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Abstract 

Domain adaptation is an important topic for natural language processing. There has been extensive research on the topic and various 
methods have been explored, including training data selection, model combination, semi-supervised learning. In this study, we propose 
to use a goodness measure, namely, description length gain (DLG), for domain adaptation for Chinese word segmentation. We 
demonstrate that DLG can help domain adaptation in two ways: as additional features for supervised segmenters to improve system 
performance, and also as a similarity measure for selecting training data to better match a test set. We evaluated our systems on the 
Chinese Penn Treebank version 7.0, which has 1.2 million words from five different genres, and the Chinese Word Segmentation 
Bakeoff-3 data. 
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1. Introduction 

Domain adaptation is an important topic for natural 

language processing (NLP) because, without it, the 

performance of NLP systems often degrades significantly 

when training and test data come from different domains. 

There has been extensive research on this topic, and the 

methods include training data selection (e.g., (Moore and 

Lewis, 2010; Plank and van Noord, 2011)), model 

combination (e.g., (McClosky et al., 2010)), feature 

copying (Daume 2007), semi-supervised learning (e.g., 

(McClosky et al., 2006)), and many more. 

In this study, we focus on domain adaptation for 

Chinese word segmentation (CWS). There have been 

many studies on CWS in the past few decades (e.g., (Xue, 

2003; Low et al., 2005; Zhao et al., 2006; Song et al., 

2009; Sun et al., 2011)), and it is well-known that the 

main challenge to CWS is to identify the 

out-of-vocabulary (OOV) words (Huang et al., 2007). We 

propose to use an existing goodness measure, namely 

description length gain (DLG) (Kit and Wilks, 1999), for 

domain adaptation for CWS. Intuitively, the DLG score of 

a character sequence indicates the reduction of 

description length of a corpus when the sequence is 

treated as a unit and all the occurrences of the sequence in 

the corpus are replaced by the index of this unit. 

Previously, DLG has been used to identify OOV words 

(Kit and Liu, 2005) and as global features for supervised 

learning (Zhao and Kit, 2008). We use DLG in two ways. 

First, like in (Zhao and Kit, 2008), we add DLG-based 

features to two supervised systems (one is a CRF 

segmenter and the other is a joint model for CWS and 

POS tagging), and show that the performance of the 

systems improve significantly, especially when the 

training and test genres are very different.  Second, we 

define a DLG-based similarity measure for selecting a 

subset of training data for a given test corpus, and show 

that this automatic selection method outperforms random 

selection in several scenarios that we have tested. 

The paper is organized as follows. In Section 2, we 

provide the definition of DLG. In Section 3, we describe 

our baseline segmenters and how we extend them by 

incorporating DLG-based features. In Section 4, we 

define a DLG-based similarity measure for training data 

selection. Section 5 describes the corpora used in our 

evaluation, and Section 6 reports experimental results of 

the systems described in Section 3 and 4. The final section 

draws the conclusion. 

2. Description Length Gain 

Description length gain (DLG), based on the theory of 

minimum description length (Rissanen, 1989), is a 

goodness measure proposed by Kit and Wilks (1999) as 

an unsupervised learning approach to lexical acquisition. 

More formally, for the CWS task, let X=x1 x2 … xn be a 

corpus, which is a string of characters. Kit (1998) defines 

the description length of X, DL(X), as the Shannon-Fano 

code length for the corpus, which is shown in Eq (1). Here, 

n is the size of the corpus, V is the set of distinct tokens 

(i.e., the vocabulary) in X, and c(x) is the count of a token 

x in X.  
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   Kit and Wilks (1999) uses Eq (2) to calculate the 

description length gain (DLG) from identify a substring s 

in X as a segment or chunk. Here ][ srX   denotes a 

new corpus after the operation of replacing all s with a 

new character r, which can be seen as an index for the 
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newly identified chunk s; the operator   denotes  a 

concatenation operation of two strings with a delimiter 

inserted in between.  

 

)][()()( ssrXDLXDLXsDLG    (2) 

 

Note that it is trivial to recover the original corpus X 

from the new corpus,   .][ ssrX    

 

3. DLG for improving CWS 

Intuitively, the DLG of a string s indicates the reduction of 

description length of a corpus X when the characters in s 

are treated as a unit and all the occurrences of s in X are 

replaced by the index of the unit. Therefore, the more 

frequent s is in X and the longer s is, the higher DLG(s) is. 

However, strings with high DLG scores include not only 

words, but also common word collocations (e.g., verb + 

aspect marker, noun compounds). Consequently, DLG 

scores alone, e.g., using the sum of DLG scores as the 

objective function for unsupervised segmentation as in 

(Kit and Wilks, 1999), are not sufficient for achieving 

high CWS performance. Instead of relying on DLG scores 

only, we choose to add DLG-based features to supervised 

segmenters. The DLG-based features are explained in 

Section 3.2. 

In order to evaluate the effect of adding DLG-based 

features, we build two baseline systems:  (1) SEG is a 

supervised, CRF based word segmenter, and (2) 

SEG+POS is a joint model for CWS and POS tagging. We 

then add DLG-based features to both systems, resulting in 

two new systems: SEG + DLG and SEG+POS+DLG. The 

four systems are described below. 

3.1  SEG and SEG+POS: two baseline systems 

In our first baseline system, SEG, we follow the general 

practice of treating CWS as a character tagging task (Xue, 

2003), and build a Conditional Random Fields (CRF) 

(Lafferty et al., 2001) tagger. We adopt a six-tag set used 

in (Zhao and Kit, 2008).  The six tags present a 

single-character word (S), the first three positions (B1, B2, 

B3), the middle position (M), and the last position (E) of a 

multiple-character word, respectively. For instance, if “c1 

c2 c3 c4 c5” is a word, the corresponding tags will be 

“c1/B1 c2/B2 c3/B3 c4/M c5/E”. The features used by 

SEG are shown in Table 1. 

When the training data includes POS tag labels, 

previous studies (Kruengkrai et al., 2009; Zhang et al., 

2010; Sun, 2011) have shown that a joint model for CWS 

and POS tagging improves performance of both tasks. 

Our second baseline system, SEG+POS, is a joint model. 

Building it on top of SEG is straightforward; we only need 

to replace the six-tag set in the SEG system with a set 

consisting of x-y tags, where x is one of the six tags for 

word segmentation and y is a POS tag. For instance, given 

a sentence “c1c2/NN c3/VV c4c5/Adv”, the 

corresponding tag sequence will be “c1/B1-NN c2/E-NN 

c3/S-VV c4/B1-Adv c5/E-Adv”. We use the same feature 

set as in SEG (see Table 1). 

Type Feature Function 
Unigram C-1, C0, 

C1 
The previous, 

current, and next 
character 

Bigram C-1C0, 
C0C1 

The bigrams that 
include the current 

character 
Jump C-1C1 The previous and 

next characters 

Table 1: Features used in SEG and SEG+POS. 

 

3.2 SEG+DLG and SEG+POS+DLG: adding 
DLG-based features 

Zhao and Kit (2008) has demonstrated that integrating 

unsupervised segmentation criteria into supervised 

learning for CWS is an effective way to improve the 

performance of OOV words’ recognition, and thus 

improve the overall performance of CWS. They tested 

four segmentation criteria: frequency of substring after 

reduction, DLG, Accessor Variety (Feng et al., 2004), and 

Boundary Entropy. In this study, we focus on DLG, as it 

can be easily extended for training data selection. 

Let X1 and X2 be the training corpus and the test corpus, 

respectively.  Let X be the concatenation of X1 and X2. 

The SEG+DLG system is created in three steps: 

 

1. We calculate DLG(s) for every character string s in X 

according to Eq (2). For the sake of efficiency, we 

only look at strings with no more than five characters.  
 

2. We form the feature vector for each character in the 

training and test data. In addition to the features in the 

SEG system, we add five DLG-based features, featj 

(j=1, 2, …, 5), for the current character c, which 

present the most likely tag for c according to DLG 

scores if c belongs to a word of length j in the current 

sentence.  
 

3. We train and test the CRF model with the feature 

vectors formed in Step 2. 
 

Note that the word boundary information in the training 

or test data is NOT needed for calculating DLG in Step 1 

or the DLG-based features in Step 2. The first and the 

third step are straightforward. Let us explain Step 2 with 

an example. 

 Suppose a sentence has five characters “c1 c2 c3 c4 

c5”, and we want to form the feature vector for c3. Table 2 

show the LogDLG scores for all the character sequences 

in the sentence that contain c3, where LogDLG(s) is 

simply the largest integer no greater than log(DLG(s)), as 

shown in Eq (3).
1
  We use LogDLG(s), instead of DLG(s), 

to eliminate the effect of minor differences in DLG scores 

                                                           
1
 When a character sequence appears only once in the corpus or 

the length of the sequence is one, its DLG score is negative. In 

order to ensure the operation of the log function, we normalize 

the raw DLG scores with a big number Z. The value of Z is not 

important because the final score is used only for comparison. 
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and reduce the number of features. The last column of 

Table 2 shows the tag of c3 if the string in the first column 

is treated as a word.  

     ))((log)( sDLGfloorXsLogDLG         (3) 

 

 

String s LogDLG(s) c3’s tag in s 

c3 1 S 

c2 c3 2 E 

c3 c4 1 B1 

c1 c2 c3 4 E 

c2 c3 c4 1 B2 

c3 c4 c5 2 B1 

c1 c2 c3 c4 4 B3 

c2 c3 c4 c5 3 B2 

c1 c2 c3 c4 c5 3 B3 

Table 2: DLG scores for strings that contain c3. The 

scores are calculated from the whole corpus, not just from 

the current sentence. 

 

Based on the scores in Table 2, the DLG-based features 

for c3 are calculated, as shown in Table 3.  The first 

column is the length of a word that c3 could belong to, 

which ranges from one to five. For each length j, we look 

at all the strings in Table 2 with that length and choose the 

string with the highest LogDLG(s) score. The string is 

listed in the second column, its score is in the third 

column, and c3’s tag in the string is in the fourth column.  

  Finally, the last column shows the DLG-based feature of 

the form F j= tag-score, where j, tag, and score come from 

the 1
st
, 3

rd
 and 4

th
 columns of the table. The feature is a 

binary feature, and it stores the most likely tag for the 

current character based on comparison of LogDLG  scores  

for the strings with the same length and the highest 

LogDLG score. We use several features, one for each 

length, because, as mentioned before, DLG scores tend to 

be high for long, frequent strings and thus it is good to 

have separate features for different string lengths. The 

training step will learn how useful those features are. 

Zhao et al. (2008) described a similar way for filtering the 

features by comparing their scores. 
 

 

Leng String with the 

highest score 

(s) 

 

Score 

of  s 

c3’s tag 

in s  

Feature 

added 

1 c3 1 S F1=S-1 

2 c2 c3 2 E F2=E-2 

3 c1 c2 c3 4 E F3=E-4 

4 c1 c2 c3 c4 4 B3 F4=B3-4 

5 c1 c2 c3 c4 c5 3 B3 F5=B3-3 

Table 3: DLG-based features for character c3 in sentence 

“c1 c2 c3 c4 c5”, based on the LogDLG scores in Table 2. 

  

  Adding the same kind of DLG-based features to 

SEG+POS yields our fourth segmenter, SEG + POS + 

DLG, a system that benefits from both the DLG features 

and the joint model. 

 

4. DLG for Training Data Selection 

A common approach to domain adaptation is training data 

selection; that is, choosing a subset of the training data 

that is more suitable for a given test set. This strategy not 

only reduces demand on computational resources, but 

could also potentially improve system performance, as 

demonstrated by several previous studies (Lu et al., 2007; 

Plank and van Noord, 2011; Moore and Lewis, 2010; 

Axelrod et al., 2011) for tasks such as parsing, language 

modeling, and machine translation.  

   In this section, we propose to use a DLG-based 

similarity score to select training data for CWS. We 

evaluate our automatic selection system on the Chinese 

Penn Treebank v7.0, which has data from five genres. 

Because some genres have only a few dozen files, we 

select sentences, not files, from the training data. 

4.1 Similarity Measurement 

A key issue for training data selection is what kind of 

measurement we can use to estimate the similarity 

between a text segment (e.g., a sentence) in the training 

data and the test data. Because the text segment in our 

study is a sentence, probability distributions such as word 

or topic distributions would not work well because a 

sentence is too short to collect reliable distributions.    

  Intuitively, we want to use a measure that checks the 

overlap between substrings in a training sentence and the 

test corpus. In addition to the percentage of overlap, we 

also want the measure to take into consideration the 

length and the frequency of a substring. DLG is such a 

measure because the more frequent and the longer a 

substring is, the higher its DLG score is. Based on this, we 

define a similarity measure, Sim(Sent, X), between a 

training sentence Sent and a test corpus X as the average 

of DLG scores of substrings in Sent, as shown in Eq (4). 

The higher the score is, the more similar the sentence is to 

the test corpus based on overlapping substrings and their 

frequencies. 





)(

)(
1

),(
SentSubstrs

sDLG
n

XsentSim  (4) 

Here, Substr(Sent) is the set of substrings in Sent, and n is 

the size of the set. As always, for the sake of efficiency, 

we only consider substrings with at most five characters. 

Note that DLG(s) is calculated with respect to the whole 

test corpus X, and the calculation of Sim(Sent, X) does not 

use word boundary information in the training or the test 

data. 

4.2  Selecting training sentences 

Given the similarity measure, selecting training sentences 

is straightforward. First, we enumerate all the substrings 

(with length 5 or lower) in the training data; second, we 

calculate DLG scores for these substrings with respect to 

the test corpus; third, we calculate Sim(Sent, X) for each 
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training sentence Sent using Eq (4); fourth, we sort the 

training sentences in descending order of Sim(Sent, X) and 

select a certain percentage (e.g., 5% or 10%) of the 

training corpus from the top. For evaluation, the sentences 

selected in this procedure will be compared with 

randomly selected sentences with respect to CWS 

performance. 

5. Evaluation Corpora 

For evaluation, we use several datasets: the Chinese Penn 

Treebank and the Bakeoff-3 data. Both have been used in 

many previous studies. 

5.1 The Chinese Penn Treebank 

The Chinese Penn Treebank (CTB) (Xia et al., 2000) has 

been developed since late 1990s. The first release of the 

corpus, CTB1, consisted of newswire articles only, but in 

later versions, text from more genres and sources were 

added. The latest release is version 7.0, which includes 

1.2 million words in five genres, as shown in Table 4. 
 

Genre # of words 
2
 # of files 

Newswire (nw) 260k 811 

Magazine (mz) 258k 130 

Broadcast news (bn) 287k 1,207 

Broadcast 

Conversation (bc) 

184k 86 

Weblog (web) 210k 214 

Total 1,199k 2,448 

   Table 4: Statistics of the CTB 7.0  

 
 

Data Set File IDs # of 
sents 

# of 
words 

Training 1-270 
400-931 
1001-1151 

18,089 493,939 

Development 301-325      350     6,821 

Test 271-300      348     8,008 

Table 5: Statistics of the CTB 5.0 
 

In order to compare our systems with previous systems, 

we use CTB 5.0 as our second data set. We follow the data 

split used in several previous studies, as in Table 5. 

5.2 The Bakeoff-3 data 

The Bakeoff-3 data set was first collected for the third 

international Chinese language processing evaluation 

(Levow, 2006), and has been used as a benchmark since 

then. It consists of four tracks, two of which (CITYU, 

CKIP) use traditional characters, the others (MSRA, CTB) 

use simplified characters. The statistics of those corpora 

are in Table 6. 

                                                           
2
 The numbers of words in this table are based on our own 

calculation from the CTB7 final release. They are slightly 
different from the numbers on the LDC release page at   

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=

LDC2010T07  

 

Corpus Encoding Training  Test 

CITYU BIG5 1.6M 220K 

CKIP BIG5 5.5M 91K 

MSRA GB 1.3M 100K 

CTB GB 509K 155K 

Table 6: The sizes of training and test data (in numbers of 
words) in the Bakeoff-3 data. 

5.3 The Chinese Gigaword corpus 

For the two segmenters using DLG scores, the scores can 

be calculated from the union of the training and test data. 

In that case, the segmenters are built for a given test set. 

To test how well the segmenters work without using a 

particular test set, we use the Chinese Gigawords (GW)
3
 

as an additional resource; that is, DLG scores can be 

calculated from the union of the training data and GW, 

and therefore are not specific to a test set. In order to be 

able to compare our systems with (Wang et al., 2011), we 

use the same subset of the corpus as in their experiments 

and the size is about 200 million words. As always, DLG 

scores are calculated from raw data. 

6. Experimental results 

In this section, we report the performance of the systems 

built in Section 3 and 4. For all the experiments on 

CTB7.0, for the purpose of comparison, we break the data 

in each genre into three portions: 20% as testing data, the 

first 150K words of the 80% as training data, and the next 

25K words of the 80% as the development data.
4
  

6.1 The SEG system on the CTB 7.0  

In order to understand how domain variations affect 

system performance, we trained and tested our baseline 

system, SEG, on the five genres in the CTB 7.0. A matrix 

of CWS results are shown  in Table 7, in which the row 

and column show the genres of the training and test data, 

respectively. For instance, cell (bc, mz) means SEG is 

trained on the training portion of “bc”, and tested on the 

test portion of “mz”. The two numbers in a cell are the 

overall F-score for all words and the F-score for  OOV 

words, respectively. In each column, the highest score 

(according to overall F-score) is in boldface; the second 

highest one is marked with an underline, and the lowest 

one is marked with a wavy underline. 

There are several observations from Table 7. First, not 

surprisingly, the highest accuracy is achieved when the 

training and test data are from the same genres. Second, 

some genres (e.g., mz and web) are harder than others 

(e.g., bc, bn, and nw), as shown in the last row. Third, 

from the matrix we can define the closeness of genres 

according to CWS performance; that is, given test data in 

genre G1 and training data in genre G2 and in G3, we can 

                                                           
3
 Released by the LDC with catalog number LDC2005T14. 

4
 Because the sizes of “bc” and “web” genres are smaller, the 

training and development data for them are slightly smaller than 

150K and 25K words, respectively. 
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say that G2 is closer to G1 than G3 to G1 if the overall 

F-score in cell (G2, G1) is higher than the one in cell (G3, 

G1). For example, the first column indicates that “web” is 

the closest to “bc”, and “nw” is the most “distant” from 

“bc”, when compared to other non-bc genres. 

 

 bc bn mz nw web 

bc 93.92/ 
71.08 

87.99/ 
51.13 

81.75/ 
45.11 

85.74/ 
46.64 

85.54/ 
46.91 

bn 87.94/ 
56.78 

94.10/ 
69.65 

82.76/ 
48.58 

87.62/ 
54.60 

85.14/ 
46.35 

mz 86.81/ 
57.76 

87.74/ 
52.81 

91.58/ 
66.68 

88.21/ 
51.01 

85.67/ 
48.34 

nw 83.05/ 
52.02 

89.69/ 
61.62 

85.84/ 
55.04 

94.57/ 
69.38 

83.77/ 
46.07 

web 92.13/ 
69.47 

89.45/ 
57.12 

84.19/ 
50.63 

86.79/ 
50.95 

91.50/ 
62.94 

All 96.09/ 
73.02 

96.10/ 
72.75 

93.17/ 
66.60 

96.18/ 
71.67 

93.47/ 
61.99 

 

Table 7: Performance of the SEG system, trained and 

tested on various genres. For all the experiments (except 

the “All” row),   the training data size is 150k words, and 

the test data is 20% of the data in the test genre. The 

training data for the “All” row is the union of the training 

portions of all five genres. 
 

6.2 SEG vs. SEG+DLG on the CTB 7.0 

To test the effect of DLG-based features, we ran two sets 

of experiments, using bc and mz as the test genres. For 

each test genre, we use three training data sets: one from 

the test genre, one from the genre that is the closest to the 

test genre, and the third from the farthest genre, based on 

the overall F-scores in Table 7. Each training data set has 

150K words.  The results of SEG+DLG are shown in 

Table 8. To facilitate comparison, we copied the SEG 

performance from Table 7. Table 8 shows that in all six 

pairs of experiments, SEG+DLG outperforms SEG in 

both overall F-score and OOV F-score. Furthermore, the 

farther away the training and the test genres are, the 

greater the improvement of SEG+DLG over SEG is. 

 

Training genre SEG SEG+DLG 

Test genre is “bc” 

bc  93.92/71.08 94.96/77.02 

web  92.13/69.47 93.38/76.23 

nw  83.05/52.02 86.67/63.10 

Test genre is “mz” 

mz 91.58/66.68 92.58/71.63 

mw 85.84/55.04 88.27/62.91 

bc 81.75/45.11 86.16/57.50 

Table 8: Performance of SEG v.s. SEG+DLG. The test 
data is 20% of data in the “bc” or “mz” genre. The training 
data is 150K words from three genres. The two numbers 
in each cell are overall F-score and OOV F-score. 

6.3 SEG and SEG+DLG on the Bakeoff-3 

Table 9 shows the results of the two segmenters on 

Bakeoff-3 data. The scores in the first row are from the 

best system for each track. For the first two tracks, we 

collect DLG scores from three different sources, as 

indicated by the content in the parentheses. We did not do 

it for the last two tracks because the data in those tracks 

are traditional characters, whereas the Gigaword corpus 

uses simplified characters. For each dataset, the highest 

overall F-score is in bold, and the highest Roov (recall of 

the OOV words) is in bold and with underline.  

  The table shows that for all the tracks our SEG+DLG 

system achieves the highest Roov, and its overall F-score 

is higher than the best systems participated in Bakeoff-3, 

and very close to the results in (Zhao and Kit, 2008). 

Furthermore, SEG+DLG performs well even when the 

DLG scores are estimated from “Train + GW”, without 

using the test data. 

 

 MSRA  CTB  CityU AS 

Best systems in 
Bakeoff3 (2006) 

96.30/ 
61.20 

93.30/ 
70.70 

97.20/ 
78.70 

95.80/ 
70.20 

(Zhao and Kit,  
2008) 

96.60/ 
66.20 

94.31/ 
76.08 

97.47/ 
80.05 

95.86/ 
69.35 

                              Our  systems 

SEG 95.98/ 
66.43 

93.04/ 
70.96 

96.82/ 
77.97 

95.38/ 
65.99 

SEG+DLG 
(Train+Test) 

96.43/ 
69.40 

94.28/ 
76.36 

97.32/ 
80.29 

95.84/ 
69.37 

SEG+DLG  
(Train+GW) 

96.61/ 
69.43 

94.27/ 
75.74 

----  

SEG+DLG 
(Train+Test+GW) 

96.68/ 
69.28 

94.35/ 
76.31 

----  

Table 9: Performance on Bakeoff-3 data. The corpora 
used to calculate DLG scores are specified in the 
parentheses: “Train” is the training data, “Test” is the test 
data, and “GW” stands for the Chinese Gigaword Corpus. 
 

6.4 Four segmenters on the CTB 5.0  

Now we compare the performance of all four segmenters 

with the state-of-the-art segmenters that use both word 

segmentation and POS tagging annotation in the training 

data. In this case, two measures are used: the overall 

F-score on word segmentation (Fseg), and a joint overall 

F-score (Fjoint) where a match is a word in the system 

output that  agrees with the gold standard in both the word 

boundary and the POS tag of the word.  For this 

experiment, we use CTB 5.0, not CTB 7.0, because CTB 

5.0 is the dataset used by the previous studies in Table 10.  

    

  The table shows the performance of our two systems 

with DLG-based features is in par with the top systems in 

the field. Compared to those top systems, our systems are 

arguably less complex and therefore easier to implement 

and extend. 
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Table 10: System performance on the CTB5. The asterisk 
means that the system uses the Gigaword corpus as an 
additional resource. 
 

6.5 Training data selection on CTB 7.0 

For training data selection, given a training genre G1 and 

the test data from genre G2, we want to select a subset of 

sentences from the training portion of G1 for that test data. 

We compare the data selected by our system with random 

selection in three scenarios:  
 

(1) Training and test data are from a same genre. The 

results for using “bc” are in Table 11. 
 

(2) Training and test data are from different genres, for 

which we choose “nw” as G1 and “bc” as G2 because 

“nw” is the most distance genre from “bc” according 

to Table 7. The results for training on “nw” and 

testing on “bc” are in Table 12. 
 

(3) Training data is made up from multiple genres that do 

not include the test genre. In one experiment, we 

chose “mz” as the test genre, because it is the most 

difficult genre according to Table 7. The training data 

is the union of the training portion of all other four 

genres. The results are in Table 13.   
 

In Tables 11-13, the scores for random selection are the 

average scores of five random selections; if a subset of 

training data produces better results than the whole 

training data, the corresponding scores are in bold.  

 

%  of  the 
training data 

Selected 
(F-all/F-oov) 

Random 
(F-all/F-oov) 

1% 82.66/46.26 79.66/41.48 

5% 88.15/57.75 87.41/55.98 

10% 90.05/61.35 89.00/60.01 

20% 91.53/65.39 90.74/65.29 

40% 93.10/69.63 92.53/69.47 

60% 94.02/72.33 93.80/72.23 

80% 94.85/76.08 94.65/75.97 

100% 94.96/77.02 94.96/77.02 

Table 11: Segmentation results when training and test data 
are both from the “bc” genre. The numbers in the second 
and third columns are the f-scores for all the words and 
OOV words. 
 

Several observations are worth noting. First, our 

selection method outperforms the random selection for all 

three scenarios, and the gap is larger when a smaller 

percentage of training data is selected. Second, the gap 

between “Selected” and “Random” is larger in Tables 12 

and 13 than in Table 11, a desirable property since training 

data selection is more meaningful when the training and 

test data are from different genres.  
 
 

% of the 
training data 

Selected 
(F-all/F-oov) 

Random 
(F-all/F-oov) 

1% 78.11/47.61 71.34/40.60 

5% 83.37/57.56 78.42/49.43 

10% 84.48/58.78 81.37/54.23 

20% 85.34/60.39 83.67/57.40 

40% 86.26/61.22 84.72/59.09 

60% 86.44/62.31 85.60/59.80 

80% 86.73/63.28 86.24/61.51 

100% 86.67/63.10 86.67/63.10 

Table 12: Segmentation results when the training data is 
from “nw” and the test data is “bc”. 
 
 

% of the 
training data 

Selected 
(F-all/F-oov) 

Random 
(F-all/F-oov) 

1% 81.60/52.24 75.47/45.38 

5% 85.02/57.10 83.15/54.56 

10% 87.35/59.70 85.88/57.33 

20% 88.65/63.60 87.02/62.31 

40% 90.12/65.32 88.86/64.97 

60% 91.02/69.70 90.55/68.54 

80% 91.95/72.02 91.02/70.46 

100% 91.34/71.18 91.34/71.18 

Table 13: Segmentation results when the test data is from 

“mz” and the training data is from the other four genres. 

 

7. Conclusion 

We demonstrate that DLG can help domain adaptation for 

CWS in several ways: first, it can be incorporated into 

supervised segmenters as features and the resulting 

systems achieve the state of the art on several benchmark 

datasets. Second, it can be used for training data selection, 

to find a subset of training data that better match a test set.  

For future work, we plan to explore other goodness 

measures (such as accessor variety) and determine 

whether they can be combined with DLG for CWS 

domain adaptation. We will also look at other tasks such 

as POS tagging and parsing, and investigate whether there 

are goodness measures like DLG which could help 

domain adaptation for those tasks. 
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