A GUI to Detect and Correct Errors in Hindi Dependency Treebank

Rahul Agarwal', Bharat Ram Ambati', Anil Kumar Singh?

'Language Technologies Research Center (LTRC), IIIT-H, India
2 School of Computer Engg., KIIT University, India
!rahul.agarwal,ambati @research.iiit.ac.in, nlprnd @ gmail.com

Abstract
A treebank is an important resource for developing many NLP based tools. Errors in the treebank may lead to error in the tools that use
it. It is essential to ensure the quality of a treebank before it can be deployed for other purposes. Automatic (or semi-automatic) detection
of errors in the treebank can reduce the manual work required to find and remove errors. Usually, the errors found automatically are
manually corrected by the annotators. There is not much work reported so far on error correction tools which helps the annotators in
correcting errors efficiently. In this paper, we present such an error correction tool that is an extension of the error detection method
described earlier (Ambati et al., 2010; Ambati et al., 2011; Agarwal et al., 2012).

Keywords: Treebank, Error Detection, Graphical User Interface

1. Introduction

Availability of large amounts of annotated data is playing
a crucial role in developing high accuracy NLP tools like
Part-Of-Speech taggers, parsers, machine translation sys-
tems. Such data have also proved to be crucial resources
for NLP research and for developing solutions for various
NLP related applications. To be effectively useful, consid-
ering its primary role in providing the appropriate linguistic
knowledge to the machine and given the fact that we still
do not have good techniques to use ‘erroneous’ data, in the
way that humans can, it is highly desirable that the anno-
tated data should be as free of errors as possible. Hence, the
importance of validation of data and error correction cannot
be underestimated. On the other hand, annotation itself is
a time consuming task and validating the whole data man-
ually would be very time consuming as the validators will
have to look at each word in the annotated corpus. To over-
come this problem, a number of researchers are working on
automatic detection of errors in annotated data.

With validation and correction tools becoming an important
part of making treebanks error-free and consistent, efforts
are now being been made in this direction to develop error
detection tools. One such approach for treebank error de-
tection was employed by Dickinson and Meurers (2003a;
2003b; 2005), where they identified ‘variations’ in syntac-
tic annotation. They developed a treebank error detection
approach based on the idea of 'ngram variation detection’.
Using this approach, they tried to find strings which oc-
cur multiple times in the corpus, but have varying syntac-
tic annotations. This can happen because the strings are
ambiguous and can have different structures, depending on
the meaning, or because the annotation is erroneous in at
least one of the cases. Adapting from a generalized ap-
proach on discontinuous structural annotation, this work
was extended to detect errors at the dependency level in
treebanks (Boyd et al., 2008).

Some other earlier noteworthy methods employed for error

detection in syntactic annotation (mainly POS and chunk
markup) are by Eskin (2000) and Halteren (2000). Volokh

and Neumann (2011) employ a method similar to Hal-
teren (2000) to automatically correct errors at the depen-
dency level. Their main idea was to reproduce the gold
standard data using MSTParser, MALTParser and MD-
Parser!.

There have been a few recent attempts at detecting errors in
Hindi dependency treebank by Ambati et al. (2010; 2011)
and Agarwal et al. (2012) where they used a hybrid sys-
tem, a combination of rule-based and statistical approaches
to detect errors. The two works are different in terms of
the statistical techniques used. Ambati et al. (2010) uses
[frequency based statistical approach where they calculate
frequency of various patterns, while Ambati et al. (2011)
uses probability based statistical approach which tries to
predict the best tag for a node given its contextual infor-
mation as feature to Maximum Entropy Model. Agarwal et
al. (2012) improves over the Ambati et al. (2011) by using
an extra module and an improved feature set. But the main
focus of Ambati et al. (2010), Ambati et al. (2011) and
Agarwal et al. (2012) is to reduce the validation time of a
treebank.

In spite of these efforts in detecting errors in treebanks,
there has been a lack of user friendly interfaces that help
the validators in detecting errors and correcting them. In
this paper, we present such a tool which is being used for
developing Hindi dependency treebank (Bhatt et al., 2009;
Xia et al., 2009). The Hindi dependency treebank contains
information encoded at the morpho-syntactic (morphologi-
cal, part-of-speech and chunk information) and syntactico-
semantic (dependency) levels. Sentence level information
like voice type is also annotated for each sentence.

We present a validation tool, using which a human validator
can detect errors in the annotated Hindi dependency tree-
bank and correct them. This validation tool uses error de-
tection method employed by Ambati et al. (2010) to detect
POS and Chunk related errors while Agarwal et al. (2012)
to detect errors dependency related errors in treebank. From
different error detection methods provided in the GUI, a

"http://mdparser.sb.dfki.de/

1907

i validation Tool

S

Validate The Files
Input

Input Directory: “

|| Browse ‘

Validation Type
[] sanity Checks [v] Validat
Validation Level

[¥] POS [v]Chunk [v]Mor

ion (Rules) [| Validation {5tats)

ph [v] Dependency [v] Others

| Execute |
Already Executed
Input
Executed File:‘ || Browse
Run |

Figure 1: Validation Tool Interface

validator can choose any method, run the tool to detect
the errors and then correct the error instances manually.
Though we use the GUI for detecting errors in Hindi depen-
dency treebank, it can be used for detecting and correcting
errors in any treebank, as this tool has been integrated with
Sanchay (Singh, 2008; Singh and Ambati, 2010), which in-
cludes a user friendly annotation interface for various kinds
of morphological, syntactic and semantic annotations.

In section 2, we describe the annotation tool (Sanchay). In
section 3, we describe different types of errors in a tree-
bank. Section 4 and 5 explain the functionalities of the
GUI in detail. In section 7, we show the performance of
the systems used as the backend for the GUL. In section 7,
we present the user studies performed involving this GUL
We conclude the paper with section 8.

2. Sanchay

Annotation in our case is being carried out using a tool
called Sanchay?. Sanchay is an open source platform for
working on language data using computers and also for de-
veloping Natural Language Processing (NLP) or other text
processing applications. Apart from the syntactic annota-
tion interface (used for Hindi dependency annotation), it
has several other useful functionalities as well. Encoding
conversion, transliteration, corpus annotation API, Sanchay
corpus query language (Singh, 2012), parallel corpus an-
notation, language and encoding detection, n-gram model
generation are a few of them. Most of the treebank or syn-
tactic annotation work on Indian languages is being carried
out using the Sanchay Syntactic Annotation Interface.

3. Type of Errors in Hindi Treebank

We classify the errors in treebank into two major groups,
namely sanity errors and annotation errors. We shall
take an example and see the difference between these two.

Zhttp://sanchay.co.in/

According to Hindi POS guidelines (Bharati et al., 2006),
‘JJ> and ‘NN’ are the POS tags for adjectives and common
nouns respectively. For an adjective, if an annotator marks
the POS tag as ‘ADJ’, a tag which is not present in the pre-
defined list of POS tags in the guidelines for Hindi anno-
tation, we call it a sanity error. But, if the annotator marks
that adjective with ‘NN’ tag, a POS tag present in the guide-
lines but wrong in the context, we call it an annotation error.
A list of pre-defined rules is used for detecting sanity er-
rors®. Rule-based component of the system comprises of
high precision rules which are formed based on the anno-
tation guidelines and the annotation framework®, whereas
the statistical component helps in detecting a wide array of
potential errors and suspect cases using counts and proba-
bilities.

4. The Validation Tool

We have developed a Graphical User Interface (GUI) for
detecting and correcting the errors as shown in Figure 1.
As the Syntactic Annotation Interface of Sanchay is being
used for Hindi treebank annotation, we have used the same
tool for error correction as well. We have integrated our
tool into Sanchay. In this way, an annotator can annotate,
detect errors and correct them with Sanchay itself. Figure
1 shows the validation tool interface. A brief description
of the functionalities present in the interface is provided
in the following sections. Demo of the tool is available at
http://web.iiit.ac.in/ rahul_agarwal/ValidationTool/demo.avi.

4.1. Input

There is an input option where we can browse for directory
containing the files that need to be validated. Here, we can

Rules being used to detect sanity errors are available at
http://web.iiit.ac.in/ rahul_agarwal/ValidationTool/sanityChecks.html.

“Rules for rule-based system are available at
http://web.iiit.ac.in/ rahul_agarwal/ValidationTool/RuleBasedErrors.html.

1908

give path of a file or a directory of annotated data on which
we want to run the tool.

4.2. Validation Type

We can select the type of error detection mechanism using
this feature. These types are mentioned below.

4.2.1. Sanity Checks
It runs the sanity checker module to detect the sanity error.

4.2.2. Validation (Rule-based)

It applies the rules from the Hindi annotation guidelines
mentioned in section 3.. The rules are written in the San-
chay corpus query language (Singh, 2012). Sanchay runs
the queries to detect errors.

4.2.3. Validation (Statistics-based)

It runs the statistical annotation error detection module of
Agarwal et al. (2012). The tool also has the flexibility to
add statistical model used by Ambati et al. (2010) and Am-
bati et al. (2011).

4.3. Validation Level

Once we have chosen the validation type, we can also
choose a more specific option for validation, i.e., the lin-
guistic level of annotation:

1. POS: Part-Of-Speech levels
Chunk: Chunk level

Morph: Morphological level

Eal A

Dependency: Dependency level

5. Others: Other sentence level information like, voice
type of the sentence.

For example, if we want to detect sanity errors at POS and
chunk levels, then we need to select ‘Sanity Checks’ from
the Validation Type and ‘POS’ and ‘Chunk’ from the Vali-
dation Level.

4.4. Running the Tool

Finally, press the Execute button. Based on the specified
options, the tool runs the corresponding error detection
module on the input. Errors detected are presented in a
tabular format, which we call as ‘error table’.

4.5. Error Table
Figure 2 shows an example of Error Table. There are six

columns in the table:

1. Rule: Displays the rule (not applicable for ‘Validation
(Statistics-based)’) which is responsible for showing
the error along with node and sentence ids.

2. Matched Node: The node at which the error occurred.

3. Context: The context in which the above node has
occurred.

4. Referred Node: The parent of the matched node in
the dependency tree (This column will be empty if the
data is not yet annotated at dependency level).

5. File: Path of the file to which the matched node be-
longs.

6. Comment: Displays a possible reason of the error in
arunning text.

On clicking a cell in the first column of any row, that partic-
ular node will be highlighted and displayed using the ‘Syn-
tactic annotation interface’ of Sanchay. Using this inter-
face, the validator can correct the respective error. We can
resize any column in the error table. We can also sort the
table based on any preferred column. For example, if we
want to correct all the errors in a file before going to next
file, we will sort it based on the ‘File’ column. Similarly,
one can correct errors based on the error type, by sorting on
‘Comment’ column.

4.6. Already Executed

Once the error table is displayed, we can save it, if we wish
to make changes afterwards. We can reopen the table by
browsing the file from the Already Executed section and
pressing the Run button. This functionality is really useful
when the error table is very huge. Validator can correct
some errors, save rest of the table and correct the remaining
errors next time without re-running the tool.

S. Functionalities to Reduce the Validation
Time

While developing the GUI for the validation tool, we also
concentrated on some small factors that can help in reduc-
ing the validation time. From feedback given by the anno-
tators and our interaction with them, we found that some
of the annotator’s time is spent in searching for a specific
node id in a treebank, it also takes time to confirm whether
the node is an error as annotators have to look into whole
context of the node. We developed the tool in such a way
that annotators do not have to do these things manually.
When annotators detect errors using the validation tool,
they are displayed with an error table listing all the pos-
sible detected errors. When annotator clicks on the poten-
tial error node shown to him/her, the sentence containing
that potential error node gets automatically displayed in the
Sanchay interface and the node gets highlighted. This way
he/she does not have to search for the node manually. Also,
the Sanchay query result table provide sufficient context
information (parent’s and sibling’s dependency labels and
POS tags) in the error file which is usually enough for them
to decide if the node is an actual error node or not, so that
they may not have to go into the sentence for that node at
all in certain cases (e.g. if it is not an error).
All these practices save a lot of extra time and help annota-
tors by reducing the extra work of opening each annotated
file and searching for the node manually.

6. Performance of the System Used

For detecting POS and Chunk errors in the treebank, we
have used a system employed by Ambati et al. (2010), the
performance of which is shown in table 1.

For detecting dependency errors, we have put a system em-
plpyed by Agarwal et al. (2012). We used this system be-
cause it works better than any other error detection system

1909

Search Results

Ridle Matched Node Referred Node File

4...[["F_QC = _NNC[[[¥ VM ... [fim
q [[% IP¢C
([®7_QC =L NNC -.[
Wf'd...[[[WA ([afE=i_Mt
o [TFL_NNC -_SYM ...[[[[[FFa_NN [[[37%_CC]l_CCP
(... |[[®ETA_VM F_PSP]1.{[[[¥9_DEM ...|[[¥@4_NN]]... |/
[[NULL_PSP fEmm_WM|[[¥
(. [[[FRE_VM H_PSP |)... |[[[[FRIS_PRP J[[H90_VM 1_SYN
[NULL_PSP f&n_VM[[[[¥5_DE}
LIP [[[[¥_VM.. [%VM
|[[[[SF14_PRE {[[#4_VM

t~"... [FIR_NNC ®3R®_NNC[[[¥9_VM ... [3W_CC NP

_NN [" _NNC -...

@|_VM

[FZF_]]

[CHUNK ERROR: V
..[CHUN! ROR: Verb

: chunk tag

VGF | VGNF IVC

Iatchy open
Sortable
(d...|[[FTF_I] AmA_NN ([[#¥9_VM ... [[[3"_CC JL_NP Save Table
[i[]{_ NNGUR_NMC|[[[[#_VM [[#R_CC]I_NP Saye Table As...

Reset All
m5-k* ghould be pot Clear All
mo-k* should be pof Add Row

{tha PSP should
{tha PSP should ...
e a PSP

TP and POS tag=1...

JTP and POS

woo|[[FE_NNC m3®_NMNC|[[[[¥9_DEM ...|[[¥R_CC]]_CCP/home/ ralul/wi 1k tag== VCF | VGNF | VC Copy
t="o.. [[[L NNC -_SYM ... [[[[FFHT_NN ([¥°_CC]|_CCH/home,/ rahul/wi ERROR: chunk tag== VGF | VGNF | VC cut
3 u

Paste

Print

Edit Off

Connect to DB

Mark for Saving

Delate Row
Insert Row
Clear Row
Add Column
Ipnsert Column
Delete Column

Clear Column

Figure 2: Error Table: The Sanchay query result table

’ Validation Level \ Recall ‘

work. It also helps in reducing a significant amount of val-

POS errors
Chunk errors

75%
62.5%

idation time.

Table 1: Performance of the POS and Chunk Error Detec-
tion System

for Hindi dependency treebank. The performance of this
system is shown in table 2.

| Approach | Recall |
Statistical Model 77.34%
Overall Hybrid Model | 81.49%

Table 2: Performance of the Dependency Error Detection
System

7. User Feedback

We also performed user studies of the tool that we have
presented. The overall study included detection of errors
using Hybrid Approach and the manual correction of the
errors detected using this GUI In the user studies, we report
that the tool saved around half of the validation time and at
the same time, 81% of the errors were also corrected in the
treebank. A detailed information about the user studies can
be found in Agarwal et al. (2012).

8. Conclusion

We have presented a GUI based tool for a validation of an-
notated data to detect and correct errors in a treebank. This
tool has proved to be very helpful for the annotators dur-
ing validation of the ongoing Hindi treebank development

9. Acknowledgements

We would like to thank Dr. Dipti Misra Sharma and the
annotators for their valuable feedback. Part of the work
reported in this paper is supported by the NSF grant (Award
Number: CNS 0751202; CFDA Number: 47.070).

10. References

R. Agarwal, B. R. Ambati, and D. M. Sharma. 2012. A
Hybrid Approach to Error Detection in a Treebank and
Its Impact on Manual Validation Time. In In Proc. of
The 10th International workshop on Treebanks and Lin-
guistics Theories (TLT10), Heiderberg, Germany.

B. R. Ambati, M. Gupta, S. Husain, and D. M. Sharma.
2010. A high recall error identification tool for Hindi
treebank validation. In The 7th International Conference
on Language Resources and Evaluation (LREC), Valleta,
Malta.

B. R. Ambati, R. Agarwal, M. Gupta, S. Husain, and D. M.
Sharma. 2011. Error detection for Treebank Validation.
In The 9th International workshop on Asian Language
Resources(ALR09), Chiang Mai, Thailand.

A. Bharati, R. Sangal, D. M. Sharma, and L. Bai. 2006.
AnnCorra: Annotating Corpora Guidelines for POS
and Chunk Annotation for Indian Languages. Technical
Report TR-LTRC-31, Language Technologies Research
Centre, [IIT-Hyderabad.

R. Bhatt, B. Narasimhan, M. Palmer, O. Rambow, D. M.
Sharma, and F. Xia. 2009. Multi-Representational and
Multi-Layered Treebank for Hindi/Urdu. In The Third
Linguistic Annotation Workshop at 47th ACL and 4th
IJCNLP.

1910

A. Boyd, M. Dickinson, and D. W. Meurers. 2008. On De-
tecting Errors in Dependency Treebanks. In Research on
Language and Computation 6(2).

M. Dickinson and D. W. Meurers. 2003a. Detecting In-
consistencies in Treebank. In The Second Workshop on
Treebanks and Linguistic Theories (TLT 2003).

M. Dickinson and D. W. Meurers. 2003b. Detecting Errors
in Part-of-Speech Annotation. In The 10th Conference
of the European Chapter of the Association for Compu-
tational Linguistics (EACL-03).

M. Dickinson and D. W. Meurers. 2005. Detecting Errors
in Discontinuous Structural Annotation. In the 43rd An-
nual Meeting of the ACL, pages 322-329.

E. Eskin. 2000. Automatic Corpus Correction with
Anomaly Detection. In the First Conference of the North
American Chapter of theAssociation for Computational
Linguistics (NAACL-00), Seattle, Washington.

van Hans Halteren. 2000. The Detection of Inconsistency
in Manually Tagged Text. In the 2nd Workshop on Lin-
guistically Interpreted Corpora, Luxembourg.

Anil Kumar Singh and Bharat Ambati. 2010. An integrated
digital tool for accessing language resources. In The Sev-
enth International Conference on Language Resources
and Evaluation (LREC), Malta, May. The European Lan-
guage Resources Association (ELRA).

Anil Kumar Singh. 2008. A mechanism to provide
language-encoding support and an nlp friendly editor. In
Proceedings of the Third International Joint Conference
on Natural Language Processing (IJCNLP), Hyderabad,
India. Asian Federation of Natural Language Processing.

Anil Kumar Singh. 2012. A Concise Query Language with
Search and Transform Operations for Corpora with Mul-
tiple Levels of Annotation. In The 8th International Con-
ference on Language Resources and Evaluation (LREC),
Istambul, Turkey.

Alexander Volokh and Gunter Neumann. 2011. Automatic
detection and correction of errors in dependency tree-
banks. In ACL-HLT(2011), Portland, Oregon, USA.

F. Xia, O. Rambow, R. Bhatt, M. Palmer, and D. M.
Sharma. 2009. Towards a multi-representational tree-
bank. In The 7th International Workshop on Treebanks
and Linguistic Theories, Groningen, Netherlands.

1911

