Summary of the paper

Title Cross-Lingual Generation and Evaluation of a Wide-Coverage Lexical Semantic Resource
Authors Attila Novák and Borbála Novák
Abstract Neural word embedding models trained on sizable corpora have proved to be a very efficient means of representing meaning. However, the abstract vectors representing words and phrases in these models are not interpretable for humans by themselves. In this paper we present the Thing Recognizer, a method that assigns explicit symbolic semantic features from a finite list of terms to words present in an embedding model, making the model interpretable for humans and covering the semantic space by a controlled vocabulary of semantic features. We do this in a cross-lingual manner, applying semantic tags taken form lexical resources in one language (English) to the embedding space of another (Hungarian)
Topics Knowledge Discovery/Representation, Statistical And Machine Learning Methods, Semantics
Full paper Cross-Lingual Generation and Evaluation of a Wide-Coverage Lexical Semantic Resource
Bibtex @InProceedings{NOVÁK18.174,
  author = {Attila Novák and Borbála Novák},
  title = "{Cross-Lingual Generation and Evaluation of a Wide-Coverage Lexical Semantic Resource}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA