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Abstract 

The relevance of automatically identifying rhetorical moves in scientific texts has been widely acknowledged in the literature. This 
study focuses on abstracts of standard research papers written in English and aims to tackle a fundamental limitation of current 
machine-learning classifiers: they are mono-labeled, that is, a sentence can only be assigned one single label. However, such approach 
does not adequately reflect actual language use since a move can be realized by a clause, a sentence, or even several sentences. Here, 
we present MAZEA (Multi-label Argumentative Zoning for English Abstracts), a multi-label classifier which automatically identifies 
rhetorical moves in abstracts but allows for a given sentence to be assigned as many labels as appropriate. We have resorted to various 
other NLP tools and used two large training corpora: (i) one corpus consists of 645 abstracts from physical sciences and engineering 
(PE) and (ii) the other corpus is made up of 690 from life and health sciences (LH). This paper presents our preliminary results and also 
discusses the various challenges involved in multi-label tagging and works towards satisfactory solutions. In addition, we also make 
our two training corpora publicly available so that they may serve as benchmark for this new task.  
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1. Introduction 

The relevance of identifying rhetorical moves in scientific 

texts has been widely acknowledged in the literature. This 

is mainly because rhetorical moves are viewed as a crucial 

element in the organization and structure of texts and as 

such can play a key role in genre-based pedagogies and 

writing tools. By move, we refer to “a discoursal or 

rhetorical unit that performs a coherent communicative 

function in a written or spoken discourse” (Swales, 2004: 

228).  
One of the major challenges in the investigation of 

rhetorical moves is that manual annotation tends to be 

rather subjective and time-consuming. Not surprisingly, 

much effort has been made to develop systems to 

automatically identify rhetorical moves in scientific texts. 

Some systems (for instance, Teufel & Moens, 2002; 

Feltrim et al., 2006; Genovês et al., 2007) adopt a 

linguistic approach, that is, they make use of a 

linguistically rich set of features which covers lexical, 

syntactical and structural aspects. Examples of such 

features include: verb tense/mood/voice, semantic profile 

of verbs, negation, and stance markers. Other systems are 

language independent and resort to a bag of clusters with 

n-grams and statistical methods (e.g. Anthony & Lashkia, 

2003; Pendra & Cotos, 2008).  

The present study follows the linguistic approach and sets 

out to identify rhetorical moves in abstracts of standard 

research papers written in English. The topic has in fact 

received increasing attention (among others, Mcknight & 

Arinivasan, 2003; Shimbo et al., 2003; Ito et al., 2004; 

Yamamoto & Takagi, 2005; Wu et al., 2006; Lin et al., 

2006; Ruch et al., 2007; Hirohata et al., 2008). This also 

includes our previous work (Genovês et al., 2007) which 

has proposed AZEA
1 (Argumentative Zoning for English 

Abstracts), a high-accuracy machine learning classifier 

that automatically detects rhetorical moves in English 

abstracts. AZEA relies on a set of 22 features and was 

trained using a corpus of 74 abstracts from the 

pharmaceutical sciences. These abstracts had been 

manually annotated according to the following moves: (i) 

background, (ii) gap, (iii) purpose, (iv) method, (v) result, 

and (vi) conclusion. These categories were determined on 

the basis of moves proposed by Hyland (2004:67), Swales 

(2004:228-238) and Swales & Feak (2009:4). The highest 

level of accuracy (80.3%) was achieved using the Support 

Vector Machine (Cortes et al., 1995) method for 

well-structured published abstracts.  

Like other machine-learning abstract classifiers of its kind, 

AZEA is mono-labeled, that is to say, a given sentence can 
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only be assigned one single label which, at least in 

principle, should be the most salient one. Such an 

approach is fully justifiable given that, in multi-label 

processing, the system would first need to decide whether 

the sentence should be mono- or multi-labeled. For the 

latter, there would then be the additional decisions on 

where to break the sentence as well as which order labels 

should appear. However, mono-label approaches have a 

fundamental limitation. They do not adequately reflect 

actual language use. As Swales (2004:229) explains, a 

move is “is better seen as flexible in terms of linguistic 

realizations” since it is “a functional, not a formal, unit” 

that can be realized by a clause, a sentence, or even 

several sentences.  

This paper intends to address this issue. Here, we present 

MAZEA (Multi-label Argumentative Zoning for English 

Abstracts), a multi-label classifier which automatically 

identifies rhetorical moves in English abstracts and allows 

for a given sentence to be assigned as many labels as 

appropriate. Although much work is still needed to 

overcome the various challenges involved in this type of 

work, our initial results are especially promising. As we 

shall see shortly, MAZEA achieves satisfactory results in 

terms of deciding whether multi-label categorization 

applies as well as, if that is the case, which labels should 

be assigned. 

The system focuses on two broad fields: (i) physical 

sciences and engineering (PE) and life and health sciences 

(LH). It is made up of two independent classifiers which 

have been trained on two separate corpora, manually 

annotated according to the six abovementioned rhetorical 

moves. Our PE corpus consists of 645 abstracts (144,683 

tokens) and the LH corpus comprises 690 abstracts 

(50,248 tokens). This is in fact another important 

contribution of our study given that existing, related 

classifiers have used training corpora of up to 100 texts 

(e.g., Teufel & Moens, 2002; Anthony & Lashkia, 2003; 

Feltrim et al., 2006; Genovês et al., 2007).Table 1 shows 

the composition of these two corpora in terms of 

discipline considered and number of texts from each.  

 

Physical Sciences and 

Engineering  (PE) 

Life and Health Sciences 

(LH) 

Physics 325 Dentistry 235 

Computing 230 Pharmaceutical 

Sciences 

195 

Engineering 90 Biology 105 

Biophysics 105 

Bioengineering 25 

  

Biomedical 

Sciences 

25 

TOTAL 645 TOTAL 690 

 

Table 1: Composition of the PE and the LH corpora by 

discipline 

 

All abstracts were taken from research papers published 

by leading international academic journals. The selection 

of individual texts proceeded on the basis of authors’ 

affiliation:  either the first author or most authors should 

be affiliated to a department of the disciplines in question. 

Abstracts cutting across two or more disciplines 

investigated here were discarded. In addition, preference 

was given to papers by authors affiliated to universities in 

English-speaking countries.   

This paper presents the results of our initial attempt to 

build a multi-label classifier to automatically identify 

rhetorical moves in English abstracts. We also discuss the 

limitations of the current system and the various issues 

raised throughout the process. Another major contribution 

of our study is that we also make our training corpora 

publicly available
2
 so as to serve as benchmark for the 

task. 

The remainder of this paper is organized as follows. The 

next section describes the process of annotation rhetorical 

moves in all abstracts. Section 3 explains our working 

environment, enumerating the various tools and 

algorithms we have selected to perform the task. The 

results are presented in section 4. We conclude with a 

discussion of our main contributions and the various 

issues we intend to address in future studies.  

2. Corpus Annotation 

Since our primary purpose was to build a classifier that 

would assign as many labels as appropriate to a given 

sentence, our initial challenge was to decide on when and 

how to segment sentences. In order to do so, we randomly 

selected five abstracts from each corpus and used a parser 

to divide all sentences into either prepositional phrases or 

clauses. Three human annotators were then asked to 

independently assign one of the following rhetorical 

moves to each segment: (i) background, (ii) gap, (iii) 

purpose, (iv) method, (v) result, and (vi) conclusion. 

However, such task turned out to be far more complex 

than expected. The pre-established segmentation proved 

rather inefficient given that, in many cases, it did not 

match with how a human annotator would wish to 

segment the sentence. This is therefore the main reason 

why we abandoned the idea of parsing sentences.  

At the same time, this initial phase provided empirical 

grounds for establishing the guidelines to be adopted to 

manually annotate rhetorical moves in abstracts and 

hence ensure consistency throughout the process. These 

guidelines basically explain the main aspects and 

characteristics of each move. Very briefly, these can be 

summarized as follows: 

(i) Background: the context of the study, including any 

reference to previous work on the topic, relevance of 

the topic and main motivations behind the study; 

(ii) Gap: any indication that the researched topic has not 

been explored, that little is known about it, or that 

previous attempts to overcome a given problem or 

issue have not been successful; 

(iii) Purpose: the intended aims of the paper or 

hypotheses put forward; 

(iv) Method: the methodological procedures adopted as 
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well as the description of the data/materials used in 

the study. Specifications of the structure of the paper 

are mostly categorized as methods, taking into 

consideration that it would refer to how the purpose 

was achieved; 

(v) Result: main findings or, in some cases, indication 

that the findings will be described or discussed; 

discussion or interpretation of the findings, which 

includes any hypothesis raised on the basis of the 

findings presented in the paper; 

(vi) Conclusion: general conclusion of the paper; 

subjective opinion about the results; suggestions and 

recommendations for future work. 
As regards sentences reflecting more than one move, we 

have decided to follow Swales’ (2004:229) approach 

closely and view rhetorical moves as functional rather 

than grammatical units. Thus, rather than imposing 

syntactical boundaries, we have opted for allowing 

annotators to decide whether (or not) and how to segment 

sentences on the basis of their own subjective judgment. 

In other words, no criteria were set to determine where 

and how to segment multi-labeled sentences. For moves 

cutting across several sentences, it was simply a matter of 

repeating the label over all sentences. 

To facilitate the process of manual annotation, we have 

resorted to the AZEA system (Genovês et al., 2007) to 

automatically tag all abstracts from both corpora 

according to the abovementioned moves. As mentioned 

earlier, AZEA works at the sentence level and assigns one 

label per sentence. 

The next step was then to randomly select 38 abstracts 

from the PE corpus and 34 abstracts from the LH corpus 

so that AZEA’s categorization could be independently 

validated by the same three human annotators on the basis 

of the abovementioned guidelines. These figures 

represent 5% of the overall number of texts included in 

each corpus. In this case, abstracts were chosen taking 

into consideration the proportion of texts from each 

discipline.  

This validation process involved correcting labels 

mistakenly assigned as well as errors related to its 

misinterpretation of sentence boundaries. In addition, 

annotators could also assign more than one label to a 

given sentence whenever they found it appropriate. Here 

is an example of a multi-label sentence:  

<method> Bioinformatic analysis </method> <result> 

demonstrated that 7 of 12 breakpoints combined among 3 

complex cases aligned with repetitive sequences, as 

compared to 4 of 30 breakpoints for the 15 deletion cases. 

</result> 

 

The level of agreement among human annotators was 

measured by applying the Kappa Statistics (Carletta, 

1996). This calculation was done at sentence level. Here, 

we have assessed whether annotators agreed on the labels 

assigned as well as on the segmentation of the sentence, if 

any. For multi-label sentences, the order of labels within 

the sentence was also compared. However, for the sake of 

simplicity, no consideration was given to whether 

annotators segmented sentences at exactly the same point.  

The Kappa Statistics yielded the following values: 0.652 

(N=306, k=3, n=20) and 0.535 (N=148, k=3, n=18) for 

the LH and the PE corpora, respectively. These figures 

indicate substantial agreement in the annotation of the LH 

corpus and moderate agreement in the PE corpus (Landis 

& Koch, 1977). All in all, we can conclude that the 

multi-label sentence classification is reproducible, 

although disagreements should be settled. 

Thus, after discussing the various issues raised in 

annotation of these for 38 abstracts from the PE corpus 

and 34 abstracts from the LH corpus, the same three 

annotators revised the abovementioned guidelines 

accordingly. This basically consisted of further explaining 

some key aspects and characteristics of each rhetorical 

move and providing examples for debatable points.  

The remaining abstracts of the two corpora were then 

divided among five annotators who have revised AZEA’s 

automatic categorization of rhetorical moves according to 

the criteria provided. These are precisely the versions of 

the corpora we have used to test and train our multi-label 

classifiers and the same ones we have made publicly 

available (see footnote 2). 

3. Working Environment  

Our multi-label classifier categorization consists of a 

pipeline of several NLP tools and algorithms (Figure 1).  
In the preprocessing phase, all abstracts were first 
segmented, tokenized and lemmatized. For text 
segmentation, tokenization and PoS tagging, we have 
resorted to OpeNLP (http://opennlp.apache.org/). Word 
lemmatization was done by means of the Wordnet API 
(http://sourceforge.net/projects/jwordnet/). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Processing Pipeline 
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The two corpora were each divided into two sets of 
similar size by randomly selecting the abstracts to be 
included in each. We then used one subcorpus from each 
area to automatically extract formulaic expressions 
(recurrent combinations of words), namely, PE-Exp and 
LH-Exp. The other two halves were used to train our 
classifiers in the machine learning phase and are referred 
to as PE-Training and LH-Training. This in other words 
means that the two subcorpora from which formulaic 
expressions were extracted are different from those used 
in the machine learning phase. Such division was made to 
avoid potential biases in the results. 
To detect formulaic expressions, we have used the Jbow 
system (Machado Jr., 2009) which automatically 
identifies them on the basis of various statistical methods. 
The system then correlates the identified expressions with 
one (or more) of the above mentioned move categories: (i) 
background, (ii) gap, (iii) purpose, (iv) method, (v) result, 
and (vi) conclusion. This has therefore enabled us to 
generate six features, computed according to two main 
aspects: (i) the presence of a given formulaic expressions 
in the sentence under analysis and (ii) the statistical 
relation between such formulaic expressions and the 
labels. 
In addition to these six lexical features, we have also 
selected six out of the 22 features used by Azea (Genovês 
et al., 2007). These are: (i) position within the text; (ii) 
length; (iii) first formulaic expression (recurrent 
combination of words) related to the agent in the sentence; 
(iv) presence of a modal verb; (v) tense of the first finite 
verb; (vi) verb voice. Since many of these features are 
nominal, they had to be converted to a binary 
representation so that they could be adequately processed 
in the machine learning phase. The feature sentence 
length may serve as an example. If we assume that 
sentences can be of small, medium or big sizes, this leads 
us to consider three binary features: small_size, 
medium_size and large_size. However, only one would be 
deemed true for each sentence. 
Thus, the initial six AZEA features have yielded a total of 
46 numeric features. These features together with the 
other six generated by the JBow system have amounted to 
52 numeric features, which were then used to train our 
classifiers. 
In the machine learning phase, classifiers worked at the 
sentence level. Thus, when associated with more than one 
move, sentences would be assigned multiple labels. This 
phase was carried out in two stages. We first selected two 
learning algorithms from the Mulan library

3
 (Tsoumakas 

et al., 2010) which adopt various approaches for 
multi-label classification. These are: (i) Classifier Chain 
(Read et al. 2009), which processes each individual label 
separately; and (ii) Rakel (Tsoumakas et al. 2007), which 
groups correlated labels. 
Since multi-label algorithms work on top of mono-label 
ones, we have also incorporated mono-label algorithms 
from Weka (Witten & Frank, 2005) into our classifiers. 
For doing so, we have selected two well established 
classifiers from both statistical (SMO) and symbolic (J48) 
fields. SMO was used together with Classifier Chain 
while J48 was combined with Rakel.  
The two classifiers were trained and tested taking into 
consideration the following measurements: 
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� LH: in this case, only the LH corpus was used. 

Half of it (LH-Exp) provided the data from 

which formulaic expressions were retrieved, by 

means of the JBoW system. The other half 

(LH-Training) was used to test and train the two 

classifiers. 

� PE: the same procedures were repeated for the 

PE corpus. Half of it (PE-Exp) was used to 

extract formulaic expressions and the other half 

(PE-Training) to test and train the two classifiers. 

� Mixed: formulaic expressions were generated 

on the basis of half of the PE corpus only 

(PE-Exp) and the two classifiers were evaluated 

using the LH-Training subcorpus. The idea was 

to test whether formulaic expressions from a 

given area can be extended to another. 

As baselines, we have considered the following:  

(i) the expected accuracy of a random classifier applied 

to mono-label sentences: 16.66%, since the 

categorization takes into consideration six moves; 

(ii) the most frequent move (method) in a mono-label 

classification for the two corpora altogether: 33.7%.  

As gold standard, we have considered the kappa between 

human annotators. 

4. Results 

Within the framework of the present analysis, the first 

point to be made is that the vast majority of sentences 

from English abstracts reflect one single rhetorical move. 

Multi-label sentences accounted for 16.5% of all LH 

sentences (1,082 out of 6,544) and for 11.3% of all PE 

sentences (445 out of 3,933).  

As regards the multi-label categorization task, the results 

from the Classifier Chain + SMO method were slightly 

better than those from the Rakel + J48. Figures 2 and 3 

show the resulting values for the accuracy, 

micro-precision and hamming loss for the two methods 

employed in this study.  

Here, we have opted for the Mulan example-based 

accuracy, which is an extension of classic accuracy and, in 

our view, more suitable for multi-label scenario. In this 

case, the number of labels correctly assigned is evaluated 

against the total number of predicted labels. This 

therefore allows us to estimate the chance that a given 

predicted label has to be accurate. For example, if the 

system suggests three labels for a given segment (an 

entire sentence or part of it) and only one is correct, the 

accuracy measure for that particular instance is 0.33. Thus, 

for the LH corpus, the Chain + SMO Classifier (Figure 2) 

has 69% of chance of assigning the correct label to a given 

sentence or part of it.  

Under this perspective, the higher the number of labels 

within a given sentence, the lower the chance of 

automatically identifying all labels correctly. This is 

mainly because the chance of selecting the correct label (c) 

is estimated according to the number of labels associated 

with the sentence (c
n 
). If the chance of correctly selecting 

a single label is 60%, the chance of selecting two labels 

correctly is 36% (0.6 * 0.6). In our implementation, 
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sentences can be assigned up to six labels, including “no 

label” for those cases when the classifier cannot decide 

which category the segment refers to (0 ≤ n ≤ 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Figures 2 and 3, the resulting accuracy 

was significantly higher than our reference baselines – 

0.1666 for random classification and 0.337 when the most 

frequent move (method) is assigned –, irrespective of the 

method adopted. Ideal accuracy and micro-precision are 

both higher while hamming loss is lower. 

We also found that, for both methods, performance was 

marginally worse for the PE in comparison with the LH 

corpus. This is in line with the measured kappa values for 

each corpus, since agreement among annotators was 

lower for the PE corpus. As expected, Mix results are not 

as good as LH ones. This is mainly because, for the former, 

the two classifiers were trained over the LH corpus using 

PE formulaic expressions. 

The classifier which performed best (Chain + SMO) was 

also evaluated in relation to the kappa values obtained by 

comparing human annotation (0.652 (N=306, k=3, n=20) 

for the LH corpus and 0.535 (N=148, k=3, n=18) for the 

the PE corpus, see section 2 for details). For the Chain + 

SMO classifiers, the kappa analysis yielded the following 

values: 0.567 (N=306, k=4, n=20) and 0.409 (N=148, k=4, 

n=18) for the LH and PE corpus respectively. We consider 

these results as reasonably satisfactory, given that they are 

fairly close to the gold-standards. 

An online demo Web application of our two Chain + SMO 

classifiers, one for each area (see footnote 2 for the 

website address). To obtain maximum performance, the 

PE-Exp and the PE-Training subcorpora served as the 

training corpora for developing the PE classifier while the 

LH-Exp and LH-Training collections were used to train 

the LH Classifier.  

5. Conclusion 

This paper has presented the results of our initial attempt 

to develop two machine learning systems to automatically 

identify rhetorical moves in English abstracts from (i) 

physical sciences and engineering and (ii) from life and 

health sciences. In addition, the systems were expected to 

assign as many labels as appropriate whenever a given 

sentence reflected more than one rhetorical move. Our a 

multi-label classifier – MAZEA – has produced 

encouraging results when deciding whether a given 

sentence was to be segmented and which labels should be 

assigned. 

However, there is still room for improvement. To start 

with, for multi-label sentences, the systems are still 

unable to indicate their correct order. More importantly, 

our initial challenge of how to automatically segment 

sentences according to rhetorical moves remains 

unanswered. In future studies, we also intend to work 

towards enhancing our classifiers’ performance by 

defining new features and exploring different approaches. 

It would be also particularly useful to further investigate 

the underlying regularities in the lexical and grammatical 

patterning of rhetorical moves in English abstracts. 

Additional benefits could also be obtained by improving 

human agreement on the task and hence refining our 

annotation guidelines. 

Taking into account that this study is, to the best of our 

knowledge, the first attempt to build a multi-label 

sentence classifier, we conclude that our system’s overall 

performance is particularly significant. This is in itself a 

major contribution given that such classifiers can 

effectively enhance the performance of natural language 

processing tools which are domain dependent. They are 

also an invaluable resource for linguists who wish to base 

their studies on large corpora by speeding up the arduous 

task of identifying and annotating moves. 

Last but not least, it is also important to stress that our 

training corpora are much larger than those used by 

previous related studies and they have been made publicly 

available for other researchers. 
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