
Collaborative Development and Evaluation of Text-processing Workflows in a
UIMA-supported Web-based Workbench

Rafal Rak, Andrew Rowley, Sophia Ananiadou

National Centre for Text Mining and School of Computer Science, University of Manchester
131 Princess Street, Manchester, M1 7DN, UK

{rafal.rak,andrew.rowley,sophia.ananiadou}@manchester.ac.uk

Abstract
Challenges in creating comprehensive text-processing worklows include a lack of the interoperability of individual components
coming from different providers and/or a requirement imposed on the end users to know programming techniques to compose such
workflows. In this paper we demonstrate Argo, a web-based system that addresses these issues in several ways. It supports the widely
adopted Unstructured Information Management Architecture (UIMA), which handles the problem of interoperability; it provides a web
browser-based interface for developing workflows by drawing diagrams composed of a selection of available processing components;
and it provides novel user-interactive analytics such as the annotation editor which constitutes a bridge between automatic processing
and manual correction. These features extend the target audience of Argo to users with a limited or no technical background. Here,
we focus specifically on the construction of advanced workflows, involving multiple branching and merging points, to facilitate
various comparative evalutions. Together with the use of user-collaboration capabilities supported in Argo, we demonstrate several
use cases including visual inspections, comparisions of multiple processing segments or complete solutions against a reference
standard, inter-annotator agreement, and shared task mass evaluations. Ultimetely, Argo emerges as a one-stop workbench for defining,
processing, editing and evaluating text processing tasks.

Keywords: Text mining; Text-processing workflows; Evaluation methods

1. Introduction
Due to their extensive and ever expanding volume, the an-
notation of textual resources is often supported by auto-
matic text processing systems. Such systems are generally
composed of multiple independent processing components
bridged together in a pipeline or workflow. For example,
a statistical named entity recogniser requires the original
text to be segmented into sentences and tokens, which are
tasks that may be performed by two individual components.
Currently, finding a ready-to-use component capable of per-
forming a specific, atomic task is no longer an issue. The
problem, however, lies in a lack of compatibility between
components coming from various sources, and thus an in-
ability to build a meaningful workflow.
Unstructured Information Management Architecture
(UIMA) (Ferrucci and Lally, 2004) is one of the efforts
towards making individual processing components com-
patible with each other. The architecture has become a
de-facto industry standard and software framework for
content analysis. As such, it does not provide any specific
processing components; instead, it ensures interoperability
between the components through the use of common data
representations and interfaces.
Originally developed by IBM, UIMA is currently an open-
source project hosted by Apache Software Foundation1 and
is registered at the Organization for the Advancement of
Structured Information Standards2. The framework has
been widely adopted, which resulted in a vast number of
publicly available UIMA component repositories, such as,
Carnegie Mellon University’s UIMA Component Reposi-

1http://uima.apache.org
2http://www.oasis-open.org/committees/uima

tory3, BioNLP UIMA Component Repository (Baumgart-
ner et al., 2008), or JULIE Lab’s UIMA Component Repos-
itory (JCoRe) (Hahn et al., 2008). However, these reposi-
tories are primarily targeted at users with a technical back-
ground, capable of programmatically incorporating the pro-
cessing components into their applications. To alleviate this
problem, we created Argo (Rak et al., 2012), a workbench
for developing text processing workflows with user collabo-
ration and comparative evaluation solutions. Argo is a web-
based application and is accessible entirely through a web
browser and an intuitive graphic user interface. It does not
involve any installation and the actual processing of work-
flows is carried out on a remote machine.
In this work, we are especially interested in exploiting
the capabilities of the UIMA framework in terms of cre-
ating graph-like workflows, i.e., workflows consisting of
branches and merging points, and their applicability to
comparative evaluation. A typical use case is a serial pro-
cessing workflow (a pipeline) that is split at some point
with a current output sent to two or more branches inde-
pendently for further processing. The independent branches
then merge into an evaluation component that calculates
various comparative metrics.
Such a scenario is rather unusual from the UIMA frame-
work perspective. In a typical UIMA processing workflow
there is a single common annotation structure (CAS) for
each input resource (in our case, a text document), which is
shared among all processing components, that is, the pro-
cessing components populate one and the same CAS with
their respective annotations of (usually) different types, re-
gardless of whether the components are deployed in a se-

3http://uima.lti.cs.cmu.edu:8080/UCR/Welcome.do

2971



Figure 1: Screen capture of web-based graphic user interface in Argo.

quence, in parallel or as a combination of the two. In the
comparative evaluation scenario, multiple processing com-
ponents produce the same types of (often overlapping) an-
notations. In the shared-CAS processing these annotations
are stored together, which makes it impossible to compare
against each other or some reference annotations. We ad-
dress this issue with UIMA’s multiple views and CAS mul-
tiplier mechanisms.
The remainder of this paper is structured as follows. In
Section 2 we present related work. Section 3 describes
the Argo system focusing on user collaboration as well as
workflow branching and merging capabilities. Compara-
tive evaluation use cases in Argo are presented in Section
4. Section 5 mentions future work, whereas Section 6 con-
cludes the paper.
The system is available at http://nactem.ac.uk/Argo.

2. Related Work
Workflow supporting platforms have been gaining popu-
larity due to their convenience in building multi-step ex-
perimental applications often using third-party resources.
They range from general-purpose to field-specific systems.
Examples include Galaxy (Goecks et al., 2010), a plat-
form for genomic research; Konstanz Information Miner
(KNIME) (Berthold et al., 2008) for general data analysis;
and Taverna (Hull et al., 2006), a multi-purpose, domain-
independent workflow management system, which allows

users to build workflows using third-party web services.
GATE (Cunningham et al., 2002) and U-Compare (Kano
et al., 2010b) are the notable examples of workflow de-
velopment platforms intended specifically to perform text
processing tasks. GATE is a suite of text processing and
annotation tools that comes with its own application pro-
gramming interface (API). In contrast, U-Compare uses
UIMA as its base interoperability framework. Although a
standalone application, U-Compare is capable of using web
service-based processing components and was also linked
to previously mentioned Taverna (Kano et al., 2010a). A se-
ries of U-Compare workflows is available as web services
as well (Kontonatsios et al., 2011).
Due to its support for UIMA as well as comparative eval-
uation capabilities (Kano et al., 2011), U-Compare is the
most closely related system, and in fact, was a major in-
spiration in developing Argo. As opposed to U-Compare,
Argo is a web-based application with a user interface avail-
able entirely via a web browser. Other key differences in-
clude remote simultaneous multi-user collaboration, user-
interactive processing components, and an intuitive dia-
gramming tool making Argo a more flexible and accessible
alternative.

3. Overview of Argo
Argo’s main entry point is a web-based application that
communicates with a remote service hosted at the National

2972



Centre for Text Mining. The interface provides the user
with a range of graphical and interactive elements as shown
in a screen capture in Figure 1. The main panel of the inter-
face is a flexible and intuitive diagramming tool, which al-
lows users to draw block diagrams representing their work-
flows. The left-hand panel contains storable objects avail-
able in the user space, whereas the right-hand panel is a
context-dependent informational panel that displays, e.g.,
the description of a currently selected component or the
progress of a selected workflow execution.

3.1. Storable Objects
The storable objects in the left-hand panel are categorized
into workflows, processing components, documents, and
workflow executions.
Workflows are representations of workflow diagrams. The
user is able to load and work on previously saved work-
flows. Apart from the structure, the workflows store the
settings of individual components.
Processing components are the equivalents of UIMA analy-
sis components and constitute the building blocks of work-
flows. Argo provides an ever expanding repository of pro-
cessing components ready for users to incorporate in their
workflows. Users can also upload their own UIMA compo-
nents as well as create new aggregate components by saving
workflows as components.
Documents are resources uploaded to the system by users
with the intention of being processed by workflows. Each
user has his/her own user space, which is available only
to this user unless the user decides to share it. This space
is also used to save the outputs of executing workflows,
which can be of various formats depending on consumers
used. Consumers are a special class of processing compo-
nents whose purpose is to transform and save (a selection
of) annotations from CASes. An example of a consumer
available in Argo is the CAS Writer component that seri-
alises and saves CASes. Although the serialised CASes
are not directly human interpretable, they can be used to
store intermediate or final results of processing workflows.
The CASes from one workflow can also be reused in other
workflows, which simplifies the workflows and saves users
the effort of building their own serialisation components.
Executions help track the processing of workflows, which,
depending on the scale of the task at hand, may sometimes
take hours or even days. They store information such as
current execution progress, elapsed time as well as individ-
ual component execution times.

3.2. User-interactive Components
User-interactive components are a novel type of processing
components, which allow the running workflow to pause its
execution and wait for some input from the user. An exam-
ple of a user-interactive component is Argo’s Annotation
Editor shown as part of a workflow in Figure 1 and during
user interaction in Figure 2. Annotation Editor allows the
user to inspect annotations provided by automatic process-
ing components and modify incorrect instances as well as
introduce a completely new set of annotations. The modi-
fied annotations could be sent to other processing compo-
nents for further processing.

Figure 2: Screen capture of Argo Annotation Editor

Argo object Read only Full collaboration
Document •
Processing component •
Workflow • •
Execution • •
Annotation Editor • •

Table 1: Sharing levels of various storable objects in Argo

3.3. Remote Collaboration in Argo
The major strength of Argo lies in the ability to share the
various objects owned by users. Argo provides two levels
of sharing: reading (viewing) only, and reading and writing
(collaboration). The sharing capabilities are summarized in
Table 1.
The remote collaboration is facilitated through the use of
asynchronous requests available in modern-day browsers.
For instance, multiple users collaborating remotely on a
single workflow will see each other’s modifications (such
as adding, moving, and removing component blocks) al-
most immediately in their respective browsers.

3.4. Workflow Branching and Merging
A typical UIMA pipeline operates on a single CAS, i.e.,
multiple processing components populate a single CAS
with their respective annotations. This type of storing in-
formation is not appropriate when, e.g., there are multiple
components producing the same types of annotations that
need to be compared against each other at some point in
the workflow. One solution would be to store provenance
information for every annotation. Argo, however, incor-
porates a more flexible mechanism of creating copies of a
CAS for each branch in the workflow. This process is sim-
ilar to UIMA’s CAS multipliers, a special class of analysis
components that are capable of both creating copies of or
destroying CASes.
When multiple processing components merge into a sin-
gle component, Argo merges individual CASes coming
from the different branches into a single CAS with multiple
views. Views in UIMA are another advanced mechanism of
accessing subjects of annotation and the annotation them-
selves. For example, a UIMA component may produce an-
notations for a document with multiple language versions.
Each language version and its corresponding annotations
would be stored in a CAS as separate views. In Argo, a

2973



processing component with multiple inputs operates on a
single CAS with multiple views.

3.5. Processing Component Interoperability
As previously mentioned, the interoperability of process-
ing components is ensured by UIMA itself. UIMA does it
by providing programming interfaces that need to be im-
plemented by each of the components as well as the use of
common type systems shared between components. Type
systems are the definitions of annotation structures and are
used by the processing components to “understand” CASes
they read from and write to.
Since developers can create their own type systems, the in-
teroperability of components supporting different type sys-
tems becomes an issue. This is accomplished in Argo by
the use of type system converters, which are simple map-
pings of annotation structures from one type system to an-
other. An example of the usage of a type system converter
is depicted in Figure 3.

3.6. Web Services
Argo also exposes web services, which provide access to
virtually all the functionality available in the system. This
is a step towards software developers who wish to commu-
nicate with the Argo server through their own clients. For
example, a workflow created with the convenience of the
Argo web interface may be executed directly by a purpose-
fully built and tailored client application.

4. Evaluation Use Cases
This section explores branching and merging as well as col-
laboration capabilities in various evaluation scenarios that
can be accomplished in Argo.

4.1. Manual Verification
The simplest scenario involves creating a workflow with an
annotation viewer at the end of the workflow. Based on the
manual inspection of the results in the annotation viewer,
the user replaces the components or changes the parameters
of the components in the workflow. This kind of setup is
commonly used in the early stages of the development of
more sophisticated evaluation workflows.

4.2. Comparison against Standard Reference
The most common task in creating text-processing work-
flows and tools is the evaluation of their performances
against a standard or gold reference. In this case, the re-
sults of automatic processing of a resource are compared
with the manually annotated (or manually verified) version
of the same resource.
Argo supports this kind of evaluation by the use of the Ref-
erence Evaluator component. This component belongs to
the category of components capable of dealing with multi-
ple CAS views. Reference Evaluator is capable of compar-
ing multiple views against a reference view selected by the
user.
An example workflow depicting the comparison of process-
ing workflows to a standard reference is given in Figure 3.
The subject of evaluation is the performance of two named

Figure 3: A workflow for comparing two taggers against a
reference.

entity recognisers, ABNER and GENIA Tagger4, capa-
ble of recognising biological mentions of proteins, DNAs,
RNAs, cell lines and cell types5. In this particular workflow
the resources are read by the CAS Reader component. CAS
Reader is a special document collection reader that reads
serialised versions of CASes previously saved by Argo’s
CAS Writer component.
Since the output of the reader component consists of both
the source text and manually curated annotations, the first
component after the reader, Annotation Remover, removes
the annotations to allow the following components to at-
tempt recreating them.
The ABNER component is self-contained, i.e., it does
not require any preprocessing steps. GENIA Tagger, on
the other hand, requires the source text to be segmented
into sentences, hence the presence of the Simple Sentence
Annotator component right before the tagger. Since the
ABNER and GENIA Tagger components support differ-
ent type systems, the output of the ABNER component is
passed through an appropriate type system converter (see
Section 3.5.).
The output of the named entity recognizers, as well as the
reference annotations are eventually passed onto the Ref-
erence Evaluator component. The evaluator accepts any
number of incoming branches. It is the user’s responsibil-

4ABNER and GENIA taggers are available as stan-
dalone applications at http://pages.cs.wisc.edu/ bsettles/abner and
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger, respectively.

5The named entities come from and are defined in the NLPBA
2004 shared task (Kim et al., 2004)

2974



(a) (b)

Figure 4: Evaluating inter-annotator agreement with the use
of two workflows: (a) the main processing workflow with
the Annotation Editor component, and (b) a workflow for
combining results and calculating the agreement.

ity to identify a branch that will serve as the reference. This
task is accomplished simply by selecting one of the incom-
ing branches in the setting panel of this component. The
evaluator then compares the annotations coming from all
(except one) inputs against the selected input and produces
a report listing standard information retrieval metrics, such
as precision, recall and F score, for each of the documents
separately and as an aggregate.

4.3. Inter-annotator Agreement Evaluation
A common task in preparing a language resource involves
the manual annotation of the resource independently by
multiple human annotators. The results of annotation from
each of the annotators are later compared to calculate the
inter-annotator agreement. The agreement rate gives an in-
sight into the complexity of the annotation task, and may
prompt the authors of the task to improve the annotation
guidelines to avoid subjective interpretation.
One of possible scenarios to accomplish this evaluation task
in Argo involves creating two processing workflows. The
first workflow consists of the Annotation Editor component
and constitutes the main analysis power. The second work-
flow serves only to gather different versions of annotations
created by the different human annotators. The two work-
flows are shown in Figure 4.
Both workflows are prepared by the author of the annota-
tion task. The workflow in Figure 4a consists of automatic
processing components, which serve to pre-annotate the in-
put resources for manual verification and correction in the
Annotation Editor. The processing components preceding
the Annotation Editor represent a general idea of support-

ing manual annotation with automated processes.
To begin the annotation process, the author of the work-
flows executes the first workflow once for each human an-
notator. The author then shares each of the executions with
each of the human annotators. By sharing only the execu-
tions (and not the workflows), the author ensures that the
annotators will not modify the workflows themselves. In-
stead they will only be able to interact with the workflow
by opening the Annotation Editor, which will be filled with
pre-annotated entities.
Since each of the executions results in persistent CAS sets
(through CAS Writer), the author may read each of them
separately and pass them to an agreement evaluator com-
ponent, as shown in Figure 4b. The Agreement Evaluator
component compares the annotations coming from differ-
ent sources and reports agreement metrics such as Cohen’s
kappa, broken down for each of the annotation labels. As an
alternative, especially useful with a large number of human
annotators, the author may replace individual CAS Read-
ers in Figure 4b with a single Multi-Source CAS Reader,
described in the next section.
Additionally, to save resources and avoid running the au-
tomatic pre-annotation step for each of the annotators, the
first workflow can be split into two. The first one could save
the CASes right after the automatic processing component,
whereas the second could first read the saved results from
the previous workflow right before the Annotation Editor
component.

4.4. Mass Evaluation
The previous section shows multiple sources of CASes be-
ing evaluated against a single reference by means of plac-
ing multiple CAS Reader components in the workflow.
That scenario is useful when dealing with a limited num-
ber of incoming results; however, it might become counter-
productive with dozens or hundreds of inputs. A typical
case includes various shared tasks and competitions such
as the BioNLP shared task6 or the BioCreative workshop
series7.
Argo accommodates large scale evaluations by providing
the Multi-Source CAS Reader component. The reader takes
a folder name as a parameter, which presumably consists of
previously saved or shared CASes, and creates a CAS view
for each of the saved/shared CAS sets.
For instance, the task participants can submit their results
by sharing their CASes with the task organiser. Alterna-
tively, the organiser may take advantage of the exposed
Argo web services and set up a web page, which allows
the task participants to upload their results (in a predefined
format). The web page then uses the Argo web services to
deposit the submissions in the organiser’s work space. The
advantage of the latter solution is that the participants can
work independently of Argo; in fact, they do not even have
to be aware of its existence. The former, however, frees
the organiser from having to build a user registration sys-
tem. Moreover, the task participants can take advantage of
the various visualisation and evaluation components as well
as supporting resources (either already available in Argo or

6https://sites.google.com/site/bionlpst/
7http://www.biocreative.org/

2975



prepared specifically by the organiser) to ease the develop-
ment process.

5. Future Work
A major bottleneck of ensuring processing component in-
teroperability is the necessity of programmatically devel-
oping type system converters capable of mapping one type
system to another (see Section 3.5). We plan to address
this problem by introducing a convenient graphic interface
where users will be able to provide this mapping without
having to resort to programming.

6. Conlusions
By using the UIMA framework wrapped in an intuitive,
web-based user interface, Argo is an attractive alternative
for text-analysis practitioners familiar with this widely ac-
cepted standard.
Argo exploits the capabilities of UIMA and pushes them
in new directions. The branching and merging of process-
ing flows makes it possible to carry out independent exper-
iments stemming from a single source, combine indepen-
dent experiments into a single target, as well as the com-
bination of the two. Together with the collaborative ca-
pabilities and the user-interactive components, the system
make for a powerful one-stop service facilitating the defi-
nition, automatic processing, manual editing and evaluation
of text processing tasks. Argo supports various comparative
evaluation tasks ranging from simple visual examinations
to comparison of multiple processing segments against a
standard reference and each other to shared task mass eval-
uations.

7. References
W. A. Baumgartner, B. K. Cohen, and L. Hunter. 2008.

An open-source framework for large-scale, flexible eval-
uation of biomedical text mining systems. Journal of
Biomedical Discovery and Collaboration, 3:1+.

M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter,
T. Meinl, P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel.
2008. KNIME: The Konstanz Information Miner. Data
Analysis, Machine Learning and Applications, (38):319–
326.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A framework and graphical development
environment for robust NLP tools and applications. In
Proceedings of the 40th Anniversary Meeting of the As-
sociation for Computational Linguistics.

D. Ferrucci and A. Lally. 2004. UIMA: An Architec-
tural Approach to Unstructured Information Processing
in the Corporate Research Environment. Natural Lan-
guage Engineering, 10(3-4):327–348.

Jeremy Goecks, Anton Nekrutenko, James Taylor, and
Galaxy Team. 2010. Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome bi-
ology, 11(8):R86+.

U. Hahn, E. Buyko, R. Landefeld, M. Mühlhausen,
M. Poprat, K. Tomanek, and J. Wermter. 2008. An
Overview of JCORE, the JULIE Lab UIMA Component

Repository. In LREC’08 Workshop, Towards Enhanc. In-
teroperability Large HLT Syst.: UIMA NLP, pages 1–8.

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R.
Pocock, P. Li, and T. Oinn. 2006. Taverna: a tool for
building and running workflows of services. Nucleic
acids research, 34(Web Server issue):W729–732.

Y. Kano, P. Dobson, M. Nakanishi, J. Tsujii, and S. Ana-
niadou. 2010a. Text mining meets workflow: linking
U-Compare with Taverna. Bioinformatics (Oxford, Eng-
land), 26(19):2486–2487.

Y. Kano, R. Dorado, L. McCrochon, S. Ananiadou, and
J. Tsujii. 2010b. U-Compare: An integrated language
resource evaluation platform including a comprehensive
UIMA resource library. In Proceedings of LREC 2010,
pages 428–434.

Y. Kano, M. Miwa, K. B. Cohen, L. E. Hunter, S. Anani-
adou, and J. Tsujii. 2011. U-Compare: A modular NLP
workflow construction and evaluation system. IBM Jour-
nal of Research and Development, 55(3):11:1–11:10.

J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Col-
lier. 2004. Introduction to the bio-entity recognition
task at jnlpba. In Proceedings of the International
Joint Workshop on Natural Language Processing in
Biomedicine and its Applications, JNLPBA ’04, pages
70–75, Geneva, Switzerland. Association for Computa-
tional Linguistics.

G. Kontonatsios, I. Korkontzelos, B. Kolluru, and S. Anani-
adou. 2011. Adding text mining workflows as web ser-
vices to the biocatalogue. In Proceedings of the 4th In-
ternational Workshop on Semantic Web Aplications and
Tools for the Life Sciences (SWAT4LS).

R. Rak, A. Rowley, W.J. Black, and S. Ananiadou. 2012.
Argo: an integrative, interactive, text mining-based
workbench supporting curation. Database: The Journal
of Biological Databases and Curation, (In press).

2976


