator, we associate the implicit category Nothing
with all the unannotated tokens.

Table 1: Contingency table computed from all the tokens
A1

Former New Nothing Total

A2

Former 71 13 23 107
New 8 69 15 92

Nothing 7 8 18,840 18,855
Total 86 90 18,878 19,054

The contingency table 1 is already quite informative, as
it reveals the predominance of the baseline Nothing cate-
gory, that represents more than 99% of the corpus, and thus
shows that the annotated items are largely scattered. This
is a situation of great prevalence of one category. It also
shows that some renaming relations were incomplete, as,
for both annotators, the number of Former and New is not
equal (86 and 90 for A1 and 107 and 92 for A2). Further-
more, this imbalance is more important for A2 than for A1.
The two annotators annotated almost the same number of
tokens as New (90 for A1 vs 92 for A2), but A2 annotated
a lot more tokens with the Former category than A1 did (
86 for A1 vs 107 for A2). A1 is more likely to annotate
Nothing than A2 and A2 is more likely to annotate Former
than A1. Part of this can be explained by the fact that we
considered that gene names are simple tokens, whereas in
some rare cases, in particular operons (clusters of genes),
one annotator chose to select more than one token.

3. Evaluating the Produced Annotations
using Coefficients

We will use in the rest of the article the notations and the
formulas from (Artstein and Poesio, 2008) concerning the
inter-annotator agreement measures and formulas.

3.1. Using S, π and κ Coefficients
The most obvious measure for the inter-annotator agree-
ment is the observed agreement (Ao), which corresponds
to the proportion of items on which the annotators agree,

i.e. the total number of items on which they agree divided
by the total number of items, that is, in our case:

Ao =
71 + 69 + 18, 840

19, 054
= 0.996116

The result is extremely high, but cannot be used as such, as
it does not take into account the possibility that the annota-
tors select the same category for the same item by chance
(Ae, expected agreement). To analyze our results we will
use here coefficients described in (Artstein and Poesio,
2008) taking this expected agreement into account: S (Ben-
nett et al., 1954), κ (Cohen, 1960) and π (Scott, 1955). The
three of them are computed using the same formula:

S, κ, π =
Ao −Ae
1−Ae

These coefficients differ in the way the expected agreement
(Ae) is computed, according to hypotheses on the behavior
of the annotators, in case they annotate by chance. S as-
sumes that the expected agreement follows a uniform dis-
tribution in the various categories (here 3). In our case, the
expected agreement for S, ASe , is therefore computed in the
following way:

ASe =
1

3
= 0.333333

S = 0.99417

The most important bias of this coefficient is that it is di-
rectly correlated to the number of categories and that, con-
sequently, the higher the number of categories, the lower
the expected agreement. It has to be noticed that it is gen-
erally low, as its maximum value is 1/2 (0.5) for two cate-
gories. We only present S here to show its proximity with
Finn’s R (see sub-section 3.2. below).
π (Scott, 1955), also known as K in (Siegel and Castellan,
1988) or kappa in (Carletta, 1996) , also considers that the
distributions made by the annotators by chance are equiv-
alent, but it assumes that the items are not uniformly dis-
tributed into the categories and that this distribution can be
estimated using the average category assignment realized
by the annotators. In our case, the expected agreement for
π, Aπe , is therefore computed in the following way:

Aπe =
(( 86+107

2 )2 + ( 90+92
2 )2 + ( 18,878+18,855

2 )2)

19, 0542

= 0.980464

π = 0.8012

As for κ (Cohen, 1960), it assumes in the way it models
chance, that the distribution of items between categories
may differ for each annotator. In this case, the probabil-
ity for an item to be assigned to a category is the product
of the probability that each annotator assigns it to this cat-
egory. In our case, the expected agreement for κ, Aκe , is
therefore computed in the following way:

Aκe =
(86× 107) + (90× 92) + (18, 878× 18, 855)

19, 0542

= 0.980463
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κ = 0.80121

If we compare the 3 coefficients, we observe that S is
slightly lower than the observed agreement, and π and κ are
similar, while being lower than Ao and S, which is coher-
ent with the order S > π and π 6 κ described in (Artstein
and Poesio, 2008). The high S value shows that the items
are annotated according to a rationale that has nothing to
do with chance. For a constant observed agreement, S only
depends on the number of categories, it is therefore not sen-
sitive to the items’ distribution between categories, as op-
posed to π and κ (Di Eugenio and Glass, 2004). The au-
thors of this article show that when categories are skewed,
despite a high agreement on the dominant category, π and κ
are sensitive to disagreements on small categories. Accord-
ing to the latest interpretations of inter-annotator reliability
scales that state that ”if a threshold needs to be set, 0.8 is a
good value“ (Artstein and Poesio, 2008), our κ and π can
be considered as good, which is reassuring concerning the
agreement reached on the two minority but meaningful cat-
egories.

3.2. Using Finn’s R Coefficient
Faced with the same disproportion between categories in
their annotation campaign, Laignelet and Rioult (2009) fol-
lowed a suggestion from Hripcsak and Heitjan (2002) and
used the R coefficient (Finn, 1970), that is proposed in the
software environment for statistical computing R4. The R
coefficient is computed in the following way:

R = 1− Observed V ariance

Expected V ariance

the observed variance being the average variance on the an-
notated items and the expected variance being the variance
of the uniform discrete distribution with n categories (here-
after nb categories), i.e.:5

Expected V ariance =
(nb categories)2 − 1

12

In our case, we obtain R = 0.9943713. This value, very
close to that of S (0.99417) can be explained by the fact
that this coefficient models chance the same way S does,
considering a uniform distribution of the categories. It is
therefore no more affected than S by the distribution of
items in the categories. We therefore claim that Finn’s R
is no more informative than S in cases of scattered annota-
tions and asymmetry of categories.

3.3. Using Weighted Coefficients
According to (Artstein and Poesio, 2008), π and κ process
all disagreements the same way and only weighted coeffi-
cients allow for giving more importance to some disagree-
ments.

4http://www.r-project.org/
5Finn (1970) does not detail the computation of the

expected variance, but it can be found in the sources
of the irr library of R. For a more thorough expla-
nation, see: http://mathworld.wolfram.com/
DiscreteUniformDistribution.html.

They describe two weighted coefficients: the weighted κ,
κω (Cohen, 1968) and α (Krippendorff, 1980; Krippen-
dorff, 2004). The two coefficients are based on inter-
annotator disagreements and use a distance between cate-
gories describing to which extent two categories are dis-
tinct. Artstein and Poesio (2008) discuss how to define
this distance according to the annotation type, as it allows,
among others, to process the annotation of complex struc-
tures by introducing several values of distances between an-
notations. The inconvenient of this method is that it makes
the interpretation of the results more complex.
We have in our case, two meaningful categories, Former
and New, and one less meaningful, Nothing. We consider
that it is more important to identify the gene names couples
than to determine the precedence of a name as compared to
the other. Therefore, for us, the distance between Former
and New should be less than that between these and Noth-
ing. If we consider that it is twice as large, we will obtain
the distances between categories described in table 2 (in the
[0,1] interval):

Table 2: Example of distances between categories
Former New Nothing

Former 0 0,5 1
New 0,5 0 1
Nothing 1 1 0

The weighted coefficients κω and α are computed using the
formula:

κω, α = 1− D0

De

where D0 stands for the observed disagreement between
the annotators and De represents the expected disagree-
ment, i.e. the disagreement appearing if the distribution is
done by chance alone. The expected disagreement for κω
and α follows the same rationale as κ and π respectively,
and includes the notion of distance between categories.6

From the distances of the table 2, we obtain α = 0.8292
and κω = 0.8291, values that are higher than π and κ. The
weighted coefficients express the same disagreement but
with lower values, hence raising the inter-annotator agree-
ment.
The resulting coefficients are very high and show little bias.
However, they seem to us somewhat uncertain, as they con-
sider very heterogeneous categories in a similar way: two
meaningful but minority categories (Former and New) and
a less meaningful, majority one (Nothing). The problem
here is therefore to ensure that these coefficients, computed
on the three categories, reflect a significant agreement on
the two meaningful categories, Former and New.

3.4. Using the F-measure and Slot Error Rate
The fact that we use all the tokens (or even only the
gene names) as random baseline is an approximation: the
Nothing category includes irrelevant tokens, the number of
which is not precisely known. This situation is not unusual

6It has to be noticed that if all the categories are perfectly dis-
tinct, α = π and κω = κ.
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and is generally dealt with using other metrics, in partic-
ular the F-measure (see, for example (Alex et al., 2010)).
The recall, precision and F-measure, as defined in the infor-
mation retrieval field, are performance metrics that require
only the annotated elements and no random baseline (as
they do not take chance into account). According to Hripc-
sak and Heitjan (2002), the F-measure, i.e. the weighted
harmonic mean of precision and recall, is equivalent to the
average positive specific agreement among the annotators,
here:

F =
2C

2C + 2S + 2
(1+α)D + 2α

1+αI

where C is the number of correct slots or agreement, S is
the number of substitutions (incorrect slots), D is the num-
ber of deletions (missing slots), I is the number of inser-
tions (spurious slots), with α = 1, the most popular value,
which is well adapted to our case as it allows us to use D
and I in a symmetric way. In our case, this corresponds to:

F =
2× (71 + 69)

(2× (71 + 69)) + (2× (13 + 8)) + 23 + 15 + 7 + 8

An interesting variant, that we call here F ′, implies that
substitutions are considered half-correct when computing
precision and recall, giving, for the balanced case:

F ′ =
2C + S

2C + 2S +D + I

In our case, this corresponds to:

F ′ =
(2× (71 + 69)) + 13 + 8

(2× (71 + 69)) + (2× (13 + 8)) + 23 + 15 + 7 + 8

An interesting characteristic of this variant is that it corre-
sponds to the limit of the κ coefficient when the count of
Nothing tends towards infinity (Hripcsak and Rothschild,
2005). Using these formulas, we end up, for Table 1, with
F = 0.747 and F ′ = 0.803. The F ′ measure points out
the interest of weighting different types of error differently,
which has long been recognized in the systems evaluation
side, giving birth to the Slot Error Rate (Makhoul et al.,
1999; Galibert et al., 2010). This metric corresponds to
an error enumeration methodology, where, for each error, a
cost is given, and the total cost is divided by the number of
annotations in the reference. We follow here the same rule
as above, giving a half-point cost to substitution (consider-
ing there is something to annotate is half the work) and a
full point for insertions and deletions.

SER =
0.5S +D + I

Reference entity count

In our case, no annotation can be considered as a reference,
so we propose to use the arithmetic mean of the number of
annotations as the divider. We end up with a symmetric-
SER of 0.339:

SER =
0.5× (13 + 8) + 23 + 15 + 7 + 8

0.5× (86 + 90 + 107 + 92))

Mathematically, the symmetric-SER is the harmonic mean
of the two oriented SERs, giving a structure similar to the

F-measure. Instead, if we had chosen to give a full point
cost to substitutions, the result would have been 0.395.
The SER allows for a much finer control on what is con-
sidered important in the annotation, which is very inter-
esting from a system evaluation point-of-view, but on the
other hand is hard to interpret, as there are no traditionally
accepted limits above which the annotation is considered
good enough.

4. Changing Points of View
4.1. Analyzing the Impact of Prevalence
4.1.1. Rebuilding the Contingency Table
To build the contingency table 1, we chose to take into
account the total number of tokens (strings of characters
separated by whitespace, annotation markers excluded), i.e.
19,054 (case 1).
Suppose now that we consider that gene names correspond
to a specific subset of tokens in the texts, we could then
use as total the number of gene names occurrences, that
is 1,165 (case 2).7 Note that this choice is questionable
as, first, the reliability of the results depend on the exhaus-
tivity of the dictionary, which, given the constant progress
in the field, will never be sufficient and second, because
it would mean neglecting the fact that the annotators of-
ten have to read the whole text to make decisions, the re-
naming being confirmed only at the end of the abstract.
Table 3 shows the contingency table generated using the
number of gene names occurrences to define the Noth-
ing category. From this table, we obtain S = 0.90472,
π = 0.77557, κ = 0.77571. F-measure and SER do not
change from table 1 given that the cases ”Nothing/Nothing”
and ”genes/genes” are not taken into account. Note that we
were unable to compute Finn’s R as we depend on partners
for the gene names dictionary and that this intermediary re-
sult was not available. The three coefficients result in lower
values and show the same differences between them. This
demonstrates that, even if the role of items distribution and
of the behavior of the annotators seems constant, the size of
the category Nothing has an influence on the inter-annotator
agreement. A second possible redesign of the contingency

Table 3: Contingency table computed from identified gene
names

A1
Former New Nothing Genes

A2

Former 71 13 23 107
New 8 69 15 92

Nothing 7 8 951 966
Genes 86 90 989 1,165

table is to consider only the meaningful categories, Former
and New (case 3), as shown in table 4. Note that completely
removing the Nothing category implies removing part of
the results (the items annotated by only one annotator). We
only use this redesign to eliminate the prevalence effect of

7Results obtained by application of a gene names dictionary.
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the Nothing category and to focus on the Former/New inver-
sions. The obtained results should therefore be interpreted
with caution.

Table 4: Contingency table without the Nothing category

A1
Former New Total

A2
Former 71 13 84

New 8 69 77
Total 79 82 161

We obtain, in this case, S = 0.73913, R = 0.73913,
π = 0.73909 and κ = 0.73934. These values are still
high but lower than the previous one. The number of ele-
ments in each category is also rather small, which makes
the disagreements more visible. In this case, the agreement
on the 2 categories is important, F-measure then equals the
observed agreement.

Table 5: Contingency table with grouped meaningful cate-
gories

A1
Former/New Nothing Total

A2
Former/New 161 38 199

Nothing 15 18,840 18,855
Total 176 18,878 19,054

Finally, table 5 shows the results obtained by grouping
together the two meaningful categories, Former and New
(case 4). We then get S = 0.99444, R = 0.99444,
π = 0.85726, κ = 0.85727 and F = 0.85867. These val-
ues are higher than the various coefficients obtained from
the complete contingency table 1, which is not surprising
as in this configuration, there is very little ambiguity left.
Note that κ is again very similar to the F-measure as the
number of Nothing is still very high.

4.1.2. Analyzing the Obtained Results
All the results we obtained are summarized in table 6. Note
that the SER, with its error typing, is relevant only for the
complete localization and typing task.
This table shows that R and S are very close in all cases.
This confirms our remarks in section 3.1.: R does not bring
any more information than S.
This table also shows that the values of π and κ, computed
from all the contingency tables are very close. The way
chance is modeled in π implies that the distribution into
categories is the same for both annotators, whereas in κ,
chance is modeled in such a way that this distribution dif-
fers from one annotator to the other. Similar values of π and
κ reflect that both annotators generate the same distribution
into categories, which can be seen in the similar marginal
distributions. This means that our data show little annotator
bias (Artstein and Poesio, 2008).
If we consider, on the one hand S, and on the other hand κ
and π, we can see that their values are quite different in all

the three cases taking into account the Nothing category,
whereas they are similar in the case taking only Former
and New into account. This can be explained by the fact
that the distribution of the annotations into the three cate-
gories (including Nothing) is not homogeneous. κ and π
use this distribution in the way they model chance, which
is not the case for S. This does not appear in case 3, where
the annotations are homogeneously distributed in the two
categories (but again, we removed some of the annotations
in this case). Table 5 (case 4) can be used to check if the
gene renaming couples are correctly identified in the texts.
The values of the coefficients we obtained with this table
are the highest, we can therefore conclude that this identifi-
cation is done without problem. The coefficients computed
from case 1 and 2, when compared, show the impact of the
Nothing category. The fact that the values of the coeffi-
cients are higher for case 1 than for case 2, in which the
Nothing category is much smaller, shows that these coeffi-
cients are influenced by the prevalence in the annotations.
In this case, F-measure and SER are more adapted to evalu-
ate the inter-annotator agreement, even though κ and π are
sensitive to disagreements on small categories.
The coefficients obtained in case 3 present the lower values.
They show in a more precise way the difficulties encoun-
tered when distinguishing between Former and New. In
this table, the four coefficients are almost identical, which
shows that the (partial) inter-annotator agreement is not bi-
ased by the different models. Therefore, the inter-annotator
agreement reaches higher values when annotators have to
identify gene name couples involved in a renaming rela-
tionship than when they have to identify as Former and New
these gene names within these couples.
Comparing various coefficients is therefore useful to esti-
mate the biases induced by the distribution of the anno-
tations and the behavior of the annotators. Table 6 also
shows the influence of prevalence on the coefficients, which
means that the way we choose to consider the categories in
the contingency table has a significant impact on the re-
sults. We therefore claim that it is fundamental, when giv-
ing inter-annotator agreement results, not only to present
the contingency table that was used to compute the coeffi-
cients, but also to justify the choices that were made.

4.2. Using Similarities Between Categories
We saw that in the computation of weighted coefficients,
distances between categories are defined from prior knowl-
edge of the annotation task. As tempting as it may seem,
computing distances from the annotated data themselves
would imply some kind of circularity. However, such dis-
tances could prove useful to get some information on the
categories themselves, independently from the annotators.
We showed that the Former and New categories tend to be
more difficult to identify within gene names couples than
these couples from the whole text. The role of coefficients
is not to provide this type of interpretation, which corre-
sponds more to similarities between categories. We there-
fore propose to directly evaluate these similarities accord-
ing to the difficulty the annotators have to distinguish be-
tween categories. In order to do this, we use the contin-
gency table 1. We consider that two categories are distinct
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Table 6: Ao, S, R, π, κ, F-measure and SER using various contingency tables
Contingency tables Ao S R π κ F-measure SER
Former/New/Nothing (case 1) 0.99611 0.99417 0.99437 0.8012 0.80121 0.74667 0.33867
Former/New/Nothing gene names (case 2) 0.93648 0.90472 n/a 0.77557 0.77571 0.74667 0.33867
Former/New (case 3) 0.86956 0.73913 0.73913 0.73909 0.73934 0.86957 -
Former+New/Nothing (case 4) 0.99722 0.99444 0.99444 0.85726 0.85727 0.85867 -

if there is little chance of distribution error between them.
More precisely, let us consider two categories C1 and C2

from the considered categories, P (C2|C1) represents the
probability that an annotator assigned an item in the cate-
goryC2 while a second annotator assigned it in the category
C1. It is computed in the following way:

P (C2|C1) =
n1C1,2C2 + n2C1,1C2

nC1

with n1C1,2C2 representing the number of items assigned
by annotator 1 to the C1 category while annotator 2 as-
signed them to the C2 category; nC1

represents the sum of
the items assigned in the category C1 by both annotators.
When this probability is low, the C2 category is highly dis-
similar to C1 and the risk of getting a different annotation
is low. We obtain here:

P (New|Former) = 13 + 8

107 + 86
= 0.108808

Table 7 presents the values of the probabilities computed
for our case. The diagonal results give an estimate of the
agreement for each category. We can see that it is very
important for Nothing and less so for the others (73% for
Former and 75% for New). The other cells in the table
can be used to estimate the disagreement between anno-
tators, category by category. These probabilities are very
low, which means that their are highly dissimilar. We can
also notice that the probabilities are asymmetrical. The
values P (Former|Nothing) and P (New|Nothing) are
very low (<1‰), therefore, the chance of annotating an
item with the Former or New category when it has already
been annotated Nothing is close to zero. Conversely, the
chance of annotating an item with the Nothing category
when it has already been annotated Former or New is higher
(15% and 12%).

Table 7: Table of Probabilities
↙ Former New Nothing
Former 0.735751 0.108808 0.155440
New 0.115385 0.758242 0.126374
Nothing 0.000795 0.000609 0.998595

The probabilities being asymmetrical, this formula cannot
be used as such. We will assume that the annotators would
produce similar distributions of items among categories.
We therefore define the associated similarity as the aver-
age of the oriented probabilities (computed from table 7),
using:

Sim(C1, C2) =
P (C2|C1) + P (C1|C2)

2

Table 8: Similarities between categories
Sim

Sim(Former,New) 0.112096
Sim(Former,Nothing) 0.078117
Sim(New,Nothing) 0.063491

In table 8, we notice that Sim(Former,New) is higher
than Sim(Former,Nothing) and Sim(New,Nothing),
implying that Former and New are closer to each other than
to Nothing. To our knowledge, this kind of table has never
been used before, although it proves quite useful, in partic-
ular during the preliminary stages of the annotation cam-
paign, when the categories are tested and questioned, as
it allows for the identification of subsets of categories that
might be ambiguous. Moreover, it allows for a synthetic
view of the data, even with more than 2 annotators. From
this point of view, it shows a higher usability than the table
presented by Krippendorff (2004), and a solution to the im-
possibility to show a contingency table when more than 2
annotators are involved.

5. Conclusion

We used the results from a real annotation campaign to
analyze several computation modes of the inter-annotator
agreement. A characteristic of this campaign is the highly
scattered annotations, inducing a bias due to the prevalence
of the unannotated tokens. We confirmed in this article that
whenever possible, the first result to present is the contin-
gency table (Hripcsak and Heitjan, 2002) , with precise ex-
planations about the choices that were made. Our results
indicate a good agreement on the two minority but mean-
ingful categories. Comparing the coefficients and studying
their evolution according to the way the contingency table
is built allowed us to check that there was no bias due to the
annotators and to quantify the prevalence bias.
Finally, to obtain an analysis of the real chance of error
between categories, we computed a table of similarities be-
tween them. This table, allowing for a synthetic view of
the data, even with more than 2 annotators, constitutes a
new tool for evaluation which, as a complement to coeffi-
cients like κ or F-measure, offers a different view on the
data, more category-oriented. New annotation campaigns
held within the same program should allow us to test the
different coefficients and the reproducibility of our propos-
als. These campaigns concern various domains and appli-
cations, such as the patents in pharmacology (named enti-
ties, terms) or soccer matches comments (named entities,
complex relations).
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