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Abstract
Document zone identification aims to automatically classify sequences of text-spans (e.g. sentences) within a document into predefined
zone categories. Current approaches to document zone identification mostly rely on supervised machine learning methods, which
require a large amount of annotated data, which is often difficult and expensive to obtain.
In order to overcome this bottleneck, we propose graphical models based on the popular Latent Dirichlet Allocation (LDA) model.
The first model, which we call zoneLDA aims to cluster the sentences into zone classes using only unlabelled data. We also study an
extension of zoneLDA called zoneLDAb, which makes distinction between common words and non-common words within the different
zone types.
We present results on two different domains: the scientific domain and the technical domain. For the latter one we propose a new
document zone classification schema, which has been annotated over a collection of 689 documents, achieving a Kappa score of 85%.
Overall our experiments show promising results for both of the domains, outperforming the baseline model. Furthermore, on the
technical domain the performance of the models are comparable to the supervised approach using the same feature sets. We thus believe

that graphical models are a promising avenue of research for automatic document zoning.

Keywords: document zoning, probabilistic graphical models, unsupervised learning

1. Introduction

In many practical tasks there is a need to extract and ac-
cess certain types of information from a large collection
of textual documents. For example in corporate environ-
ments, such as manufacturing, there are a huge amount of
unstructured historical data generated during the lifecycle
of a product. In such environments, engineers wanting to
resolve an issue on a particular product are often interested
in finding out the cause of the issue, problems encountered
on other similar product types and the conclusion drawn
after each investigation.

Another example are the biomedical researchers aiming to
stay abreast with current research they are typically inter-
ested in accessing information from PubMed' focusing on
particular parts of the articles, such as the method proposed
in the study, the results and conclusion obtained.

A major approach in such cases is to employ document
zone classification to recognise the information structure of
the documents, thus helping to assist information extrac-
tion and organisation of factual information from the docu-
ments.

The vast majority of the approaches applied for document
zoning, rely on supervised machine learning (Liakata et
al., 2010; Nawaz et al., 2010; Teufel et al., 2009), which
can achieve state-of-the-art performance given that a large
amount of annotated data is available. However, gather-
ing these annotations is often time consuming and expen-
sive. Furthermore, in most domains the format and style
of the documents can change rapidly, resulting that these
approaches could achieve suboptimal results, and thus col-
lecting more training data might be required.

In this paper, we thus investigate the possibility of employ-

"http://www.ncbi.nlm.nih.gov/pubmed/

ing unsupervised approaches for document zoning, which
to date has only been scarcely studied (Barzilay and Lee,
2004). We examine a couple of generative models for
zone identification, which we call zoneLDA and zoneLDAb
models, being extensions of the widely used Dirichlet Al-
location (LDA) (Blei et al., 2003) model. Both of the pro-
posed zoneLDA and zoneLDAb models can thus flexibly
model the zones categories by ignoring the order in which
the sentences occur in the documents. In addition, the
zoneLDAb model discovers words which are common to
the different zone types, and those are not good predictors
for a zone category, and those that are specific to the zone

types.

Our study also focused on evaluating our models on differ-
ent domains, such as the scientific biomedical domain, and
a more technical aerospace domain. For the latter one, we
also proposed a novel document zone annotation schema.

Our extensive experiments of zoneLDA and zoneLDADb
models show that although zoneLDA is equivalent with
zoneLDAb without modelling the common words, in the
majority of the cases zoneLDA outperforms zoneLLDAb.
These results are also superior to the baseline LDA model,
and are close to the supervised Naive Bayes classifier for
the aerospace domain, achieving an F-measure less than
5%.

The remainder of the paper is organised as follows. In Sec-
tion 2. we present the current state-of-the-art approaches to
document zone identification. In Section 3. we formally in-
troduce the task of document zone identification. Section
4. describes our proposed generative models that are mod-
ified versions of Latent Dirichlet Allocation model. Next,
in Section 5. we describe the datasets used in our experi-
ments and the novel document zone classification schema
proposed for the aerospace domain. Section 6. presents our
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Figure 1: Graphical models of zoneLDA (left) and zoneLDAb models (right). The words w are observed, while the per
document zone distributions € and per zone word distributions ¢ are hidden variables.

obtained experimental results. Conclusions and plans for
future work are shown in section 7.

2. Related work

Previous work on automatic labelling of document zones
mostly employ supervised machine learning, using widely
known classifiers such as Naive Bayes (Teufel and Moens,
2002), Hidden Markov Model (Li et al., 2010), Maximum
Entropy (Merity et al., 2009), Support Vector Machines
(Guo et al., 2011a; McKnight and Srinivasan, 2003) or
Conditional Random Fields (Hirohata et al., 2008). Semi-
supervised approaches using active learning have only
started to gain attention very recently (Guo et al., 2011b).
The majority of approaches have been applied to well-
formatted scientific articles in the context of computational
linguistics (Teufel et al., 2009), biology (Mullen et al.,
2005; Liakata, 2010; Nawaz et al., 2010; Agarwal and Yu,
2009; Hirohata et al., 2008) or chemistry (Liakata, 2010;
Teufel et al., 2009), focusing on either the full text or ab-
stract of the articles. The application of document zoning to
complex technical domains, such as the aerospace domain
has not been studied yet. These domains can pose addi-
tional difficulties for a document zoner due to the intrinsic
complexity of the language in them (Butters and Ciravegna,
2008) .

Furthermore, there has been only little work on using
unsupervised approaches to document zone classification.
(Barzilay and Lee, 2004) proposed a Hidden Markov
Model (HMM) model to zoning with the states correspond-
ing to topics from the document, and used a state-specific
language model to generate the sentences relevant to the
topics. Therefore they first applied clustering to compute
the similarity between sentences as measured by the co-
sine metric and then they estimated the parameters for the
HMM.

On the other hand, unsupervised approaches based on LDA
has been found successful on a variety of different tasks in-

cluding sentiment analysis (Lin and He, 2009), topic mod-
elling (Zhao et al., 2011) and entity resolution (Dai and
Storkey, 2011).

Continuing this success we propose two refined LDA mod-
els for the task of document zoning, which in contrast to
previous unsupervised approaches are more flexible, in that
they don’t take into account the order of the sentences in
the documents.

In the next section we formally introduce the task of doc-
ument zoning and then we present our proposed graphical
models in Section 4.

3. The task of document zoning

We assume a corpus D consisting of documents
{D1...Dn,}. Each document D; in D is a se-
quence of sentences of Ng which we denote by
s = {57;71,...,57;71\;51,}, and each sentence contains a
sequence of Ny, ., words (in more general case a se-
quence of n-grams) s; ; = {ws,... 7U)Nsm,n}’ where the
words are taken from the vocabulary V.

The task of document zoning then is to assign to
each sentence s;; in document D; a zone category
z € Z, where for example the distinct zone types Z €
{Introduction, Methods, Results, Abstract, Discussion},
and |Z| = Nz = 5.

4. Methodology

We propose two generative models zoneLDA and
zoneLDADb for document zoning which are refined versions
of the Latent Dirichlet Allocation model.

4.1. zoneLDA model

The zoneLLDA model as depicted in Figure 1. is based upon
the assumption that documents are mixture of zones, where
a zone is a probability distribution over words.

Compared to the original LDA model, thus zoneLLDA
models the documents as mixture of zones and furthermore
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it makes the assumption that every word in a sentence has
the same zone type assigned.

The generative process of zoneLDA (as shown in Algo-
rithm 1) can be viewed as a procedure describing how doc-
uments are written based on the available zone types Z.
That is, first the distribution over the mixture of zones (Od)
is chosen for the document. Then, for each sentence a
zone type is randomly selected from the zone distribution,
and the corresponding words from that sentence are gener-
ated according to the corresponding word-zone distribution

(0%).

Algorithm 1 Generative process of zoneLDA. Z denotes
the number of zones, N; denotes the number of documents,
N, denotes the number of sentences, N, ,, denotes the num-
ber of words in sentence s, « refers to a vector for Dirichlet
prior for the document zone distributions, 0% refers to the
document zone distribution for document d, wq, s, denotes
the word at the position n of the sentence s in document d,
B refers to the word probability vectors as Z x V for the
Dirichlet prior for each zone

1: for all documentd = {1,..., Ny} do

2:  draw 0 ~ Dir(a)

3: for all zone type z = {1,...,Z} do

4: draw ¢* ~ Dir(3)

5: for all sentence z4, s, where s € {1,..., N} do
6: draw azone class z4 s ~ Multinomial(6¢)
7
8
9

: for all word wy s ,, do
draw wg s, ~ Multinomial(¢p?*+)

: When running the model with the number of zone
types(Z) greater than the number of predefined zone
classes, perform k-means clustering with distributions
of words as features to obtain | N, | of zone categories

We used Gibbs sampling for estimating the posterior distri-
bution of the hidden variable z for sentence ¢ in document
d:

”g,—i,. + ag Zi‘)/zl(ns,i,u) +
na,..+Zax nk  +VB

P(zq; = k|z—q,w)

where nk . denotes the number of sentences assigned to

zone k for document d, ng,. . denotes total number of zone
types assigned to document d, nkv denotes the number of
times word v is assigned to zone k, n’(}' i is the number of
times word v from sentence i of document d is assigned to
zone k.

4.2. zoneLDAb model

In this section we present an extended version of the
zoneLDA model (shown in Figure 1.), which we call
zoneLDAb. As opposed to zoneLDA, zoneLDAD distin-
guishes between common words or background words (for
e.g. use”, “determine”, “indicate”, “’cell”’) which can ap-
pear in multiple zone types and words which are specific to
a zone category. This distinction is based on the intuition
that words which are related to multiple zone categories are

likely to introduce noise (e.g. zone types with incoherent

words), and thus those words are not discriminative for a
zone category.

As presented in Algorithm 2, the generative process of
zoneLDAD differs from that of zoneLDA, in that for each
sentence a word distribution is chosen either from the back-
ground zone distribution or a selected zone distribution. In
zoneLDAb we thus need to infer the zone distribution for
each document (Hd), the word distributions for each zone
type (#*) and the word distributions for the background
words (A%). Furthermore, the 7 variable has the role in de-
termining whether a word is a background word or a zone
specific word.

Algorithm 2 Generative process of zoneLDAb. Z denotes
the number of zones, N; denotes the number of documents,
N, denotes the number of words in sentence s, « refers
to a vector for Dirichlet prior for the document zone dis-
tributions, 6¢ refers to the document zone distribution for
document d, wq s, denotes the word at the position n of
the sentence s in document d, 3 refers to the word proba-
bility vectors as Z x V for the Dirichlet prior for each zone,
indgq,n,s indicates whether a word is a background word or
not

1: draw ¢7 ~ Dir(3), 7 ~ Dir(7)

2: for all zone type z = {1,...,Z} do

3:  draw ¢* ~ Dir(9)

4: for all documentd = {1,..., Ny} do

5. draw 0? ~ Dir(a)

6: for all sentence z4 5, where s € {1,..., N} do
7:  draw azone class z4 s ~ Multinomial(6¢)
8: for all word wq_s ,, do

9:  draw indicator indg s ,, ~ Multinomial(r)
10: draw word wg,, ~ Multinomial(¢?) if

inddﬁsyn =0

and wgq, s, ~ Multinomial(¢*+=) if indg s n =1
11: When running the model with the number of zone
types(Z) greater than the number of predefined zone
classes, perform k-means clustering with distributions
of words as features to obtain |V, | of zone categories

Similarly, we run Gibbs sampling for estimating the poste-
rior distribution of the hidden variable z for sentence 7 in
document d:

k
‘ Ng,—q, +
Plza; = k|z—q4,w,ind)) oc —2= &
(Zdﬂ ‘Z dyi, W, 1N )) X n... T Zag

L(nf  +Vp) lv—[ L(nk. ., +nk,,+8)
>< b)
L(nk  +nf, +VB) L(nk. , +P)

v=1

where n . denotes the number of sentences assigned to

zone k for document d, n4,.,. denotes total number of zone
types assigned to document d, nk denotes the number of
times any word is assigned to zone k, nZL is the number of
times any word from sentence i of document d is assigned
to zone k, nk . » denotes the number of times word v is as-
signed to zone k, n’r}_m is the number of times word v from
sentence i of document d is assigned to zone k.
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5. Corpora

In order to evaluate our models we conducted experiments
on corpora belonging to two very different domains: the
scientific domain and the technical domain. Corpus statis-
tics are presented in Table 1.

5.1. Scientific domain

For the scientific domain, we have built a corpus con-
sisting of biomedical journal articles crawled from the
PubMed system. We selected 1,106 articles from the PLoS
Pathogens journal® published between January 2006 until
June 2011. 3 All the documents had to contain all the five
zone categories of the widely used IMRAD (Introduction-
Method-Results-Abstract-Discussion) (Agarwal and Yu,
2009) classification schema. The articles that didn’t con-
tain at least one of the these zones were discarded.

In the data pre-processing phase we removed all text that
was contained in the other zones of the document (such as
“References”, ”Supporting Information”, ’Synopsis”, etc.)
as they are not the focus of our task. We also eliminated
zone names as they would give away valuable information,
figures, the text in tables and captions.

In order to reduce data sparsity we removed all numbers,
words made out of special characters, citations, references,
applied Porter stemming and discarded sentences which
contained less than 5 words and words that occured in less
then 10 documents. We also removed all stopwords and
one-character words. Thus, the resulting corpus will con-
tain only stemmed content words that are not very docu-
ment specific, a typical procedure when training topic mod-
els. We used a Python script* to perform these steps and to
annotate each sentence with one of the IMRAD zone cate-
gories.

The average length of the zones in the corpus is presented
in Table 2.

5.2. Technical domain and proposed document zone
annotation schema

Our second dataset consists of two corpora in the aerospace
domain comprising of 689 textual reports, which were col-
lected as part of the SAMULET research project funded by
Rolls-Royce and the Technology Strategy Board, in which
two of the authors are involved. Due to privacy reasons
these corpora have restricted access and we will refer to
them as Corpus A and Corpus B. These technical reports
are unstructured and semi-structured PDF document con-
taining a mixture of natural language sentences, images and
tables. They were written at different stages of an investi-
gation process, which is typically initiated by a customer
raising a request regarding an issue on a particular engine.

On these corpora we first conducted a corpus analysis to un-
derstand and identify the information they share in common
and the possible zone categories they contain. Our analysis
revealed that there are six zone types common in the reports

Zhttp://www.ncbi.nlm.nih. gov/pmc/journals/349/

3The IDs of the Plos journals articles used in our experiments
can be found at www.dcs.shef.ac.uk/~daniel/plos.
ids

“The Python script is available at www . dcs . shef .ac.uk/
~daniel/pubmed.py

(see Table 4), as they all follow a problem-solving perspec-
tive of an investigation. For example these reports typi-
cally contain the Metadata zone which introduces the main
entities (engine, component) under investigation, then they
continue with a Problem description zone which describes
the problems which occurred on these entities; next the In-
structions zone provides typical instructions regarding what
procedure should be taken, finally the Decision contains the
decision taken after investigation. In addition, two other
zones were found in these reports: the Acknowledgement
zone, which is the formal part of the document, and the Az-
tachment zone, which includes further evidence taken dur-
ing investigation (e.g. in forms of images, emails, faxes).
Although the proposed zone categories share some com-
monalities with existing classification schemas (e.g. IM-
RAD), the Instructions and Acknowledgement zones are
new in our schema. The instructions are typically split into
tasks and subtasks, and may consider reference to some
manuals (e.g. the engine manuals). The Acknowledgement
zone acknowledges the conclusions drawn from the report,
containing the signatures of the responsible agents.

These two corpora were then annotated by two indepen-
dent annotators (the first and the third author of the paper),
achieving an inter annotator Kappa agreement of 85%. The
average length of the zones in the corpora is presented in
Table 3.

In the pre-processing stage we converted all the PDF docu-
ment into plain text> and thus removed all the formatting in-
formation and figures. Similarly to the biomedical corpus,
we removed all the numbers and stop words. Furthermore,
due to the diverse format of the documents, consisting of
tables and natural language text, we considered as smallest
unit of classification the lines of the documents, as opposed
to sentences.

6. Experiments

In this section we discuss the results obtained in our exper-
iments using the two graphical models proposed in Section
4. For evaluating the accuracy of the clusters generated by
the zoneLDA and zoneLDAb models we used a baseline
LDA model, a supervised machine learning algorithm, and
the random baseline. The baseline LDA model, employs
the original LDA model proposed in (Blei et al., 2003) for
discovering the topics in a document, and based on the dis-
covered topics, at inference time, assigns to each sentence
the most likely topic among the words within that sentence.
For all the graphical models we run Gibbs sampling for
10,000 number of iterations and a burn-in of 500. The
supervised classifier employed was the Naive Bayes clas-
sifier which was trained with the same-bag-of-words fea-
tures. We used the implementation of Naive Bayes avail-
able in the Mallet toolkit °.

6.1. Dataset Preparation

We evaluated the proposed models on two very different
domains: a publicly available scientific domain and a tech-

>We used Apache PDFBox library available at http://
pdfbox.apache.org/ for converting the Pdf documents into
plain text format.

*http://mallet.cs.umass.edu/
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Domain Corpus name Number of Average number of Average number of
documents sentences per distinct words
document
scientific domain PLOS journal articles 1,106 241 £ 59 966 + 174
technical domain Corpus A 317 226 £+ 295 329 4+ 241
Corpus B 372 394 + 405 518 + 273
Table 1: Corpus statistics of documents in the scientific and technical domains.
] Abstract | Introduction [ Methods |  Results | Discussion |
y 11 \ 27 \ 64 \ 88 \ 53 \
Table 2: Average length for each IMRAD zone in the PLOS journal corpus
Corpus name | Metadata Problem Decision Instructions Acknowledgement Attachment
descrip-
tion
Corpus A 36 3 22 76 17 35
Corpus B 30 49 13 107 13 25

Table 3: Average length for each proposed zone category in the technical corpora

Zone Category \

Description ‘

1. Metadata

contains general information about the report: the title of
the report; the entities (for e.g. engine, component)
under investigation; and other entities (e.g. agents)

participating in the investigation

2. Problem description

aims to describe the problem encountered on a specific

entity (e.g. engine, component)

3. Decision

summarises the decision taken after investigation. (for

e.g. the conclusion drawn)

4. Instructions

describes the general procedure to follow in a certain

situation (for e.g. a given problem)

5. Acknowledgement

denotes the formal part of the document, consisting of
the details of the agents (e.g. name) and their signature

6. Attachment

contains further evidence attached to the investigation

(mostly pictures, email, faxes)

Table 4: Proposed document zone annotation schema in the aerospace domain

nical domain with restricted availability. The scientific do-
main data consists of 1,106 biomedical articles downloaded
from PubMed.

After stemming and removing the stop words the size of
the vocabulary of this corpus was 46,698. We furthermore
reduced the size of the vocabulary to avoid sparsity and de-
crease the time required for training our graphical models.
We discarded all the words which occurred in less than 10
documents, and in more than 70% of the corpus, result-
ing in a reduced vocabulary of 6,843 words. In addition,
we conducted experiments keeping only the top 1,000 most
frequent words in the corpus; and another experiment in
which we only removed words which occurred in less than
10 documents, but did not find any significant improve-
ment.

Our technical domain data consists of two aerospace cor-
pora. After stemming and removing the stop words the size

of the vocabulary of Corpus A was 4,153. After removing
words which occur in less than 5 documents the vocabulary
became 1,023. For the Corpus B the initial vocabulary has
been reduced from 2,964 to 1,340 after discarding words
which occur in less than 5 documents.

6.2. Evaluation metric

In the case of scientific domain we split the original cor-
pus into 60% training, 10% development, and 30% testing,
and we averaged the results over 5 independent runs. For
the case of technical domain, we split the original CorpusA
and CorpusB into 45% training, 10% development and 45%
testing and we averaged the results over 5 independent runs.
In each of the case we compared the performance of the un-
supervised graphical models, baseline LDA model and the
supervised classifier over the same held-out test data.

For evaluating the clusters generated by zoneLDA and
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zoneLDAb models we employed pairwise clustering evalu-
ation metric implemented in Mallet, which taking the gold
standard into account for each pair of sentences computes
the false positives and false negatives in order to decide

whether the pair should be in the same cluster or not:

Prec _|clustered sentence pairs which should be clustered|

pair — |sentence pairs which are clustered|
Rec.. . — Iclustered sentence pairs which should be clustered|
pair — |sentence pairs which should be clustered|

2xPrec xRec

o pair
Flpalrf Prec

+Rec

pair

pair pair

6.3. Hyper-parameter setting

We evaluated both zoneLDA and zoneLDAb models
with different values for their parameters. We first
varied the number of word distributions, considering
Z € {5,50,100} for the biomedical domain and Z €
{7,50,100} for the aerospace domain. In addition for
the different number of zone types we experimented with
asymmetric and symmetric values for v . We thus investi-
gated six different values for a.

In the first setting we chose a symmetric Dirichlet prior with
a = 0.1, which discovers zone types which are sparse. In
the second case we chose a symmetric Dirichlet prior with
a = 1. In the third case we chose a symmetric Dirichlet
prior with o = 10, which discovers zone types which are
dense.

We furthermore experimented with assymetric Dirichlet
priors, where we initialised the «;,i € {1,...,Z} val-
ues for the different zone categories based on the develop-
ment set. As such, in the fourth setting, we set the a;, 7 €
{1,...,Z},sothat 37,4,y o = 0.1. Inthe fifth case
wesettheay,i € {1,..., Z},sothat} 0y i =1
And in the sixth case we set a;,¢ € {1,...,Z}, so that
Zie{l,...,Nz} o; = 10. We set the value for the 5 parame-
ter to 0.01.

In our experiments we will refer to the first case with /17,
to the second case with /27, to the third case with /37, to
the fourth case with /47, to the fifth case with /5" and to
the sixth case with ”/6”.

6.4. Results

Figure 2 shows the results obtained in terms of F1-measure
over the biomedical corpus. As we can observe, the
accuracy of the zoneLDA model slightly increases with
the number of zone types learned. The zoneLDA model
achieved an Fl-measure over 30% for 50 and 100, having
the best F1-measure of 35, 22% for 50 topics with an asym-
metric Dirichlet prior (case ”50/6” in Figure 2). In contrast,
when we look at the results of the zoneLDAb model, the
improvement obtained with different number of zone types
is less significant. The best Fl-measure of 32.08% being
achieved with 5 zone types and an asymmetric Dirichlet
prior (case ”5/6” in Figure 2). Compared to the baseline
LDA model we can also notice, that when we have a small
number of zone types (e.g. 5), the baseline LDA model
outperforms both zoneLDA and zoneLDAb models, but as

Biomedical Corpus

90

—— zonelLDA
- 8- zoneLDAb
| |~ A

80 -a& NB

70 1

60

N N NS N N N NS NSy S S Y, NS Sy SR SN
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40 —

10

T T T T T T T T T T T T T T T T T 1
5/1 5/3 5/5 50/1 50/3 50/5 100/1 100/3 100/5

Number of zones/alpha value

Figure 2: The performance of zoneLDA and zoneLDAb
model over the biomedical corpus.

Corpus A

90

—— zonelLDA
-9-  zonelLDAb
80 4 |~ LDA
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F1%
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Figure 3: The performance of zoneLDA and zoneLDAb
model over CorpusA.

the number of zone types increases the performance of the
zoneLDA model becomes superior in most of the cases.

When looking at the errors made by the zoneLDA model,
we noticed that the most difficult zone to identify was the
Abstract zone, for which the zoneLDA model achieved an
Fl-measure of 1%. The second most difficult zone type
was the Introduction zone, for which the performance was
8%, next for the Discussion zone type the F1-measure was
21, 4%, for the Methods zone was 30.00% and for the Re-
sults zone was 66.8%. Similar trends can be observed for
the zoneLDAb model. The Abstract zone type still being
the most difficult zone type to be discovered with an F1-
measure of 2%. Then for the Introduction the zoneLDAb
model achieved an F1-measure of 13.1%, next for the Dis-
cussion zone type it achieved an F1-measure of 25, 1%. The
best two performances were achieved for the Methods zone
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Method Plos journal articles Corpus A Corpus B
Prec | Recall | Fl Prec | Recall | Fl Prec | Recall | FI
Random baseline 20,00%| 20,00%| 20,00%| 14,28%| 14,28%| 14,28%| 14,28%| 14,28%| 14,28%
LDA (baseline) 27,30%| 49,10%| 35,08%| 42,90%| 33,55%| 37,65%| 26,70%| 42,50%| 32,79%
zoneLDA 29,50%| 43,70%| 35,22%| 49,25%| 91,50%| 64,03%| 32,75%| 84,80%| 47,25%
zoneLDAb 26,63%| 40,33%| 32,08%| 49,35%| 68,40%| 57,34%| 33,30%| 75,95%| 46,29%
NaiveBayes 52,40%)| 51,23%| 51,8% | 78,07%| 67,53%| 72,41%| 68,35%| 40,99%| 51,23%

Table 5: The best results obtained on scientific and technical domains

Corpus B

70 1

—— zoneLDA
-a- zoneLDAb
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Figure 4: The performance of zoneLDA and zoneLDAb
model over CorpusB.

type, an Fl-measure of 38,9%; and for the Results zone
type an Fl-measure of 41,5%. These results are as well
in light with the results obtained with the supervised Naive
Bayes classifier. Namely, the worst F1-measure of 1% was
achieved on the Abstract zone type, followed by the Intro-
duction zone type with an F1-measure of 43.32%, then for
the remaining of the zone categories the classifier achieved
an Fl-measure of over 50%. For the Discussion zone type
being 54.94%, for the Results zone type was 70.43%, and
for the Methods zone type achieving 85.8%.

These results furthermore show, that for both zonelLDA,
zoneLDAb models and the supervised Naive Bayes classi-
fier, the best performances were achieved for the long zone
categories, which contain the most number of sentences.
This is because in case short zone categories such as Ab-
stract uses words from other zones that are not discrimina-
tive of this zone type.

When examining the results obtained by the baseline LDA
model, however, the results look different. The worst re-
sults were obtained for the Discussion zone, an F1-measure
of 2%, for the Methods zone type, an F1-measure of 3.4%,
and for the Abstract zone type, an Fl-measure of 5.6%.
Then for the Introduction the baseline model achieved an
Fl-measure of 34.8%, and for the Results zone type an F1-
measure of 43.2%.

Figure 3 shows the results obtained in terms of F1-measure

over the aerospace Corpus A. As we can see, the zoneLDA
model is more sensitive to the number of zone types
learned. The best Fl-measure of 64.03% was achieved
with 100 zone categories using a symmetric Dirichlet prior
(case ”100/3” in Figure 3). This result is also close to
the supervised Naive Bayes classifier, which achieved and
Fl-measure of 72,41%. Similar trends can be seen for
the zoneLDAb model, which improves its performance
with the number of zone types learned, achieving the best
Fl-measure of 57.33% using 100 zone categories with
an asymmetric Dirichlet prior (case ”100/4” in Figure 3).
Compared to the baseline LDA model, we can also notice
that both zoneLDA and zoneLDAb models perform consis-
tently better when having a large number of word distribu-
tions and clustering.

Figure 4 shows the results obtained in terms of F1-measure
over the aerospace Corpus B. The performance of the
zoneLDA model slightly increases with the number of
zone types learned. The best F1-measure of 47, 25% was
achieved using 100 zone categories with an asymmetric
Dirichlet prior (case ”100/3” in Figure 4), which is only 5%
less than the performance of the supervised Naive Bayes
classifier. The performance of the zoneLDAb model is
also very similar, being over 40% for all the different cases
when 50 or 100 zone categories are used, the best values
of 46, 29% (case 100/4” in Figure 4) was obtained for 100
topics with an asymmetric Dirichlet prior. Compared to the
baseline LDA model, we can also notice that both zoneLDA
and zoneLDAb models perform consistently better when
having a large number of word distributions and clustering.

In summary, our results show that in general the perfor-
mance of the zoneLDA and zoneLDAb models increases
with the number of word distributions learned. For the ma-
jority of the cases, when the number of word distributions
is more than 50, the zoneLDA model consistently outper-
forms the zoneLDAb model. This is because the back-
ground words discovered by the zoneLDAb model seem to
contain zoning information.

When we compare the zoneLDA and zoneLDAb models
with the baseline LDA model we can furthermore notice
that having the number of word distributions relatively
small (e.g. equal to the number of predefined zone classes:
5 for the scientific corpus, and 7 for the technical cor-
pora), the baseline LDA model outperforms both models.
These results are not surprising, because in such cases, both
zoneLDA and zoneLDAb models discover coherent top-
ics, rather than zone types. On the other hand, when the
number of word distributions learned increases these mod-
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els exhibit a significant improvement over the LDA model.
In this case, the discovered word distributions are less sen-
sitive to topic information, allowing the zone information
to be discovered. Moreover, on the technical domain, the
performance of the unsupervised zoneLDA and zoneLDAb
models are comparable with the supervised Naive Bayes
algorithm.

7. Conclusions

In this paper we introduced zoneLDA and zoneLDAb mod-
els for unsupervised document zoning, which cluster the
sentences in a document into predefined zone categories.
Both of the models ignore the order of the sentences in the
documents, and the second zoneLDAb model makes a dis-
tinction between content and background words. In our ex-
periment, the two models improve upon the baseline LDA
model which first discovers the topics of the words within
the sentences, and then infers the most likely zone for a
sentence.

We demonstrated the effectiveness of the models on two
very different domains: a scientific biomedical domain and
on two technical aerospace corpora. For the latter do-
main, we also proposed a novel document zone annotation
schema, and our unsupervised graphical models achieved
performance comparable with the supervised Naive Bayes
classifier, with less than 5% deficit in F1-measure.

Our future work will consist in evaluating these models on
corpora from other domains and in constructing more elab-
orate graphical models for document zoning.
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