
Applying Random Indexing to Structured Data
to Find Contextually Similar Words

Danica Damljanović∗, Udo Kruschwitz†, M-Dyaa Albakour†, Johann Petrak∗2, Mihai Lupu†2

∗Department of Computer Science, University of Sheffield, United Kingdom, d.damljanovic@dcs.shef.ac.uk

†School of Computer Science and Electronic Engineering, University of Essex, United Kingdom, udo,malbak@essex.ac.uk

∗2 Austrian Research Institute for Artificial Intelligence, Vienna, Austria, johann.petrak@ofai.at

†2 Vienna University of Technology, Vienna, Austria, lupu@ifs.tuwien.ac.at

Abstract
Language resources extracted from structured data (e.g. Linked Open Data) have already been used in various scenarios to improve
conventional Natural Language Processing techniques. The meanings of words and the relations between them are made more explicit
in RDF graphs, in comparison to human-readable text, and hence have a great potential to improve legacy applications. In this paper,
we describe an approach that can be used to extend or clarify the semantic meaning of a word by constructing a list of contextually
related terms. Our approach is based on exploiting the structure inherent in an RDF graph and then applying the methods from statistical
semantics, and in particular, Random Indexing, in order to discover contextually related terms. We evaluate our approach in the domain
of life science using the dataset generated with the help of domain experts from a large pharmaceutical company (AstraZeneca). They
were involved in two phases: firstly, to generate a set of keywords of interest to them, and secondly to judge the set of generated
contextually similar words for each keyword of interest. We compare our proposed approach, exploiting the semantic graph, with the
same method applied on the human readable text extracted from the graph.

Keywords: rdf, ontologies, synonyms, contextually related words, random indexing

1. Introduction
Language resources extracted from structured data (e.g.
Linked Open Data cloud1) have already been used in
various scenarios to improve conventional Natural Lan-
guage Processing (NLP) techniques. For example, in
the Question-answering system PowerAqua (Lopez et al.,
2006), the OWL:SAMEAS relation is used to find synonyms
in addition to those found using conventional methods such
as through WordNet (Fellbaum, 1998). The meanings of
words and the relations between them are made more ex-
plicit in semantically structured knowledge sources such as
RDF graphs, in comparison to human-readable text, and
hence have a great potential to improve legacy applications.
Statistical semantics methods such as Latent Semantic
Analysis (LSA) and Random Indexing (RI) can be applied
to derive the indirect relations between words. Latent Se-
mantic Analysis (LSA) (Deerwester et al., 1990) is one of
the pioneer methods which has been used for finding words
based on contextual similarity (e.g. synonyms). The as-
sumption behind this and other statistical semantics meth-
ods is that words which appear in the similar context (with
the same set of other words) are synonyms. Synonyms tend
not to co-occur with one another directly, so indirect infer-
ence is required to draw associations between words which
are used to express the same idea (Cohen et al., 2009).
The method has been shown to approximate human perfor-
mance in many cognitive tasks such as the Test of English

1http://linkeddata.org

as a Foreign Language (TOEFL) synonym test, the grading
of content-based essays and the categorisation of groups of
concepts (see (Cohen et al., 2009)). RI can be seen as an
approximation to LSA which is shown to be able to reach
similar results (see (Karlgren and Sahlgren, 2001) and (Co-
hen and Hunter, 2008)).

In this paper, we describe an approach that can be used to
extend or clarify the semantic meaning of a word through
a list of contextually related terms. Our approach is based
on exploiting the structure inherent in an RDF graph and
then applying the statistical semantics methods. In partic-
ular, we use Random Indexing to discover contextually re-
lated terms. We evaluate our approach in the domain of
life sciences using the dataset previously generated with
domain experts from a large pharmaceutical company (As-
traZeneca) (Damljanović et al., 2011b). The experts were
involved in two phases: firstly, they generated a set of
keywords of interest to them, and secondly, they judged
the set of generated contextually similar words for each of
their chosen keywords. The generated dataset is available
through the LREC Map program. This paper is therefore
an extension of our previous work with the main difference
that our focus here is in finding contextually related words
(not URIs). We also changed the way we set up the exper-
iment, in order to get a better understanding of the stability
of the method. In that sense, we widened the variation span
for parameter values to cover a larger spectrum. In addi-
tion to the previous presentation, the current article makes
a comparison with the same method applied to the human

2023



readable text. This latter approach is practically the con-
ventional way of finding contextually related terms using
distributional semantics methods.

2. Related Work
Researchers in NLP have shared a long standing interest in
constructing domain models or semantic networks to asso-
ciate terms to each other, e.g. (Widdows, 2004). It is in fact
an area that goes way beyond NLP (Clark et al., 2011).
A number of methods have been proposed to extract term
relationships that do not need to follow fully specified se-
mantic relations. For example, in (Phillips, 1985), the
author used the study of co-occurrence to build what is
called conceptual structures, and syntagmatic lexical net-
works from science books. (Grefenstette, 1992) extended
methods based on lexical patterns by quantifying the simi-
larity of syntactic dependencies (e.g. modifiers) associated
to a word, to cluster similar words together.
In contrast to the clusters of the previous methods which
did not attempt to label relationships between terms or con-
cepts, Sanderson and Croft introduced a hierarchical re-
lationship, imposing a subsumption relation between con-
cepts extracted from top matching documents retrieved for
a given query (Sanderson and Croft, 1999).
Supervised with phrase patterns, co-occurrence analysis
can also be used to build a network of hyponyms from text
(Hearst, 1992).
Others, e.g. (Thelen and Riloff, 2002), (Snow et al., 2005),
have taken this further, using entities already identified as
being in a semantic class, or taking pairs of entities iden-
tified within WordNet (Fellbaum, 1998) as being in a hy-
pernym/hyponym relation, as seeds to identify new phrasal
patterns and entities belonging to that category or relation-
ship.
Another stream of methods that goes under this cate-
gory is the extraction of arbitrary relations from text be-
tween named entities in the form of subject-predicate-
object triplets. For example, the REXTOR system in (Katz
and Lin, 2000) used a finite state language model to extract
what they call ternary expressions that describe relations
between entities.
The main difference between our work and the previous
work presented above is that we do not attempt to semantify
large corpora of text to extract contextually related terms.
We rather start from structured data in the form of large
RDF graphs and build on the success of statistical semantic
approaches, which were applied on text to enrich domain
knowledge e.g. (Chen et al., 2008), to further enrich those
knowledge structures.
Starting from semantically structured knowledge sources,
there has been a lot of research in exploiting RDF struc-
tures in different applications, especially to assist users in
searching and browsing RDF graphs. Examples include se-
mantic search engines such as Swoogle (Ding et al., 2004)
or Sindice (Tummarello et al., 2007). They collect the Se-
mantic Web resources from the Web and then index the
keywords and URIs against the RDF files containing those
keywords and URIs, using an inverted index scheme. These
search engines use traditional weighting mechanisms such
as TF-IDF. In (Hogan et al., 2006) the authors introduce

the ReConRank algorithm, which adapts the well-known
PageRank algorithm to the Semantic Web data. The method
ranks the nodes in a topical subgraph that is selected based
on keyword matching from the RDF files. In other words,
it ranks the results of a query based on the RDF links in the
results. The subgraph that the algorithm identifies includes
both the subject nodes related to the query, and also the con-
text of the subject nodes (i.e. the provenances or sources of
the subjects), in order to improve the quality of ranking. In
comparison to these approaches we use the neighbouring
nodes as semantic context for each node in an RDF graph.
The nodes and their contexts are used as virtual documents
for Random Indexing.
In (Qu et al., 2006), the authors describe an approach for
generating a virtual document for each URI reference in
an RDF triple store (or, equivalently, each node in an RDF
graph). The virtual document contains the local name and
labels of the URI reference, other associated literals such
as those in rdfs:comment, and the names of neighbouring
nodes in the RDF graph. These virtual documents are then
used for ontology matching and also for generating object
recommendations for users of Falcons (Cheng et al., 2008).
In comparison to our approach, their neighbouring opera-
tions involve only one-step neighbours without including
properties. Our approach includes properties, and parts of
the TBox, and also can operate on an arbitrarily large graph
of neighbouring nodes.

3. Method
Although LSA has been shown to work effectively, the
main problem of the method is its scalability: it starts by
generating a term × document matrix which grows with
the number of terms and the number of documents. In
the case of a large corpus it will thus become very large.
For finding the final LSA model, Singular Value Decom-
position (SVD) and subsequent dimensionality reduction
is commonly used. This technique requires the factoriza-
tion of the term-document matrix, which is computationally
costly (O(mn2), where m,n are the numbers of terms and
documents, with m > n). Also, calculating the LSA model
is not easily and efficiently doable in an incremental or
out-of memory fashion. Random Indexing (RI) (Sahlgren,
2005) circumvents these problems by avoiding the need of
matrix factorization in the first place. RI can be incremen-
tally updated and the term × document matrix does not
have to be loaded in memory at once. Loading one row at
the time is enough for computing context vectors. Instead
of starting with the full term× document matrix and then
reducing the dimensionality, RI starts by creating almost or-
thogonal random vectors (index vectors) of a fixed, reduced
dimensionality, for each document. This random vector is
created by setting a number of randomly selected dimen-
sions to either +1 or -1. Each term is then represented by
a vector (term vector), which is a combination of all index
vectors of the documents in which the term appears. For an
object consisting of multiple terms (e.g. a document or a
search query with several terms), the vector of the object is
the combination of the term vectors of its terms.
In order to apply RI to an RDF graph we first generate the
set of documents representing this graph, by generating one

2024



virtual document (Damljanović et al., 2011a) for each node
(i.e. URI) in the graph. We then generate a semantic in-
dex from these virtual documents, which we use to retrieve
similar literals or URIs for a given term or set of terms. As
URIs are not useful for domain experts, they are replaced
using the labels that describe them.

3.1. Generating virtual documents
The task of deriving a set of documents from a huge
RDF graph starts with generating a representative sub-
graph for each URI of interest. We shall refer to such
an URI as a representative URI. A representative sub-
graph represents the context of a URI i.e. the set of
other URIs and literals directly or indirectly connected
to that URI. For a representative URI S, the representa-
tive subgraph of order N is the set of all paths of triples
(S, P1, O1;O1, P2, O2; · · · ;ON−1, PN , ON ). If ON is not
a literal we also include all triples ON , PN+1, LJ where LJ

is a literal. In other words, we essentially traverse the graph
using Breadth First Search starting from the representative
node and going to depth N .
In addition, we include or exclude certain parts of the
TBox. For example, direct classes for instances are ex-
cluded (PN ! = rdf : type), while other annotation proper-
ties such as rdfs : label are included.
An example is shown in Figure 1, for N = 1 (i.e. a repre-
sentative subgraph of order 1). Virtual documents are gen-

Figure 1: From a representative subgraph to the virtual doc-
ument

erated from all paths in the representative subgraph where:

• all URIs are included unchanged;

• for literals we remove punctuation and stop words,
and then lowercase the text; we also remove number
literals, gene and protein sequences, complex names,
and HTML tags. Preprocessing literals is very impor-
tant and depends on the domain represented by the
RDF graph. Removing gene and protein sequences
is important in the domain of life sciences represented
by Linked Life Data, while different rules would ap-
ply for the general knowledge represented by e.g.
www.factforge.net, or any other graph from the
Linked Open Data cloud.

As a consequence of the building method just described, the
terms in these virtual documents are either URIs or literals.
To illustrate this with an example, a representative subgraph
for URI = geo : colorado,N = 1 would look as follows:

geo:colorado rdfs:label colorado
geo:colorado geo:abbreviation co
geo:colorado geo:statePopulation 104000
geo:colorado geo:borders geo:utah
geo:utah rdfs:label utah
geo:utah geo:abbreviation ut
geo:utah geo:statePopulation 84900

The virtual document generated from this subgraph is the
following:

geo:colorado rdfs:label colorado
geo:colorado geo:abbreviation co
geo:colorado geo:statePopulation 104000
geo:colorado geo:borders geo:utah
geo:colorado geo:borders geo:utah

rdfs:label utah
geo:colorado geo:borders geo:utah

geo:abbreviation ut
geo:colorado geo:borders geo:utah

geo:statePopulation 84900

The rationale behind including the full paths starting with
the representative URI and not only the neighbouring nodes
is the frequency and the way the TF-IDF works. We want
the virtual document to represent the URI in question (i.e.
geo:colorado for the example above) and not its neighbour-
ing nodes. If we included only the neighbouring nodes,
geo:utah would appear many more times than geo:colorado
in the virtual document representing geo:colorado.
The next step is generating the semantic index. Once it
has been created, it can be used to find similarities between
URIs and literals. We use the cosine function to calculate
the similarity between the input term (literal or URI) vec-
tor and the existing vectors in the generated vector space
model.
There are several parameters which can influence the pro-
cess of generating the semantic index, or vectors using RI:

• Seed length Number of +1 and -1 entries in a sparse
random vector.

• Dimensionality Dimension of the semantic vector
space, i.e. the predefined number of dimensions to use
for the sparse random vectors.

• Minimum term frequency Minimum frequency of a
term to get included in the index.

In what follows we describe the experiments that study how
variations of these parameters influence the quality of the
results and how sensitive the method is to that variation.
In our previous work (Damljanović et al., 2011b) we con-
ducted a similar experiment and found that the variation of
the parameters did not influence the quality of results and
that the method is quite stable to that variation. However,
we now expand the variation span in order to further inves-
tigate the issue.

4. Experiments
In this section we describe the experiment with RI. Due to
the stability problem of RI (see (Sitbon and Bruza, 2008)),

2025



and to increase the significance of the results, we repeat the
experiments for each combination of parameters six times.
We begin by describing in more detail the dataset used.

4.1. Dataset
Linked Life Data (www.linkedlifedata.com) is a
dataset covering the life sciences domain. The latest ver-
sion has more than 5 billion statements in total. We gener-
ated two subsets as follows. For 1528 seed URIs (the URIs
representing all MEDLINE articles from December 2009)
we retrieve neighbouring subgraphs (of order 1) recursively
until we reach certain predefined limit of statements, and
we refer to these as LLD1 and LLD2. The predefined limit
of statements is controlled by the number of representative
subgraphs in the extracted datasets and was set to 5000 and
50000 for LLD1 and LLD2 respectively. Thus the main dif-
ference between the two datasets is the size, but it should
be noted that they both start with the same set of seed URIs
and hence they contain equal number of abstracts (one for
each seed URI).
In addition, we extract only abstracts for these articles and
we use this dataset for our baseline model. We refer to
this dataset as Pubmed abstracts. The seed SPARQL query
which is used for this task is the following:

PREFIX pubmed:
<http://linkedlifedata.com/resource/pubmed/>
SELECT DISTINCT ?x
WHERE {
?x a pubmed:Citation.
?x pubmed:year "2009" .
?x pubmed:month "12" .

}

The query was evaluated against the LLD SPARQL end-
point2.
Table 1 shows the sizes of LLD1 and LLD2.
The full dataset, including the terms used for training and
testing, as well the manually created relevance judgements
are available online at https://sites.google.
com/site/thelarkclifesciencesdataset/.

4.2. Evaluation measures
In order to calculate the correctness of the retrieved terms,
there are standard Information Retrieval measures such as
precision, recall and Mean Average Precision (MAP). Pre-
cision is defined as the number of relevant documents re-
trieved divided by the total number of documents retrieved
and is usually calculated for certain number of retrieved
documents (e.g., Precision@10, Precision@20). Recall is
the number of relevant documents retrieved divided by the
total number of existing relevant documents (which should
have been retrieved).
Mean Average Precision (MAP) is one of the most popu-
lar measures in IR evaluation because, for each system and
set of topics, it provides a single value to measure its per-
formance (Croft et al., 2009). Average Precision (AP) is
computed for each topic by first calculating precision for
each relevant document that is retrieved and then averaging
these values. Mean Average Precision is then the mean of

2www.linkedlifedata.com/sparql

these values for all keywords. Furthermore, by the nature
of the averaging process, MAP is more sensitive to ranking
than precision at a specific point, favouring systems which
return more relevant documents at the top of the list than at
the bottom, whereas precision does not make this distinc-
tion as long as the results are within the cut-off range.
As our task is to retrieve most relevant literals and URIs
first, we used MAP on the top 10 retrieved elements. Recall
is extremely difficult to measure due to the number of terms
in our datasets (see Table 1). However, due to the nature of
our task the users care most about the top ranked results,
which is exactly what is captured by MAP.

4.3. Experimental Setup
The experimental setup is as follows:

1. Extracting topics of interest. Here we use 23 queries
generated by domain experts from the pharmaceuti-
cal company AstraZeneca. We split this set into two
halves as shown in Table 2.

Group 1: training Group 2: testing
5-HT receptors acetylcholinesterase
Adverse events antagonist
bladder cancer antioxidant

cholinergic signaling cognitive
clinical trial cystectomy

Exposure efficacy
non-human primates lung

Posttraumatic Stress Disorder lung cancer
PTSD trauma

synergistic effect migraine
trial Raynaud disease

magnesium

Table 2: Topics of interest divided into two groups for train-
ing and testing

2. Training the model: we generated the RI models for
several variations of the following RI parameters for
three datasets (LLD1, LLD2 and Pubmed abstracts):

• Vector dimension: 50, 100, 150, 300, 500, 1000,
2000, 5000

• Seed length: 4, 10
• Term frequency: 1, 5, 10, 15, 25

As each of these settings were repeated 6 times, this
resulted in 960 runs (480 per dataset). The parameters
combinations that lead to the best results (measured
through MAP) were considered as the best setting for
testing the method in the next step.

3. Testing the model: for the models generated using the
parameters retrieved in the previous step, we retrieved
10 similar words for each topic of interest from the
testing set and calculated MAP. The correctness of the
retrieved terms was assessed by clinical research sci-
entists to whom we gave the terms in the form of a
survey (see (Damljanović et al., 2011b) for more de-
tails).

2026



LLD1 LLD2
number of representative subgraphs 5000 50000
number of statements 595798 4573668
number of virtual documents 64644 473742
number of terms 417753 1713349

Table 1: Sizes of LLD1 and LLD2 datasets

Dataset Mean Std. Deviation
Group 1 LLD1 0.54 0.28

LLD2 0.46 0.31
Pubmed abstracts 0.33 0.28

Table 3: The dispersion values for the distribution of MAP
across three datasets for the training model

5. Results
In this section we first look into the results of training the
model and finding the best parameters. Then, we look at
the results of testing the RI method using these parameters.

5.1. Training the model
We expect to see variations of MAP, for different values of
dimensionality, seed length, and minimum term frequency
parameters. Our goal is to find the combination of parame-
ters for which MAP is highest, so as to use those in future
applications of the method.
As we can see in Table 3, results were better with LLD1 in
comparison to LLD2, and this difference is statistically sig-
nificant (p < 0.0001, Independent-samples Mann-Whitney
U Test). The reason is the high frequency of 0 values for the
LLD2 dataset. However, results with LLD2 are still better
in comparison to those with the baseline.
Looking closely into the differences of Average Precision
per keyword for LLD1 and LLD2 datasets, the value for
MAP seems to be constantly better for LLD1 in comparison
to LLD2, with the term PTSD being the only exception (see
Figure 2).

Figure 2: Correlation of Average Precision (AP) for LLD1
(X axis) and LLD2 (Y axis) per keyword

The seed length parameter did not have any significant
influence (p=0.714 for LLD1 and p=0.914 for LLD2,

Independent-samples Mann-Whitney U Test), see Figure 3.
We see this as a positive result, given that the computational
resources (RAM in particular) are proportional to the value
of seed length.
However, the wider span of dimensionality parameter made
a significant difference to the value of MAP for LLD1 and
LLD2 datasets, see Figure 4 (p < 0.0001, Independent-
samples Kruskal-Wallis test). The peak for LLD1 was
the dimensionality 500, while surprisingly the peak for
the larger dataset was quite low, with the dimensionality
set to 150. The variation of dimensionality parameter did
not have a significant difference on MAP for the baseline
model.
Similarly, the variation of minimum term frequency caused
the fluctuation of the results, see Figure 5, with peaks for
both LLD1 and LLD2 datasets at the maximum value of
this parameter which was 25. For the baseline model, the
peak was much lower (5). The difference in MAP caused by
the variation of minimum term frequency for all datasets is
statistically significant (p < 0.0001, Independent-samples
Kruskal-Wallis test).

Figure 3: The effect of the variation of seed length on MAP,
for Group 1 used as the training set

Table 4 summarizes the best parameters: those that we
chose to use in the testing phase.

5.2. Testing the model
Using the best parameters selected in the training phase,
we now test whether the same setting can be used for a
different, future set of terms.
We ran the search method using Group 2 as a testing set
against the RI model trained with Group 1. Results are

2027



Figure 4: The effect of the variation of dimensionality on
MAP, for the Group 1 used as the training dataset

Figure 5: The effect of the variation of minimal term fre-
quency on MAP, for the Group 1 used as the training dataset

shown in Table 5. The RI method results in a smaller
value of MAP in the testing phase in comparison to the best
trained model for all datasets.
Figure 6 shows the values of average precision per key-
word, divided by dataset. The results vary across different
keywords and all datasets seem to have peaks for some of
the keywords. However, only the baseline resulted in pro-

Group 1
Dataset LLD1 LLD2 Pubmed abstracts
Min frequency 25 25 5
Seed length 4 4 4
Dimensionality 500 150 300
MAP 0.60 0.60 0.47

Table 4: Optimal parameters chosen for Group 1 used as
training sets

Group 2
Dataset LLD1 LLD2 Pubmed abstracts
Min frequency 25 25 5
Seed length 4 4 4
Dimensionality 500 150 300
MAP 0.425 0.48 0.26

Table 5: Testing the Random Indexing method using Group
2 as the testing set

ducing 0 for as much as 25% of the observed keywords,
unlike the two other datasets which always yielded posi-
tive average precision. The baseline yielded best results for
2 out of 12 keywords (16.67%), while LLD1 yielded bet-
ter results for 4/12 keywords (33.33% of the cases). LLD2
produced best results in majority of the cases, namely for 6
out of 12 keywords (50% of the cases).

Figure 6: Mean Average Precision per keyword, by each
dataset

Human assessment. In our previous work (Damljanović
et al., 2011b), we reported the Inter-annotator agreement
using Observed agreement and Cohen’s Kappa agreement.
The observed agreement across all keywords was 0.81, and
the Cohen’s Kappa was 0.61 which indicates that the given
task of selecting relevant keywords for a topic of interest
was indeed difficult for domain experts. Relative to this dif-
ficulty, we can conclude that our proposed method reaching
the average MAP of 0.45 across LLD1 and LLD2 datasets
is a very promising starting point to explore this approach
further. Although this can be further improved, it is still
much higher in comparison to the baseline model which
applies the same method on the text of the abstracts instead
of exploring the RDF structure.

6. Conclusion
We described an approach that can be used to extend or
clarify the semantic meaning of a word through suggest-
ing a list of contextually related terms. Our approach is
based on exploiting the structure inherent in an RDF graph
and then applying statistical semantics methods. In partic-

2028



ular, we used Random Indexing, in order to discover con-
textually related terms. We evaluated our approach in the
domain of life sciences on the datasets generated with do-
main experts from a large pharmaceutical company (As-
traZeneca). The domain experts first selected a set of key-
words of interest to them, and then judged the set of the
terms that our method found to be most similar to the given
terms, based on contextual information. The results show
that the RI method on our data is reasonably stable with
MAP reaching on average 43-60%. With larger number
of documents in the corpus, the larger minimum term fre-
quency parameter should be used, as it can filter out the
noise present in the data. To some extent surprisingly, we
found that for the larger dataset, a larger number of dimen-
sions decreased the performance. The seed length parame-
ter was not found to have any significant influence and it is
reasonable to use the minimum 4. We compared the results
of the method as applied to the graph and as applied to the
human readable text serving as our baseline, and found that
the method that exploits the graph structure yields approx-
imately 16-22% higher results in terms of Mean Average
Precision.

Acknowledgements
We would like to thank creators of the SemanticVectors3

library which is used in the experiments reported in this pa-
per. This research was supported by the EU-funded LarKC4

(FP7-215535) project. Mihai Lupu was partially supported
by the PROMISE NoE (FP7-258191).

7. References
R. Chen, I. Lee, Y. Lee, and Y. Lo. 2008. Upgrading

domain ontology based on latent semantic analysis and
group center similarity calculation. In Proceedings of the
2008 IEEE International Conference on Systems, Man,
and Cybernetics (SMC 2008), pages 1495–1500. IEEE.

G. Cheng, W. Ge, and Y. Qu. 2008. Falcons: Searching and
Browsing Entities on the Semantic Web. In Proceedings
of WWW2008, pages 1101–1102.

M. Clark, Y. Kim, U. Kruschwitz, D. Song, M-D. Al-
bakour, S. Dignum, U. Cervino Beresi, M. Fasli, and
A. De Roeck. 2011. Automatically Structuring Do-
main Knowledge from Text: an Overview of Current
Research. Information Processing and Management. In
press.

K. B. Cohen and L. Hunter. 2008. Getting started in text
mining. PLoS Comput Biol, 4(1):e20, 01.

T. Cohen, R. Schvaneveldt, and D. Widdows. 2009. Re-
flective random indexing and indirect inference: A scal-
able method for discovery of implicit connections. Jour-
nal of Biomedical Informatics.

B. Croft, D. Metzler, and T. Strohman. 2009. Search En-
gines: Information Retrieval in Practice. Addison Wes-
ley.

D. Damljanović, U. Kruschwitz, and M-D. Albakour.
2011a. Using Virtual Documents to Move Information

3www.code.google.com/p/semanticvectors/
4www.larkc.eu

Retrieval and Knowledge Management Closer Together.
In ESAIR11, Glasgow, Scotland, UK, October.

D. Damljanović, J. Petrak, M. Lupu, H. Cunningham,
M. Carlsson, G. Engstrom, and B. Andersson. 2011b.
Random Indexing for Finding Similar Nodes within
Large RDF graphs. In Raúl Garcı́a-Castro, Dieter
Fensel, and Grigoris Antoniou, editors, The Semantic
Web: ESWC 2011 Workshops, Workshops at the 8th Ex-
tended Semantic Web Conference, ESWC 2011, Herak-
lion, Greece, May 29-30, 2011, Revised Selected Papers,
volume 7117. Springer.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. 1990. Indexing by latent semantic anal-
ysis. Journal of the American Society for Information
Science, 41:391–407.

L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng,
P. Reddivari, V. Doshi, and J. Sachs. 2004. Swoogle:
a search and metadata engine for the semantic web. In
CIKM ’04: Proceedings of the thirteenth ACM interna-
tional conference on Information and knowledge man-
agement, pages 652–659, New York, NY, USA. ACM.

C. Fellbaum, editor. 1998. WordNet - An Electronic Lexi-
cal Database. MIT Press.

G. Grefenstette. 1992. Use of syntactic context to produce
term association lists for text retrieval. In Proceedings
of the 33rd international ACM SIGIR Conference on Re-
search and Development in Information Retrieval (SIGIR
1992), pages 89–97. ACM.

M. Hearst. 1992. Automatic acquisition of hyponyms from
large text corpora. In Proceedings of the 14th Interna-
tional Conference on Computational Linguistics (COL-
ING 1992), volume 2, pages 539 – 545. ACL.

A. Hogan, A. Harth, and S. Decker. 2006. Reconrank:
A scalable ranking method for semantic web data with
context. In Second International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2006),
Athens, GA, USA.

J. Karlgren and M. Sahlgren. 2001. From words to under-
standing. In Y. Uesaka, P. Kanerva, and H. Asoh, editors,
Foundations of Real-World Intelligence, pages 294–308.
Stanford: CSLI Publications.

B. Katz and J. Lin. 2000. REXTOR: a system for gener-
ating relations from natural language. In Proceedings of
the ACL Workshop on Recent Advances in Natural Lan-
guage Processing and Information Retrieval, pages 67–
77. ACL.

V. Lopez, E. Motta, and V. S. Uren. 2006. Poweraqua:
Fishing the semantic web. In ESWC, pages 393–410.

M. Phillips. 1985. Aspects of Text Structure: an investi-
gation of the lexical organization of text, volume 52 of
North-Holland Linguistic Series. Elsevier.

Y. Qu, W. Hu, and G. Cheng. 2006. Constructing vir-
tual documents for ontology matching. In Proceedings
of WWW2006, pages 23–31.

M. Sahlgren. 2005. An introduction to random indexing.
In Methods and Applications of Semantic Indexing Work-
shop at the 7th International Conference on Terminology
and Knowledge Engineering, TKE 2005. Citeseer.

M. Sanderson and B. Croft. 1999. Deriving concept hierar-

2029



chies from text. In Proceedings of the 22nd Annual Inter-
national ACM SIGIR Conference on Research and De-
velopment in Information Retrieval (SIGIR 1999), pages
206–213. ACM.

L. Sitbon and P. Bruza. 2008. On the relevance of docu-
ments for semantic representation. In Proceedings of the
13th Australasian Document Computing Symphosium,
Hobard, Australia, December.

R. Snow, D. Jurafsky, and A. Ng. 2005. Learning syntactic
patterns for automatic hypernym discovery. Advances in
Neural Information Processing Systems, 17:1297–1304.

M. Thelen and E. Riloff. 2002. A bootstrapping method for
learning semantic lexicons using extraction pattern con-
texts. In Proceedings of the 2002 Conference on Empir-
ical Methods in Natural Language Processing (EMNLP
2002), volume 10, pages 214–221. ACL.

G. Tummarello, R. Delbru, and E. Oren. 2007.
Sindice.com: Weaving the Open Linked Data. In Pro-
ceedings of the 6th International Semantic Web Confer-
ence, Busan, Korea.

D. Widdows. 2004. Geometry and Meaning. CSLI Lec-
ture Notes.

2030


