MaltOptimizer: A System for MaltParser Optimization

Miguel Ballesterosy Joakim Nivre}

tUniversidad Complutense de Madrid, Spain
miballes @fdi.ucm.es

1Uppsala University, Sweden
joakim.nivre @lingfil.uu.se

Abstract
Freely available statistical parsers often require careful optimization to produce state-of-the-art results, which can be a non-trivial task
especially for application developers who are not interested in parsing research for its own sake. We present MaltOptimizer, a freely
available tool developed to facilitate parser optimization using the open-source system MaltParser, a data-driven parser-generator that
can be used to train dependency parsers given treebank data. MaltParser offers a wide range of parameters for optimization, including
nine different parsing algorithms, two different machine learning libraries (each with a number of different learners), and an expressive
specification language that can be used to define arbitrarily rich feature models. MaltOptimizer is an interactive system that first
performs an analysis of the training set in order to select a suitable starting point for optimization and then guides the user through the
optimization of parsing algorithm, feature model, and learning algorithm. Empirical evaluation on data from the CoNLL 2006 and 2007
shared tasks on dependency parsing shows that MaltOptimizer consistently improves over the baseline of default settings and sometimes

even surpasses the result of manual optimization.

Keywords: Dependency Parsing, MaltParser, Optimization

1. Introduction

The performance of statistical parsers for natural language
has improved tremendously during the last two decades,
and there are now a number of different systems that can be
used to develop parsers for new languages and applications.
This includes constituency-based parsers like the Stanford
Parser (Klein and Manning, 2002) and the Berkeley Parser
(Petrov et al., 2006) as well as dependency parsers such as
MaltParser (Nivre et al., 2004) and MSTParser (McDonald
et al., 2005). However, the development of accurate parsers
for new languages may require careful optimization, a task
that is often non-trivial especially for application develop-
ers that may lack both the competence and the motivation to
perform extensive parsing experiments. As an illustration
of the importance of optimization, Hall et al. (2007) report
differences of over 3 percent absolute in labeled attachment
score between the baseline and the optimized system for
some languages in the CoNLL 2007 shared task on depen-
dency parsing. It is worth noting that these differences are
greater than those typically reported when comparing dif-
ferent parsers on the same data sets.

MaltParser (Nivre et al., 2006a) is an open-source system
for data-driven dependency parsing that offers a wide range
of parameters for optimization. First of all, it implements
nine different transition-based parsing algorithms, each of
which has its own parameters. Secondly, for each parsing
algorithm it is possible to define arbitrarily complex feature
models using an expressive feature specification language.
Finally, any combination of parsing algorithm and feature
model can be combined with a number of different machine
learning algorithms available in LIBSVM (Chang and Lin,
2001) and LIBLINEAR (Fan et al., 2008). Just running the
system with default settings when training a new parser is
likely to result in suboptimal performance, with respect to
parsing accuracy as well as efficiency, but finding a good

combination of all parameters can be a daunting task even
for experienced researchers.

To facilitate MaltParser optimization, we propose a system
that automates the search for optimal parameters based on
an analysis of the training set and on optional input from
the user at various points. Although the system is not guar-
anteed to find truly optimal settings, our experiments indi-
cate that it invariably improves over the default settings and
often approaches (or even surpasses) the results obtained
through careful manual optimization. In this way, we be-
lieve that it can be a useful tool both for application devel-
opers who do not want to get involved in extensive parsing
experiments and for expert users who quickly want to find a
good starting point for advanced optimization. The system,
which is called MaltOptimizer, is available for download
under an open-source license together with a user guide at
http://nil.fdi.ucm.es/maltoptimizer and appears in the sys-
tem demonstration session at EACL 2012 (Ballesteros and
Nivre, 2012).

The rest of the paper is organized as follows. Section 2
gives a brief introduction to the MaltParser system and the
parameters that need to be optimized, while Section 3 de-
scribes the three-phase optimization process implemented
in MaltOptimizer. Section 4 reports experiments on data
sets from the CoNLL 2006 and 2007 shared tasks on de-
pendency parsing, Section 5 discusses related work, and
Section 6 concludes.

2. MaltParser
MaltParser! is a freely available implementation of the
parsing models described in Nivre (2006), Nivre (2007)
and Nivre (2009). These models are often characterized
as transition-based, because they reduce the problem of

"http://www.maltparser.org

2757

parsing a sentence to the problem of finding an optimal
path through an abstract transition system, or state machine.
This is sometimes equated with shift-reduce parsing, but in
fact includes a much broader range of transition systems
(Nivre, 2008). Transition-based parsers learn models that
predict the next state given the current state of the system,
including features over the history of parsing decisions and
the input sentence. At parsing time, the parser starts in an
initial state and greedily moves to subsequent states — based
on the predictions of the model — until a terminal state is
reached. The greedy, deterministic parsing strategy results
in highly efficient parsing, with run-times often linear in
sentence length, and also facilitates the use of arbitrary non-
local features, since the partially built dependency tree is
fixed in any given state. However, greedy inference can
also lead to error propagation if early predictions place the
parser in incorrect states (McDonald and Nivre, 2007).
When optimizing MaltParser for a new language or domain,
there are essentially three aspects of the system that need to
be optimized:

1. Parsing algorithm
2. Feature model
3. Learning algorithm
We now describe each of these aspects in turn.

2.1. Parsing Algorithm

Selecting a parsing algorithm essentially means selecting
a transition system together with certain constraints on
search in that transition system. The main parsing algo-
rithms available in MaltParser can be grouped into three
families:> (i) Nivre’s algorithms include the arc-eager and
arc-standard versions of the algorithm described in Nivre
(2003) and Nivre (2004); (ii) Covington’s algorithms in-
clude the projective and non-projective versions of the algo-
rithm described by Covington (2001) and adapted by Nivre
(2008); (iii) Stack algorithms include the projective and
non-projective versions of the algorithm described in Nivre
(2009) and Nivre et al. (2009). While both the Covington
and the Stack family contains algorithms that can handle
non-projective trees, the Nivre family does not. However,
any projective parsing algorithm can be used to parse non-
projective trees through the techniques known as pseudo-
projective parsing (Nivre and Nilsson, 2005).

2.2. Feature Model

One of the advantages of the transition-based approach to
dependency parsing is that it enables rich history-based fea-
ture models for predicting the next transition, and Malt-
Parser provides an expressive specification language for
defining feature models of arbitrary complexity. Features
are defined relative to tokens in the main data structures for
a given parsing algorithm, which normally include at least a
stack holding partially processed tokens and a buffer hold-
ing remaining input tokens. The actual feature values are

“More algorithms have been added in recent versions but are
not handled by MaltOptimizer and are therefore omitted from the
presentation here.

normally linguistic attributes of one or more tokens. The
following attributes are available in the CoNLL-X format
assumed by the parser:?

1. FORM: Word form.

2. LEMMA: Lemma.

3. CPOSTAG: Coarse-grained part-of-speech tag.
4. POSTAG: Fine-grained part-of-speech tag.

5. FEATS: List of morphosyntactic features (e.g., case,
number, tense, etc.)

6. DEPREL: Dependency relation to head.

The attributes LEMMA and FEATS are not available in all
data sets, and the CPOSTAG and POSTAG tags are some-
times identical. Note also that the DEPREL attribute is only
available dynamically in the partially built dependency tree.
We will refer to features that are defined relative to the par-
tial parse as dependency tree features.

The default model for a MaltParser parsing algorithm
(which is what is used when the system is run with default
settings) includes the following groups of features:

1. A wide window of POSTAG features over the stack
and buffer (typically of length 6).

2. A narrower window of FORM features over the stack
and buffer (typically of length 3).

3. A small set of DEPREL features over dependents (and
heads) of the most central tokens on the stack and in
the buffer (typically of size 4).

4. A small set of combinations of the above features,
in particular POSTAG n-grams and pairs of POSTAG
and FORM features.

As we shall see later, optimizing the feature model implies
both tuning the size of these feature groups and explor-
ing additional features such as CPOSTAG, LEMMA and
FEATS features.

2.3. Learning Algorithm

MaltParser comes with two libraries for machine learning:
LIBSVM (Chang and Lin, 2001) and LIBLINEAR (Fan et
al., 2008). The LIBSVM package enables the use of sup-
port vector machines with kernels, which facilitates fea-
ture selection but has the drawback of being rather ineffi-
cient both during training and parsing. The LIBLINEAR
package only supports plain linear classifiers, which makes
training and parsing very fast but put higher demands on
feature selection. Both packages contain a number of spe-
cific algorithms each with their own hyperparameters that
need to be optimized. For the development of MaltOpti-
mizer we have restricted out attention to the LIBLINEAR
package in the interest of efficiency.

3http://nextens.uvt.nl/depparse-wiki/DataFormat

2758

3. MaltOptimizer 1.0

MaltOptimizer is a software tool written in Java that im-
plements a stepwise optimization procedure for MaltParser
based on the heuristics described in Nivre and Hall (2010).
The system takes as input a training set, consisting of sen-
tences annotated with dependency trees in the CoNLL-X
data format (Buchholz and Marsi, 2006). The optimization
process has three phases with optional input from the user
after each phase:

1. Data validation and analysis
2. Parsing algorithm selection
3. Feature selection and hyper-parameter optimization

The machine learning algorithm used throughout the pro-
cess is the multiclass support vector machine of Crammer
et al. (2006) as implemented in LIBLINEAR (Fan et al.,
2008). We now describe each of the three phases in turn.

3.1. Phase 1: Data Analysis

MaltOptimizers starts by validating that the data is cor-
rectly formatted, using the official validation script from
the CoNLL-X shared task validateFormat.py.* If fatal er-
rors are found, MaltOptimizer stops and informs the user
to check the output of the script. If only warnings occur,
the system proceeds with the data analysis but recommends
the user to check the script output since the warnings may
indicate inconsistent annotation.

In the data analysis, MaltOptimizer gathers information
about the following properties of the training set:

1. Number of words/sentences.
2. Percentage of non-projective arcs/trees.

3. Existence of “covered roots” (arcs spanning tokens
with HEAD = 0).

4. Frequency of labels used for tokens with HEAD = 0.

5. Existence of non-empty feature values in the LEMMA
and FEATS columns.

6. Identity (or not) of feature values in the CPOSTAG
and POSTAG columns.

Property 1 is used to suggest the best validation strategy
(simple train-devtest split or 5-fold cross-validation); prop-
erties 2—4 are relevant for the choice of parsing algorithm
in Phase 2 as well as for some parameters of pre- and post-
processing; properties 5—-6 are important for the feature se-
lection experiments in Phase 3. When the data analysis is
completed, MaltOptimizer creates a baseline option file to
be used as the starting point for optimization. The user is
given the opportunity to edit this option file before opti-
mization continues and may also choose to stop the process
and continue with manual optimization.

Based on the size of the data set, MaltOptimizer recom-
mends the user to choose on of the two built-in validation
methods during Phase 2 and 3: (i) simple train-devtest split

*http://ilk.uvt.nl/conll/software.html

Nivre arc-eager Stack projective

Covington projective Nivre arc-standard

Figure 1: Decision tree for best projective algorithm.

(80% for training, 20% for development testing) or (ii) 5-
fold cross validation (20% in each fold). In both cases, the
system performs stratified sampling to ensure a similar dis-
tribution of data in all subsets. Simple train-devtest split
is recommended for large data sets, where cross-validation
would be time consuming and a single devtest set is large
enough to give reliable estimates. Cross-validation is rec-
ommended for smaller data sets, where a single evaluation
estimate might be unreliable and the extra time needed to
run cross-validation is tolerable. In either case, the user can
override the system’s recommendation.

3.2. Phase 2: Parsing Algorithm

In the second phase, MaltOptimizer explores a subset of
the parsing algorithms implemented in MaltParser, based
on the results of the data analysis. In particular, if there
are no non-projective dependencies in the training set,
then only projective algorithms are explored, including the
arc-eager and arc-standard versions of Nivre’s algorithm
(Nivre, 2003; Nivre, 2004), Covington’s projective parsing
algorithm (Covington, 2001; Nivre, 2008), and the projec-
tive Stack algorithm (Nivre, 2009). By contrast, if the train-
ing set contains a substantial amount of non-projective de-
pendencies, then MaltOptimizer instead tests Covington’s
non-projective algorithm (Covington, 2001; Nivre, 2008),
the non-projective Stack algorithms (Nivre, 2009; Nivre et
al., 2009) as well as projective algorithms in combination
with pseudo-projective parsing (Nivre and Nilsson, 2005).
If the amount of non-projective dependencies is intermedi-
ate, both groups of algorithms are explored.

In order to reduce the number of tests needed, we have
came up with two different decision trees based on previous
experience (Nivre and Hall, 2010). The first one, shown in
Figure 1, tests only projective algorithms in such a way that
the maximum number of tests is 3, and the procedure avoids
unnecessary tests such as testing the Nivre arc-standard al-
gorithm when the Nivre arc-eager algorithm provides better
results than the projective Stack algorithm. The reason we
can omit this test is that the Nivre arc-standard algorithm
uses the same parsing order as the projective Stack algo-
rithm. The second decision tree, shown in Figure 2, is for
non-projective algorithms and results in a maximum of 5
tests using similar considerations.

After traversing one or both of these decision trees with de-
fault settings, MaltOptimizer tunes the parameters of the
best performing algorithm and creates a new option file for
the best configuration so far. The user is again given the op-
portunity to edit the option file (or stop the process) before
optimization continues.

2759

Coving [|Stack non-projective

non-proj

Stack projective + PP|

Nivre arc-standard + PP

Figure 2: Decision tree for best non-projective algorithm
(+PP for pseudo-projective parsing).

INivre arc-eager + PP] |Stack non-projective eager

ICovington projective + PP

3.3. Phase 3: Feature Selection

In the third phase, MaltOptimizer tries to optimize the fea-
ture model given the parameters chosen so far (in particular
the parsing algorithm). It first performs backward selection
experiments to ensure that all features in the default model
for the given parsing algorithm actually make a contribu-
tion. It then proceeds with forward selection experiments,
trying potentially useful features one by one and in combi-
nation. An exhaustive search for the best possible feature
model is practically impossible, so the optimization strat-
egy is based on heuristics derived from proven experience
(Nivre and Hall, 2010). The major steps of the forward se-
lection experiments are the following:’

1. Tune the window of POSTAG (n-gram) features over
the stack and buffer.

2. Tune the window of (lexical) FORM features over the
stack and buffer.

3. Tune dependency tree features using DEPREL and
POSTAG features.

4. Add predecessor and successor features for salient to-
kens using POSTAG and FORM features.

5. Add CPOSTAG, FEATS, and LEMMA features if
available.

6. Add conjunctions of POSTAG and FORM features.

Our algorithm traverses all the 6 steps adding one feature
at a time and keeping the feature set that provides the best
result so far in a greedy fashion. We speed up the process
by applying the following heuristics:

1. If backward selection provides improvements for a
specific window, we do not try forward selection for
this window.

2. Assoon as forward selection is unsuccessful for a spe-
cific window, we do not try further forward selection
experiments for this window.

It is worth to mentioning that these six steps are slightly
different depending on which algorithm is the best with de-
fault settings, because the MaltParser algorithms have dif-
ferent parsing orders and use different data structures, but

SFor an explanation of the different feature columns such as
POSTAG, FORM, etc., see Buchholz and Marsi (2006) and Sec-
tion 2.

the steps are roughly equivalent at a certain level of abstrac-
tion. After the feature selection experiments are completed,
MaltOptimizer creates a new option file and a new feature
specification file. The user is given the opportunity to edit
both of these files (or stop the process) before optimization
continues.

At the end of the third phase, MaltOptimizer tunes the
C parameter of the multiclass SVM using a simple grid
search. After this optimization is completed, MaltOpti-
mizer creates the final option file. The user may now con-
tinue to do further optimization manually.

4. Experiments

In order to assess the usefulness and validity of the opti-
mization procedure, we have run all three phases of the op-
timization on all the data sets from the CoNLL 2006 and
2007 shared tasks on dependency parsing (Buchholz and
Marsi, 2006; Nivre et al., 2007). We used 5-fold cross-
validation for all training sets smaller than 90,000 words
and a simple train-devtest split for the larger training sets.
Table 1 shows the labeled attachment scores with default
settings and after each of the three optimization phases, as
well as the difference between the final configuration and
the default. The last two columns compare the accuracy ob-
tained on the final test set (Test-MQO) with the best score ob-
tained with manual optimization of MaltParser (Test-MP)
in the original shared tasks (Nivre et al., 2006b; Hall et al.,
2007).

The first thing to note is that the optimization improves
parsing accuracy for all languages without exception, al-
though the amount of improvement varies considerably
from about 1 percentage point for Chinese, Japanese and
Swedish to 7-10 points for Basque, Dutch, Czech, Hungar-
ian and Turkish. Part of the explanation for these differ-
ences is the fact that some data sets include rich linguistic
annotation, which makes it beneficial to enrich the feature
model. This is also why, for most languages, the great-
est improvement comes from feature selection in phase 3.
However, we also see significant improvement from phase
2 for languages with a substantial amount of non-projective
dependencies, such as Czech, Dutch and Slovene, where
the selection of parsing algorithm is quite important.

Turning to the final test results, we see that MaltOptimizer
fares quite well compared to the manually optimized ver-
sion of MaltParser, with an average difference of only 0.61
and a maximum (negative) difference of 1.87 (for Catalan
2007). Moreover, we see that in 5 cases out of 23, Malt-
Optimizer actually improves on the old results, and in a
few cases with a quite substantial margin. In fact, in the
2006 shared task, MaltOptimizer would have finished third,
beaten only by MSTParser (McDonald et al., 2006) and
MaltParser (Nivre et al., 2006b).

The time needed to run the optimization depends primarily
on the size of the training set and the validation method
chosen. With a simple train-devtest split, it ranges from
about half an hour for the smallest data set (Slovene) to
about one day for the largest one (Czech 2006). With 5-fold
cross-validation, it will basically take five times longer.

2760

CoNLL-X Shared Task
Language || Default | Phase 1| Phase 2 | Phase 3 || Diff || Test-MO | Test-MP
Arabic* 63.02 | 63.03 | 64.03 | 66.37 | 3.35 66.20 66.71
Bulgarian || 83.19 | 83.19 | 84.00 | 86.03 || 2.84 86.44 87.41
Chinese 84.14 | 84.14 | 84.95 | 84.95 | 0.81 85.49 86.92
Czech 69.94 | 70.14 | 72.44 | 78.04 | 8.10 || 80.46 78.42
Danish 81.01 | 81.01 | 81.34 | 83.86 | 2.85 83.41 84.77
Dutch 74.77 | 7477 | 78.02 | 82.63 || 7.86 || 77.23 78.59
German 82.36 | 82.36 | 83.56 | 85.91 | 3.55 85.24 85.82
Japanese 89.70 | 89.70 | 90.92 | 90.92 | 1.22 || 90.39 91.65
Portuguese || 84.11 | 84.31 | 84.75 | 86.52 || 2.41 85.85 87.60
Slovene* 66.08 | 66.52 | 67.86 | 72.29 || 6.21 73.66 70.30
Spanish* 7645 | 7645 | 76.64 | 79.65 || 3.20 80.18 81.29
Swedish 83.34 | 83.34 | 83.50 | 84.09 | 0.75 83.81 84.58
Turkish* 57.79 | 57.79 | 5833 | 67.11 || 9.32 || 64.85 65.68
CoNLL 2007 Shared Task
Language || Default | Phase 1| Phase 2 | Phase 3 || Diff || Test-MO | Test-MP
Arabic 67.71 | 67.75 | 67.75 | 70.77 || 3.06 || 73.22 74.75
Basque* 67.69 | 67.83 | 68.29 | 75.05 || 7.36 || 72.19 74.99
Catalan 83.07 | 83.07 | 83.13 | 84.89 | 1.82 85.87 87.74
Chinese 84.04 | 84.04 | 85.03 | 86.21 | 2.17 82.58 83.51
Czech 70.25 | 70.51 | 72.49 | 77.71 || 746 || 78.03 77.22
English 83.84 | 83.84 | 85.34 | 86.61 | 2.77 85.17 85.81
Greek* 71.01 | 71.09 | 72.41 | 75.12 || 4.11 74.50 74.21
Hungarian || 6642 | 66.42 | 68.21 | 76.53 | 10.11| 77.17 78.09
Italian* 79.07 | 79.07 | 79.45 | 81.53 || 246 || 82.79 82.48
Turkish* 6745 | 6838 | 70.67 | 7691 || 9.46 || 78.93 79.24

Table 1: Labeled attachment score per phase compared to default settings for all training sets from the CoNLL-X shared
task (Buchholz and Marsi, 2006) and the CoNLL 2007 Shared task. Languages marked * have a training set smaller than
90,000 tokens and have been optimized using 5-fold cross-validation; the remaining languages have been optimized using
a simple train-devtest split. The last two columns report labeled attachment score on the final test sets for the best model
found by MaltOptimizer (Test-MO) and the best MaltParser model in the original shared tasks (Test-MP) as reported in

Nivre et al. (2006b) and Hall et al. (2007).

5. Related Work

Automatic feature selection for transition-based depen-
dency parsing was recently explored in a study by Nilsson
and Nugues (2010). Starting from a much more reduced
feature model than the MaltParser default model, they add
features incrementally using a notion of topological neigh-
bors in the feature space. They also experiment with dif-
ferent levels of greediness and report competitive results on
three different data sets.

In natural language processing more generally, optimiza-
tion problems have been studied by Kool et al. (2000) and
Daelemans et al. (2003), who use genetic algorithms for
model selection in the context of part-of-speech tagging,
grapheme-to-phoneme conversion with stress assignment,
and word sense disambiguation. They study feature selec-
tion together with parameter optimization, trying to reach
joint optima. A tool developed specifically for the opti-
mization of learning algorithm parameters in the context
of natural language processing is Paramsearch (Van den
Bosch, 2004).

In machine learning more generally, the feature selection
problem has been the object of numerous studies (Guyon
and Elisseeff, 2003; McCallum, 2003), and greedy meth-

ods like the ones employed by MaltOptimizer are well rep-
resented in the literature. For instance, Korycinski et al.
(2003) use an adaptive greedy feature selection technique
to solve the hyperspectral data analysis in the optical engi-
neering area. Doraisamy et al. (2008) present a compara-
tive study on feature selection techniques applied to auto-
matic genre classification, including best first, greedy step-
wise and genetic adaptative search, and conclude that all
these methods can significantly improve the performance of
general machine learning models. Pahikkala et al. (2010)
show how to speed up forward feature selection by apply-
ing greedy search, using a strategy similar to that employed
by MaltOptimizer. Finally, Das and Kempe (2011) demon-
strate that greedy algorithms perform well even when the
features are highly correlated, which is something that def-
initely happens in transition-based dependency parsing.

6. Conclusion

We have presented MaltOptimizer, an optimization tool for
MaltParser that can support developers in adapting the sys-
tem to new languages or domains. We have demonstrated
that by using MaltOptimizer it is possible to get substantial
improvements over the default settings, thereby allowing
non-experts in dependency parsing to achieve high (if not

2761

optimal) accuracy, which is usually not possible when us-
ing the system “out of the box”. In addition to application
developers, MaltOptimizer should also be useful for peo-
ple doing parsing research who want to use MaltParser as a
point of comparison for their own systems, since compar-
isons with default settings can be highly misleading. Malt-
Optimizer is an interactive system that allows the user to
influence the optimization process at various points, which
should make the system potentially useful also for expert
users. Future directions may involve the development of
a more advanced optimization strategy that interleaves the
optimization of parsing algorithm, feature model and learn-
ing algorithm instead of using a greedy stepwise approach.

Acknowledgments

The first author is funded by the Spanish Ministry of Edu-
cation and Science (TIN2009-14659-C03-01 Project), Uni-
versidad Complutense de Madrid and Banco Santander
Central Hispano (GR58/08 Research Group Grant) and he
is under the support of Natural Interaction Based on Lan-
guage Group from the same University.

7. References

Miguel Ballesteros and Joakim Nivre. 2012. MaltOpti-
mizer: An Optimization Tool for MaltParser. In Pro-
ceedings of the System Demonstration Session of the
Thirteenth Conference of the European Chapter of the
Association for Computational Linguistics (EACL).

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
shared task on multilingual dependency parsing. In Pro-
ceedings of the 10th Conference on Computational Nat-
ural Language Learning (CoNLL), pages 149-164.

Chih-Chung Chang and Chih-Jen Lin, 2001. LIBSVM: A
Library for Support Vector Machines. Software available
at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

Michael A. Covington. 2001. A fundamental algorithm for
dependency parsing. In Proceedings of the 39th Annual
ACM Southeast Conference, pages 95-102.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-
Shwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. Journal of Machine Learning Re-
search, 7:551-585.

Walter Daelemans, Véronique Hoste, Fien De Meulder, and
Bart Naudts. 2003. Combined optimization of feature
selection and algorithm parameters in machine learning
of language. In Proceedings of the 14th European Con-
ference on Machine Learning (ECML), pages 84-95.

Abhimanyu Das and David Kempe. 2011. Submodular
meets spectral: Greedy algorithms for subset selection,
sparse approximation and dictionary selection. In Pro-
ceedings of the 28th International Conference on Ma-
chine Learning (ICML), pages 1057-1064.

Shyamala Doraisamy, Shahram Golzari, Noris Mohd.
Norowi, Md Nasir Sulaiman, and Nur Izura Udzir. 2008.
A study on feature selection and classification techniques
for automatic genre classification of traditional malay
music. In Proceedings of the Ninth International Con-
ference on Music Information Retrieval (ISMIR), pages
331-336.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui
Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A library
for large linear classification. Journal of Machine Learn-
ing Research, 9:1871-1874.

Isabelle Guyon and André Elisseeff. 2003. An introduc-
tion to variable and feature selection. Journal of Ma-
chine Learning Research, 3:1157-1182.

Johan Hall, Jens Nilsson, Joakim Nivre, Giilsen Eryigit,
Bedta Megyesi, Mattias Nilsson, and Markus Saers.
2007. Single malt or blended? A study in multilin-
gual parser optimization. In Proceedings of the CoNLL
Shared Task of EMNLP-CoNLL 2007, pages 933-939.

Dan Klein and Christopher D. Manning. 2002. Conditional
structure versus conditional estimation in NLP models.
In Proceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 9-16.

Anne Kool, Jakub Zavrel, and Walter Daelemans. 2000.
Simultaneous feature selection and parameter optimiza-
tion for memory-based natural language processing. In
Proceedings of the Tenth Belgian-Dutch Conference on
Machine Learning (BENELEARN), pages 93—100.

Donna Korycinski, Melba Crawford, J. Wesley Barnes, and
Joydeep Ghosh. 2003. Adaptive feature selection for hy-
perspectral data analysis. In Proceedings of the SPIE
Conference on Image and Signal Processing for Remote
Sensing IX, pages 213-225.

Andrew McCallum. 2003. Efficiently inducing features of
conditional random fields. In Proceedings of the Confer-
ence on Uncertainty in Al, pages 403—410.

Ryan McDonald and Joakim Nivre. 2007. Characterizing
the errors of data-driven dependency parsing models. In
Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-CoNLL),
pages 122—131.

Ryan McDonald, Koby Crammer, and Fernando Pereira.
2005. Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 91-98.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the 10th
Conference on Computational Natural Language Learn-
ing (CoNLL), pages 216-220.

Peter Nilsson and Pierre Nugues. 2010. Automatic discov-
ery of feature sets for dependency parsing. In Proceed-
ings of the 23rd International Conference on Computa-
tional Linguistics, pages 824-832.

Joakim Nivre and Johan Hall. 2010. A quick guide to Malt-
Parser optimization. Technical report, maltparser.org.
Joakim Nivre and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proceedings of the 43rd Annual
Meeting of the Association for Computational Linguis-

tics (ACL), pages 99-106.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Proceedings of
the 8th Conference on Computational Natural Language
Learning (CoNLL), pages 49-56.

2762

Joakim Nivre, Johan Hall, and Jens Nilsson. 2006a. Malt-
parser: A data-driven parser-generator for dependency
parsing. In Proceedings of the 5th International Con-
ference on Language Resources and Evaluation (LREC),
pages 2216-2219.

Joakim Nivre, Johan Hall, Jens Nilsson, Giilsen Eryigit,
and Svetoslav Marinov. 2006b. Labeled pseudo-
projective dependency parsing with support vector ma-
chines. In Proceedings of the 10th Conference on Com-
putational Natural Language Learning (CoNLL), pages
221-225.

Joakim Nivre, Johan Hall, Sandra Kiibler, Ryan McDonald,
Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency parsing.
In Proceedings of the CoNLL Shared Task of EMNLP-
CoNLL 2007, pages 915-932.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with on-
line reordering. In Proceedings of the 11th International
Conference on Parsing Technologies (IWPT’09), pages
73-76.

Joakim Nivre. 2003. An efficient algorithm for projective
dependency parsing. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT), pages
149-160.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Proceedings of the Workshop on
Incremental Parsing: Bringing Engineering and Cogni-
tion Together (ACL), pages 50-57.

Joakim Nivre. 2006. Inductive Dependency Parsing.
Springer.

Joakim Nivre. 2007. Incremental non-projective depen-
dency parsing. In Proceedings of Human Language
Technologies: The Annual Conference of the North
American Chapter of the Association for Computational
Linguistics (NAACL HLT), pages 396—403.

Joakim Nivre. 2008. Algorithms for deterministic incre-
mental dependency parsing. Computational Linguistics,
34:513-553.

Joakim Nivre. 2009. Non-projective dependency parsing
in expected linear time. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language
Processing of the AFNLP (ACL-IJCNLP), pages 351—
359.

Tapio Pahikkala, Antti Airola, and Tapio Salakoski. 2010.
Speeding up greedy forward selection for regularized
least-squares. In The Ninth International Conference on
Machine Learning and Applications, pages 325-330.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein.
2006. Learning accurate, compact, and interpretable tree
annotation. In Proceedings of the 21st International
Conference on Computational Linguistics and the 44th
Annual Meeting of the Association for Computational
Linguistics, pages 433-440.

Antal Van den Bosch. 2004. Wrapped progressive sam-
pling search for optimizing learning algorithm parame-
ters. In Proceedings of the 16th Belgian-Dutch Confer-
ence on Artificial Intelligence.

2763

