Summary of the paper

Title Enriching Frame Representations with Distributionally Induced Senses
Authors Stefano Faralli, Alexander Panchenko, Chris Biemann and Simone Paolo Ponzetto
Abstract We introduce a new lexical resource that enriches the Framester knowledge graph, which links Framnet, WordNet, VerbNet and other resources, with semantic features from text corpora. These features are extracted from distributionally induced sense inventories and subsequently linked to the manually-constructed frame representations to boost the performance of frame disambiguation in context. Since Framester is a frame-based knowledge graph, which enables full-fledged OWL querying and reasoning, our resource paves the way for the development of novel, deeper semantic-aware applications that could benefit from the combination of knowledge from text and complex symbolic representations of events and participants. Together with the resource we also provide the software we developed for the evaluation in the task of Word Frame Disambiguation (WFD).
Topics Knowledge Discovery/Representation, Information Extraction, Information Retrieval, Word Sense Disambiguation
Full paper Enriching Frame Representations with Distributionally Induced Senses
Bibtex @InProceedings{FARALLI18.263,
  author = {Stefano Faralli and Alexander Panchenko and Chris Biemann and Simone Paolo Ponzetto},
  title = "{Enriching Frame Representations with Distributionally Induced Senses}",
  booktitle = {Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)},
  year = {2018},
  month = {May 7-12, 2018},
  address = {Miyazaki, Japan},
  editor = {Nicoletta Calzolari (Conference chair) and Khalid Choukri and Christopher Cieri and Thierry Declerck and Sara Goggi and Koiti Hasida and Hitoshi Isahara and Bente Maegaard and Joseph Mariani and Hélène Mazo and Asuncion Moreno and Jan Odijk and Stelios Piperidis and Takenobu Tokunaga},
  publisher = {European Language Resources Association (ELRA)},
  isbn = {979-10-95546-00-9},
  language = {english}
  }
Powered by ELDA © 2018 ELDA/ELRA