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Abstract
We examine speaker independent emotion classification sfo@ech, reporting experiments on the Berlin database sasiodasic
emotions. Our approach is novel in a number of ways: Firss, hierarchical, motivated by our belief that the most dil@deature set
for classification is different for each pair of emotionsrtfer, it uses a large number of feature sets of differereagypuch as prosodic,
spectral, glottal flow based, and AM-FM ones. Finally, it éoys a two-stage feature selection strategy to achieveidisative
dimensionality reduction. The approach results to a diaasion rate of 85%, comparable to the state-of-the-arh@dataset.
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1. Introduction 2. Feature Extraction

Automatic emotion recognition from speech has attractech humber of feature sets are considered in our approach. In

significant interest in recent years, aiming at improvedmore detail they fall within the following four categories:
human-computer interaction. Several approaches have

been proposed in the literature, varying in the types an® 1. Prosodic Features
number of features employed, the classifier used, and th .
system developed. For example, there have been works ug-UCh features are strongly rglated to thg emotlional state of
ing traditional features from the speech recognition iter thies ?)Zepaei;e\r/vingxsgectet)\(/\t/znfselgﬁ?r/el;sree(ljel\?a:':eto“:)er:)astg(rj?/. mln
gf)li;ee oar d@g;‘ﬁ; Iﬁ;tela\ﬁczigl;?e“tiy(;?eersngzr?é %lé’hezroslggg?nation and intens.ity. First, we calcula}te the pitqh canto
employ complex classifiers and systems of a hierarchicai;ghesgggrrgm\’;\?eusg:g tStee ZIAE; erg]]::|th|;r(1) ((;rk?tl;ilz'ir}% ?rSn)a
form (Mao and Zhan, 2010; Shaukat and Chen, 2008). U% n, bout ' hintFrJ1 it 9 9y

to now, most of the highest performing speaker indepen—O about speec ensity.
dent emotion recognition systems use large feature sets al

rather complex classifiers (Schuller et al., 2006; Lee an?’jz' Spectral Features

Narayanan, 2005). For example, Schuller et al. (2006) exAs in the state-of-the-art in speech recognition, we employ
tract a large set of 4k features, achieving an average recod?e Mel frequency cepstral coefficients (MFCCs), together
nition rate of 87% on the Berlin database of emotionalwith their first-order derivatives (Young et al., 2002). In
speech (Burkhardt et al., 2005). addition, we compute the zero crossing rate (ZCR) of each
The proposed approach in this paper achieves comparabieame (Young et al., 2002).

performance with the best research efforts by using only

112 features in total. We accomplish this by designing a&-3. Glottal Flow Features

system that is based on smaller and more specially traineflhe volume velocity of air-flow through the glottis is the
sub-systems that focus on pairs of emotions. We also usedkcitation source for voiced speech. The glottal flow is re-
two-stage feature selection scheme, in contrast to the-statjated with several voice quality features, such as breathi-
of-the-art simple sequential selection. We finally involve ness, harshness, and creakiness, and therefore it provides
feature sets that are not typically employed in the emotionyseful information about the emotional state of the speaker
recognition literature, such as glottal flow features and-AM The estimation of the glottal flow is based on Fant's source-
FM ones. Thus, although the total number of features refijter theory, according to which the voice excitation anel th
mains smalll, there is much variety in their types. vocal tract are linearly separable. In this manner, speech
The rest of the paper is organized as follows: First, in Secproduction can be modeled by a cascade of linearly separa-
tion 2, we describe the different feature sets consideced, t pje filters. In order to obtain the glottal flow, we performin-
gether with their basic theoretical background. In Sectionerse filtering by using the IAIF algorithm, which employs

3, we present our two-stage feature selection approach, anghe discrete all pole (DAP) method to model the vocal tract

in Section 4, we explain how the final system works. Fol-and then cancels it iteratively to obtain an estimate of the
lowing these, in Section 5, we present our experiments angjottal flow waveform (Airas et al., 2005).

associated results. Finally, we conclude the paper with &nce the glottal flow is obtained, we extract time and fre-
short summary in Section 6. quency based features from its waveform, such as the:
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Feature Selection (2 stages)

feature feature classifier
extraction selection ) training
[112] MRMR L401 | tbackw?rdt . [10]
—_ . —3p |feature selection| —_ . .. . ...
selection wrapper Figure 2: Training of each emotion recognition sub-system.

Two of the simplest and most used wrappers belong to se-
_ _ uential feature selection algorithms, and farsvard fea-
Figure 1: The tw_o—stage feature_selectmn sc_heme_emp_loy re selection (FFS) anchackward feature selection (BFS).
here. Numbers in brackets depict feature dimensionality. £rg starts from the empty set and sequentially adds the fea-
ture that results in the highest recognition rate, when com-
e Open quotient, which is the ratio of the time in which  pined with the features that have already been selected. In
the vocal folds are open and the whole pitch periodcontrast, BFS starts from the full feature set and sequen-

duration. tially removes the feature that leaves a subset with the-high
o Speed quoatient, defined as the ratio of rise and fall time €st recognition rate. Both constitute greedy approaches an
of the glottal flow. may be trapped in local minima. In our experiments, we

compare these two wrappers and show that BFS performs
better, especially when the initial set of features is large
In our system we use a two-step feature selection scheme
e Harmonic richness factor, which is the ratio of higher  that takes advantage of both generalization propertiek of fi
harmonics to the first harmonic. ter algorithms and classifier-adaptive properties of wrap-
In total, we extract 18 time based and 4 frequency baseB€rs: As a filter we employ thenaximum relevance-
features. minimum redundancy (MRMR) algorithm (Peng et al.,
2005). This method tries to select a feature set that has
24. AM-FM Features maximum relevance with the two emotions involved in each

. : ._two-class emotion classification sub-problem (see Section
The AM-FM model considers decomposing the speech S'gzl) as well as minimum intra-redundancy in terms of mu-
nal into a series of a few instantaneous frequency and ar‘%él information between its features

plitude S|gnqls._ These S|gnals.c.an be congld(_ared as F'm?ﬁ more detall, ifS denotes a set of selected features within
frequency distributions, containing acoustic informatio

that is not captured by the linear speech model (Potamianci%ijae:l ofisll i?/zisgble featurék then a measure of ite-
and Maragos, 1999). yisg y

e Normalized amplitude quotient that is used to
parametrize the glottal closing phase.

Following the approach in (Dimitriadis and Maragos, 1 o
2005), we model each speech sound by six AM-FM sig- Ws = S| Z 1(4,3)
nals, estimating their parameters by the energy separation ijes

algorithm (ESA). At the end, twelve (26) parameters are

. whereI(z, j) represents the mutual information between
obtained for each utterance frame. (i-j) rep

featuresi and j, and|S| denotes the number of features

We should note that, for all aforementioned feature sets, wi SetS. Theminimum redundancy criterion seeks the set

only utilize their first and second order statistics (meanh an Of featuresS that minimizeslVs. Next, if ¢ € C denotes
variance). the class of interest (for the two-class emotion classiticat

problem we will havel = {¢y, c2}), we can calculate the
3. Feature Selection Strategy relevance of feature setS as

Eeature selection is a very crucial step ir_] pattgrn repogni- Ves= 1 Zl(c’i) .

tion problems to counter the curse of dimensionality. It S| ics

does so, avoiding feature transformations such as PCA or

LDA, obtaining instead a subset from the initial set of fea- The maximum relevance criterion seeks feature set that

tures that is most relevant to the classification problem afhaximizesic, s for the specific classification probleth
hand. The MRMR algorithm then tries to achieve both of the two

In general, this requires a search strategy to select carrevious criteria by maximizing the following quotient:
didate subsets and an objective function to evaluate such

candidates. Depending on their objective function, featur ZI(& i)
selection algorithms can be divided into filters and wrap- max €8 )
pers. Filters evaluate feature subsets by their informatio sca L Z (4, )
content, typically statistical dependence or information S| iies 7

theoretic measures. Wrappers, in contrast, evaluate the su

sets by their classification rate on test data. One can clair®btaining the optimal solution to the above through ex-

that filters have better generalization properties, asdiney haustive search is clearly intractable. In practice, one
not related to any classifier. On the other hand, wrapperproceeds with a sequential, incremental, non-optimal ap-
can interact with a specific classifier and find a subset thgproach, by first selecting as the first feature the one that
is also appropriate for the problem at hand. maximizes the relevance criterion, and subsequently gddin

1204



Anger Fear Sadness Boredom Neutral Happiness
Anger 87% 2% 0% 1% 0% 10%
Fear 7% T78% 4% 3% 1% 7%
Sadness | 1% 7% 84% 6% 2% 0%
Boredom | 0% 6% 7% 61%  23% 3%
Neutral 3% 3% 0% 12% 82% 0%
Happiness 14% 10% 0% 1% 1% 74%

Table 1: Confusion matrix for thgender dependent exper-

iment withforward selection algorithm used for feature se-

Figure 3: The five sub-systems for recognizing “happi-lection from the entire set of features. The overall acoprac
ness”, denoted by the five lines connecting the circles. s 77.08%.

one feature at a time, similarly to the FSS approach mert- Anger Fear Sadness Boredom Neutral Happiness
tioned earlier. Assuming that the selected set at the currepAnger 86% 1% 0% 1% 0% 12%
iteration isS, then feature € 2 — S will be selected as Fear 6% 8% 3% 3% 1% 5%
Sadness | 0% 5% 88% 5% 2% 0%
i = argmax —1 (¢,1) Boredom | 0% 4% 6% 64% 22% 4%
i E0-S LZI(Z ) ' Neutral 2% 3% 0% 10% 84% 1%
S| J Happiness 15% 9% 0% 1% 2% 73%

jES

The process terminates, once we arrive at the desired feggbliZ:_'[CrZ]%nfukaon dmsgtrlﬁ_for tTgen.?ﬁ depenéjefnt efxp?r-
ture set size. We should also note that, in the above, alhent with backwar ection aigorithm used for feature

mutual information quantities are computed after appropri selec_tlgg ;rlc:);n the entire set of features. The overall accu-
ate discretization of all continued-valued features. racy IS /3.711%.
The two-stage feature selection scheme employed in our

approach is depicted in Figure 1. algorithm performance. Furthermore, we observe the grad-
_ ual improvement of recognition accuracy of almost all emo-
4. Final System tion classes, first when applying the BFS scheme in place of

Our emotion classification system hakierarchical struc- ~ FSS, and subsequently when employing the proposed two-
ture, as it is composed from multiple specialized systemsSt2ge approach that includes the MRMR algorithm. One
Each one of the smaller systems is trained to distinguis§ould note that these results are in par with human emo-
between only one pair of emotions (e.g., fear vs. happillon pPerception experiments reported at 84.3% by Schuller
ness, anger vs. happiness, etc.), and it is trained sep’(;a\rate'at al. (2097)-

as depicted in Figures 2 and 3. Since, in this paper walext, in Figure 4, we show some results on the several sub-
concentrate on six basic emotions (see Section 5), the pr&YStems performance with different initial features sés.
posed approach gives rise to 15 sub-systems. Each su¥ff can observe, the ggd|t|on of glotal and AM-FM features
sub-system is implemented based on a simple linear Su,_l,ead to bet.ter recognition results. In afgw sub-systems per
port vector machine (SVM) classifier. Majority voting over formance is somewnhat better when using only MFCC and
the sub-system classification results is then used to prcprosodlcfeatures. This demonstrates that such featuges ar
vide the final classification. In addition, we use the a-prior Sufficient for the specific sub-systems.

knowledge of gender information, as such has been showhinally, concerning the types of features selected by the

to play an important role in emotion recognition in the lit- Proposed algorithm, it should be noted that different fea-
erature. ture combinations are selected for each subsystem, a fact

that backs our hierarchical approach. For example, when
5. Experimentsand Results one of the two classes of interest is fear, more glottal fea-

. , tures are selected.
In our experiments we used the well-known Berlin database

of emotional speech. The corpus has been recorded at the .
Technical University of Berlin, and it consists of 493 utter 6. Conclusions

ances by 10 professional actors (5 male and 5 female). In this paper, we proposed a hierarchical classification sys
contains seven emotions (acted), namely anger, happinegsm that is based on the discriminative power of its appro-
sadness, fear, boredom, neutral, and disgust (Burkhardt etiately trained sub-systems. These sub-systems employ
al., 2005), of which we concentrate on the first six in accorfeature sets of various types appropriately selected g¢irou
dance with similar work in the literature. We follow a leave- a two-stage feature selection algorithm. Finally we took
one-speaker-out experimental paradigm to provide speakexdvantage of the well-established method of gender depen-
independence. dent systems to achieve better results.

In the following tables we present results in the form of Our final system achieved an overall classification accu-
confusion matrices for several different experimentsniro racy of 85.18% that is comparable to the state-of-the-art in
these, we can immediately observe the superiority of thehe field. Both glottal flow and AM-FM features were se-
gender dependent vs. the gender independent approadacted by the feature selection scheme employed and indeed
Clearly, a-priori gender knowledge significantly improvesimproved recognition results in comparison to the state-of
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Anger Fear Sadness Boredom Neutral Happiness [
Anger 90% 2% 0% 1% 0% 7%
Fear 5% 81% 3% 6% 0% 5%
Sadness | 1% 3% 96% 0% 0% 0%
Boredom | 0% 3% %  73% 15% 2%
Neutral 0% 2% 0% 8%  90% 0%
Happiness 16% 2% 0% 1% 0% 81%

95

90

Table 3: Confusion matrix for thgender dependent ex-
periment with the final proposed feature selection schem
(backward selection followed by MRMR). The overall ac-
curacy is85.18%.

851

CLASSIFICRTION ACCURACY, %

80 + -+ - =+ MFCCs + Prosodic + Glottal + AM-FM
Anger Fear Sadness Boredom Neutral Happihess #——+—* MFCCs + Prosodic

Anger | 85% 4% 0% 0% 0%  11% 755 . . . S
Fear 5% 74% 5% % 2% 7% R E R EEEE R
Sadness | 0% 3% 86% 6% 5% 0% T T
Boredom | 0% 10% 6% 71%  11% 204 EMOTION CLASSIFICATION SUB-SYSTEMS 1-15
Neutral | 1% 3% 1% 9% 84% 2% . N .
Happiness 17% 3% 0% 3% 0% 7% Figure 4: The recognition rates of the 15 different sub-

systems on female utterances with two different feature
Table 4: Confusion matrix for thgender independent ex-  sets: One with only MFCCs and prosodic features, and one
periment with the final proposed feature selection schemeyith all feature set types. Sub-systems are identified by the
(backward selection followed by MRMR). The overall ac- initials of their corresponding emotion pairs.

curacy is80.09%.
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In future work, we will investigate the use of temporal fea-
ture information (feature contours), as opposed to just the
means and variances. Furthermore, we will consider larger
datasets and spontaneous speech data.
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