In this paper, we show how distributionally-induced semantic classes can be helpful for extracting hypernyms. We present methods for inducing sense-aware semantic classes using distributional semantics and using these induced semantic classes for filtering noisy hypernymy relations. Denoising of hypernyms is performed by labeling each semantic class with its hypernyms. On the one hand, this allows us to filter out wrong extractions using the global structure of distributionally similar senses. On the other hand, we infer missing hypernyms via label propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that processing of automatically extracted hypernyms using our approach improves the quality of the hypernymy extraction in terms of both precision and recall. Furthermore, we show the utility of our method in the domain taxonomy induction task, achieving the state-of-the-art results on a SemEval'16 task on taxonomy induction.
@InProceedings{PANCHENKO18.234, author = {Alexander Panchenko and Dmitry Ustalov and Stefano Faralli and Simone Paolo Ponzetto and Chris Biemann}, title = "{Improving Hypernymy Extraction with Distributional Semantic Classes}", booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)}, year = {2018}, month = {May 7-12, 2018}, address = {Miyazaki, Japan}, editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga}, publisher = {European Language Resources Association (ELRA)}, isbn = {979-10-95546-00-9}, language = {english} }